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Abstract 44 
 45 
Background: Candidate Phyla Radiation (CPR) bacteria are commonly detected yet enigmatic 46 
members of diverse microbial communities. Their host associations, metabolic capabilities, and 47 
potential roles in biogeochemical cycles remain under-explored. We studied 48 
chemoautotrophically-based biofilms that host diverse CPR bacteria and grow in sulfide-rich 49 
springs using bulk geochemical analysis, genome-resolved metagenomics and scanning 50 
transmission x-ray microscopy (STXM) at room temperature and 87° K. 51 
 52 
Results: CPR-affiliated Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, 53 
Berkelbacteria, Microgenomates, and Parcubacteria are members of two biofilm communities 54 
dominated by chemolithotrophic sulfur-oxidizing bacteria including Thiothrix or Beggiatoa. STXM 55 
imaging revealed ultra-small cells along the surfaces of filamentous bacteria that we interpret are 56 
CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L2,3 edges 57 
show protein-encapsulated elemental sulfur spherical granules associated with filamentous 58 
bacteria, indicating that they are sulfur-oxidizers, likely Thiothrix. Berkelbacteria and 59 
Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 60 
3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via 61 
redox cofactors. This complex could potentially underpin a symbiosis involving Berkelbacteria 62 
and/or Moranbacteria and filamentous sulfur-oxidizing bacteria such as Thiothrix that is based on 63 
cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and 64 
rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic 65 
architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems.  66 
 67 
Conclusions: Our combined metagenomic, geochemical, spectromicroscopic and structural 68 
bioinformatics analyses link some CPR bacteria to sulfur-oxidizing Proteobacteria, likely Thiothrix, 69 
and indicate roles for CPR bacteria in sulfur and hydrogen cycling. 70 
 71 
Keywords: Candidate Phyla Radiation, groundwater microbiome, synchrotron-based 72 
spectromicroscopy 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.17.516901doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516901


 
 

3 

Background 87 
 88 
Sulfur is the fifth most abundant element on earth and the sulfur cycle is a key component of 89 
Earth's interlinked biogeochemical cycles[1,2]. In natural ecosystems, sulfur exists in several 90 
oxidation states, -2, 0, +2, +4 and +6 being the most common, in the forms of polysulfide (HSx or 91 
Sx

2-; -2,0), thiosulfate (S2O3
2- ; -1,+5), tetrathionate (S4O6

2- ; -2,+6), sulfite (SO3
2- ; +4) and sulfate 92 

(SO4
2- ; +6). Microbes play an important role in sulfur cycling in aqueous and soil environments. 93 

H2S is also a toxic compound that must be maintained at low levels for the sustained growth of 94 
microbial consortia, thus microbial sulfide oxidation is beneficial at the community level. 95 

 Sulfide (S2-) is common in natural springs and can serve as a source of energy and 96 
reducing power for chemolithoautotrophic microorganisms. Chemolithoautotrophic microbial 97 
communities with members that carry out the oxidation, reduction and disproportionation of sulfur 98 
compounds are found in environments such as hydrothermal vents[3,4], water column oxic/anoxic 99 
interfaces[5–7], terrestrial caves[8–10], groundwater[11,12] and activated sludge[13]. Sulfur-100 
based chemoautotrophic cave mats are dominated by filamentous Campylobacterota in 101 
environments with high S2-/O2 (>150) ratios, whereas Gammaproteobacteria (Beggiatoales and 102 
Thiothrixales) are prevalent at lower S2-/O2 (<75) ratios[9]. Beggiatoaceae and Thiotrichaceae 103 
that have been cultivated have been shown to use hydrogen sulfide either mixotrophically or 104 
heterotrophically [14–17]. Beggiatoa spp. are gliding filamentous bacteria that form S0 spherical 105 
granules that they may oxidize to sulfate when H2S supply becomes limited [18]. Thiotrix spp. are 106 
gliding bacteria that can grow as long filaments (cells in a microtubular sheath) and are known to 107 
accumulate S0 spherical granules when in the presence of reduced sulfur[13,19] and organics 108 
(energy and carbon source) [14]. Prior work[20–24] indicate that sulfur-oxidizing bacteria support 109 
communities by providing resources such as fixed carbon and nitrogen. 110 

To date, most studies of sulfur-based chemoautotrophic ecosystems have investigated 111 
the roles of the relatively most abundant organisms. However, it is well understood that microbial 112 
biofilms are structured as networks of interacting organisms, some of which are fundamentally 113 
dependent on other community members. Of particular interest are Candidate Phyla Radiation 114 
(CPR) bacteria (also known as Patescibacteria)  [25–28] that can form symbioses with host 115 
organisms [29–31]. Prior surveys have documented CPR bacteria in sulfur-based communities 116 
[25,32,33], yet the nature of CPR-host relationships and the roles of CPR in sulfur-based 117 
communities remain under-explored.  118 

Here, we studied chemoautotrophic microbial communities sustained by sulfur 119 
metabolism in two mineral springs MS4 and MS11[34] at Alum Rock Park, CA, USA, where 120 
sulfide-rich groundwater discharges along the Hayward fault. We profiled oxygen isotopes, 121 
temperature, water composition and spring discharge rates to constrain the sources of water and 122 
further combined genome-resolved metagenomics with electron microscopy and X-ray 123 
spectromicroscopy to investigate metabolic capacities, interdependencies, and structure of the 124 
microbial biofilm community at these two springs.  Synchrotron-based spectromicroscopy 125 
evidenced the close association between ultra-small cells, inferred to be CPR bacteria, and sulfur-126 
oxidizing bacteria that underpin this chemoautotrophic ecosystem. We predict the contributions 127 
of the major community members to carbon, nitrogen, hydrogen and sulfur cycling and investigate 128 
the potential roles of the abundant and diverse CPR bacteria in these consortia. 129 
 130 
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Materials and Methods 131 
 132 
Site Description and Microbial biomass collection  133 
 134 
The spring system is located along Penitencia Creek in Alum Rock Park, San Jose, CA 135 
(37°23’57.7”N, 121°47’48.8”W) (Fig. 1A). The two sample sites, Mineral Springs 4 and 11 (MS4 136 
and MS11) are located on opposite sides of the creek approximately 250 m from one another 137 
(Fig. 1B-C). Samples for geochemical analyses and 16S rRNA gene sequencing were taken in 138 
May 2005, during the dry season, and were filtered on-site using sterile 0.2 µm filters. Biofilm 139 
samples for scanning electron microscopy were collected from both sites using sterile pipettes. 140 
Solutions were acidified with 3% nitric acid for cation analyses. Samples were transported back 141 
to the laboratory on ice. Biofilm samples for metagenomic sequencing were collected on 142 
November 1, 2012 and July 2, 2019 and July 24, 2020. Planktonic samples were collected June 143 
10, 2015 and July 24, 2020. Two sets of planktonic samples were taken by sequentially filtering 144 
379 L and 208 L of water, respectively, from the MS4 spring onto 0.65 μm and 0.1 µm large 145 
volume filters (Gravertech 5 inch ZTEC-G filter). Filters were frozen on dry ice at the site and 146 
stored at -80°C for genome-resolved metagenomic analyses. For synchrotron measurements 147 
(STXM and X-ray microprobe), thin white streamers were collected in June 2015 with sterile 148 
tweezers at both sites and transported in falcon tubes on ice. Samples were then thawed and 149 
immediately deposited either onto a Si3N4 window (TEM windows) or a Cu TEM grid (300 mesh, 150 
Ted Pella). Samples were then plunged in liquid nitrogen for cryogenic measurements, gas 151 
ethane (used for flash-freezing) was not available at the time of sampling. For all synchrotron-152 
based measurements, samples were not rinsed or spinned so as to preserve the structural 153 
integrity of the filaments and preserve the CPR bacteria-bacteria-filaments spatial relationships. 154 
 155 
Geochemical Analysis 156 
 157 
Water discharge (volume/time) was measured by diverting water into either a bucket or graduated 158 
cylinder to measure volume, and time was recorded with a stopwatch. Temperature was 159 
measured with a type K thermocouple until February 2008 and thereafter with a thermistor. 160 
Accuracy is 0.2 oC and 0.1 oC, respectively. Water for O and H isotope measurements was 161 
collected in 250 mL Nalgene bottles. Discharge and temperature were not measured if outflow 162 
channels from the springs backed up to create pools of water. Cation analysis was performed on 163 
a PerkinElmer 5300 DV optical emission ICP with autosampler. Anion analysis was performed 164 
on-site using a HACH DR2010 spectrophotometer with protocols provided by the manufacturer. 165 
O and H isotopes were measured with a GV IsoPrime gas source mass spectrometer, with 166 
analytical precision of approximately  0.1 and 1 permil, respectively. 167 
 168 
Scanning Electron Microscopy 169 
 170 
Scanning electron microscopy samples were fixed for two hours in a 2% glutaraldehyde solution 171 
(in 0.1 M sodium cacodylate buffer) according to a standard protocol, then vacuum aspirated onto 172 
0.22 µm polycarbonate filters (Osmonics, poretics, 47 mm, Catalog number K02CP04700), and 173 
rinsed three times in 0.1 M sodium cacodylate buffer. The samples were then dehydrated in 174 
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successive ethanol baths of increasing concentration and finally dried using a Tousimis 175 
AutoSamdri 815 Critical Point Dryer for approximately one hour. Specimens were mounted on 176 
gold stubs and sputter coated with a gold/palladium mix. Imaging was performed on a Hitachi S-177 
5000 scanning electron microscope at 10 keV at UC Berkeley. 178 
 179 
Scanning Transmission X-ray Microscopy (STXM) 180 
 181 
STXM and near edge x-ray absorption fine structure (NEXAFS) spectroscopy measurements 182 
were performed on the soft X-ray undulator beamline 11.0.2[35] of the Advanced Light Source 183 
(ALS), Berkeley, CA, USA. Data were recorded with the storage ring operating in top-off mode at 184 
500 mA, 1.9 GeV. Samples were thawed right before STXM-NEXAFS measurements at ambient 185 
temperature under He at pressure <1 atm.  A Fresnel zone plate lens (40 nm outer zones) was 186 
used to focus a monochromatic soft X-ray beam onto the sample. The sample was raster-scanned 187 
in 2D through the fixed beam and transmitted photons were detected with a phosphor scintillator-188 
photomultiplier assembly; incident photon counts were kept below 10 MHz. The imaging contrast 189 
relies on the excitation of core electrons by X-ray absorption [36–38].  STXM images recorded at 190 
energies just below and at the elemental absorption edge (S L3 and C K) were converted into 191 
optical density (OD) images where the OD for a given energy can be expressed from the Beer-192 
Lambert law, for a given X-ray energy, as OD= -ln(I/I0)= µ ρ t, where I, I0, µ, ρ and t are the 193 
transmitted intensity through the sample, incident intensity, mass absorption coefficient, density 194 
and sample thickness, respectively. Protein, carbon and elemental sulfur maps were obtained by 195 
taking the difference of OD images at 280 and 288.2 eV, at 280 and 305 eV, and at 162 and 163.9 196 
eV respectively. Image sequences (‘stacks’) recorded at energies spanning the S L2,3-edges (160-197 
180 eV) with steps of 0.3 eV around the L3-edge, and C K-edge (280-305 eV) with steps of 0.12 198 
eV around the K-edge were used to obtain NEXAFS spectra from specific regions. S 2p NEXAFS 199 
spectral features are affected by spin-orbit splitting and molecular field, and provide information 200 
on the oxidation state of sulfur. 201 

Additionally, STXM-NEXAFS measurements at 87° K were performed on frozen-hydrated 202 
samples so as to preserve sample chemical and structural integrity[39] and minimize beam-203 
induced radiation damage. These samples were cryo-transferred through a specimen chamber 204 
(<100 mTorr) into an LN2-cooled stage (87°K) inside the STXM operated with a scanning Fresnel 205 
zone plate lens (60 nm outer zones), under vacuum (10-6 torr). With this setup, the sample is not 206 
rastered-scanned so as to minimize sample vibrations, instead the zone plate is scanned in 2D. 207 
Note that sulfur L2,3 -edges could not be accessed in this configuration due to geometrical 208 
constraints. 209 

At least two different sample regions were analyzed at each elemental edge and beam-210 
induced radiation damage was carefully checked. The theoretical spectral and spatial resolutions 211 
during measurements were +/-100 meV ; 40 nm and 60 nm respectively. The photon energy was 212 
calibrated at the C K-edge using the Rydberg transition of gaseous CO2!"#!$%$&'(!)*!+,!-./!!0.!213 

+ν = 0)). Sulfur spectra were calibrated using the S 2p3/2 edge of elemental sulfur set at 163.9 eV. 214 
An elemental sulfur standard spectrum was kindly provided by Geraldine Sarret (University 215 
Grenoble Alpes, France). All data was processed with the aXis2000 software version 06 Jul 2021 216 
(http://unicorn.mcmaster.ca/aXis2000.html).  217 
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X-ray fluorescence microprobe (XFM) 218 
 219 
Synchrotron XFM measurements were performed in cryogenic conditions (95°K) at ALS XFM 220 
beamline 10.3.2[40], with the storage ring operating in top-off mode at 500 mA, 1.9 GeV. Micro-221 
focused X-ray fluorescence (µXRF) elemental mapping was performed on LN2-frozen hydrated 222 
samples oriented at 45° to the incident X-ray beam, samples were cryo-transferred into a LN2-223 
cooled apparatus following procedures described elsewhere[41]. All data were recorded using a 224 
single-element XR-100 silicon drift detector (Amptek, Be window).  225 

XRF maps were recorded at 4138 eV (100 eV above the Ca K-edge) using a beam spot 226 
size of 3 µm x 4 µm, 2 x 2  µm pixel size and 70 ms dwell time/pixel. Micro-XRF spectra were 227 
recorded simultaneously on each pixel of the maps. All maps were then deadtime-corrected and 228 
decontaminated using custom LabVIEW 2018 (National Instruments, Austin, TX, USA) software 229 
available at the beamline. Maps were then processed using a custom Matlab R2020b program 230 
(MathWorks, Natick, MA, USA) available at the beamline. 231 
 232 
DNA extraction and metagenomic sequencing 233 
 234 
Approximately 200 µl of biofilm was extracted using MoBio Powersoil DNA extraction kit (MoBio 235 
Laboratories, Inc., CA, USA) according to the manufacturer’s protocol, with the bead-beating time 236 
reduced to less than one minute. This DNA extract was then gel purified and quantified using a 237 
low-mass ladder (Promega). PCR was performed on ~50 ng of DNA in a reaction mixture 238 
containing 1X Takara ExTaq PCR buffer, 2 mM MgCl2, 50 µg of non-acetylated BSA, 200 µM 239 
dNTPs, 12.5 ng of universal bacterial 16S rRNA gene primers (27F and 1492R), 1.5 U ExTaq 240 
polymerase (Takara, Madison, Wisc.), and made to a volume of 50 µl with sterile milliQ water. 241 
Reactions were optimized for annealing temperature over the range of 48-60˚C for 25 cycles and 242 
the most intense single bands were gel purified.  243 

Total genomic DNA for metagenomic sequencing (150 bp or 250 bp reads) for both biofilm 244 
and planktonic samples (20% of each filter) was extracted using MoBio PowerMax Soil DNA 245 
extraction kit. Cells were extracted from 20% of each filter by adding 15 ml of lysis buffer and 246 
vortexing for 10 minutes. Lysis of cells was modified by heating to 65°C for 30 minutes and 1 min 247 
of bead beating.  DNA was eluted in milliQ water and ethanol precipitation was performed (70% 248 
EtOH, 3 M sodium acetate, incubation for 24 hours at 4 ˚C).  249 
 250 
Illumina sequencing, assembly, binning and sequence curation 251 
 252 
Shotgun genomic reads were assembled using IDBA-UD [42]&! 12"3#! 4)567).! 865.9.#954! 63!253 

.8"336:;.!<!-!=>?!95!:)54#@!A)2)!>955);!>".);!65!"!867>95"#965!63!B,!865#)5#C!86D)2"4)C!.954:)!254 

86?E!4)5)!865#)5#C!?@E:64)5)#98!?2639:)!"5;!?"##)25.!63!624"59.7!">F5;"58)!6D)2!."7?:).&!!The 255 
phylogenetic profile was established using a database of isolate as well as metagenomics-derived 256 
sequences. In some cases, scaffold sequences from groups of bins were used to construct 257 
emergent self-organizing maps in which the structure was established using tetranucleotide 258 
composition (tetra-ESOMs). For scaffolds > 6 kb, scaffolds were subdivided into 3 kb segments 259 
and treated separately in the ESOM analysis. In cases where the majority of segments from the 260 
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same scaffold did not group together in the ESOM, the scaffolds were evaluated manually (based 261 
on gene content and other information) to resolve their placement or assign them to unbinned. 262 
The scaffold set defined based on ESOM analysis was then used to generate a draft genome bin 263 
that was again checked for consistent binning signals (as above). As ESOMs only used scaffolds 264 
>3 kb in length, scaffolds from the original bins were added if they had a tightly defined GC, 265 
coverage and the expected phylogenetic profile. CheckM [43] was used for estimation of genome 266 
completeness, strain heterogeneity and contamination. Curated genomes with less than 5 267 
duplicated single-copy genes (some of which occur because genes are split at scaffold ends) and 268 
with <!%GH!63!#@)!)I?)8#);!.954:)!86?E!7"2=)2!4)5)!.)#!F.);!362!867?:)#)5)..!).#97"#965!+GJ!269 

362!,KLC!G-!362!6#@)2!>"8#)29"M!A)2)!8:"..939);!".!5)"2N867?:)#)C!<!'JH!"5;!O!%JH!867?:)#)!".!270 

;2"3#.!"5;!#@6.)!O!'JH!867?:)#)!".!?"2#9":&!B)567).!A9#@!PG!;F?:98"#);!.954:)N86?E!4)5).!A)2)!271 

8:"..939);!".!?"2#9":C!2)4"2;:)..!63!6#@)2!95;98"#62.!63!>95!867?:)#)5)..&!!,"5;9;"#)!?hage contigs 272 
were identified based on their lack of consistent phylogenetic profile and the presence of proteins 273 
with homology to those of known phages.  Those with similar characteristics, and typical plasmid 274 
genes, but lacking typical phage structural genes were labeled as plasmids. Manually curated 275 
phages were classified using Virsorter2[44]. Other viral sequences were profiled using Virsorter2, 276 
evaluated by checkV [45] and annotated using DRAMv [46] with default parameters. 277 
 278 
Phylogenetic analyses 279 
 280 
The concatenated ribosomal protein tree was generated using 16 syntenic genes that have been 281 
shown to undergo limited lateral gene transfer (rpL2, 3, 4, 5, 6, 14, 15, 16, 18, 22, 24 and rpS3, 282 
8, 10, 17, 19) [47]. We obtained branch support with the ultrafast bootstrap [48] implemented in 283 
iQ-TREE v1.6.12 [49] with the following parameters: -bb 1000 -m LG+F+G4. Trees were 284 
visualized using iTOL v6.3.2 [50]. Amino acid alignments of the individual ribosomal proteins were 285 
generated using MAFFT v7.304 [51] and trimmed using trimAL [52] with the following setting: -gt 286 
0.1.  287 

To verify the presence of biogeochemically-relevant genes, phylogenetic trees were 288 
constructed. We used markers for sulfur (DsrAB, Pdo), carbon metabolism (RuBisCO) and energy 289 
conservation ([NiFe]-hydrogenases). Sequences were obtained using GOOSOS and aligned 290 
using MAFFT v7.304. The phylogeny for DsrAB was generated using FastTree 2.1.11 SSE3 [53]. 291 
All other phylogenies were generated using iQ-TREE v.1.6.12 using the ultrafast bootstrap and 292 
parameters specified previously.  293 

Hydrogenase sequences from Alum Rock genomes were obtained using HMMs from  [54]. 294 
Phylogenetic classification was performed using reference sequences obtained from [54] and 295 
using HydDB [55]. Verification of hydrogenase loci was performed via inspection of nearby genes 296 
and the presence of required hydrogenase accessory genes. Genome context diagrams were 297 
generated using Clinker[56]. 298 
 299 
Metagenomics metabolic pathways analysis 300 
 301 
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Preliminary functional annotations were established and collections of metabolic capacities in 302 
genome bins were overviewed using ggKbase tools [57].  In addition, metabolic profiling was done 303 
by mapping ORFs to KEGG ortholog groups (KOs) using an HMM database that was compiled 304 
as previously described[58].  This HMM database was used to scan the metagenomic bins, and 305 
ORFs were assigned the KO of the best-scoring HMM, providing it was above the noise threshold.  306 
In addition, we profiled metabolic capacities with KEGG functional annotation using 307 
METABOLIC[59]. 308 
 309 
Protein structure prediction 310 
 311 
Protein structures were predicted for the putative complexes of the nitrate reductase (Nrx), 312 
dioxygenase/rhodonase, and group 3b [NiFe]-hydrogenase using AlphaFold2 in multimer mode. 313 
In all cases, the average per residue confidence scores (pLDDT) exceeded 90, a level that is 314 
empirically shown to produce highly accurate local structural models. The best-scoring models 315 
were aligned to related protein complexes in PyMol. Group 3b [NiFe]-hydrogenase complexes 316 
were predicted using AlphaFold2 in multimer mode for the HyhL (hydrogenase large subunit), 317 
HyhS (hydrogenase small subunit), HyhG (diaphorase catalytic subunit) and HyhB (diaphorase 318 
electron transfer subunit)[60,61]. 319 
 320 
 321 
 322 
Results 323 
 324 
Groundwater of mixed origin hosts biofilms dominated by filamentous bacteria 325 
 326 
We measured the flow rate, pH, and concentrations of ionic species (Supplementary Table S1) 327 
in the MS4 and MS11 groundwater. The MS11 spring has higher flow rate, ionic strength, 328 
alkalinity, and sulfide levels than the MS4 spring. H and O stable isotope compositions of the 329 
waters, combined with salinity measurements, indicate that spring waters are mixtures of meteoric 330 
input and pore waters from the host Miocene Monterey Group shales and cherts, and possibly 331 
deeper Cretaceous sediments of the Great Valley Group. MS4 water is more diluted by meteoric 332 
input than MS11. Long-term monitoring of these two springs shows they experience small 333 
seasonal fluctuations in temperature and that they are generally hydrologically and geochemically 334 
stable (Fig. 1D-F). Water temperatures of 27-29 oC are well above the mean annual surface 335 
temperature of 15.1 oC. The salinity of the springs is 1.8 and 2.3% for MS4 and MS11, 336 
respectively. The sulfide levels (within the zone of oxygenation) range up to ~9 and 69 μmol/L at 337 
MS4 and MS11, respectively.  338 
            The biofilms at both MS4 and MS11 sites (Fig. 1B-C) are mainly composed of thin white 339 
streamers (~ 5-10 cm long) that are primarily attached to rocks and  Scanning electron microscopy 340 
(SEM) and scanning transmission X-ray microscopy (STXM) revealed that MS4 biofilms consist 341 
of filaments and cells distributed amongst the filaments (Fig. 2). By contrast, the MS11 biofilm 342 
consists almost entirely of filamentous bacteria (Fig. 2C, Fig. 3C-D, Fig. 4). 343 
 344 
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Filamentous bacteria have encapsulated elemental sulfur granules and episymbionts 345 
 346 
Micro-focused XRF mapping of sulfur distribution at 95 °K evidenced the presence of sulfur across 347 
MS4 biofilm filaments (Fig. S1). STXM sulfur maps and S L2,3 NEXAFS spectra showed that these 348 
filamentous bacteria contain S0 granules (average 378 ± 50 nm diameter, as estimated on 76 349 
granules) encapsulated in protein-rich compartments (Fig. 2D-I , Fig. 3A-B , Fig. S2). The width 350 
of these filaments is <1.6 µm suggesting the presence of Thiotrix spp. type I (ref). Rod-shaped, 351 
curved-shaped and coccoid cells were found near the filaments in MS4 biofilms (Fig. 2, Fig. 3, 352 
Fig. S3). C K-edge NEXAFS spectra at 87 °K of filamentous bacteria in MS11 (Fig. 4) exhibit a 353 
major peak at 288.2 eV corresponding to amide carbonyl groups evidencing that filaments are 354 
protein-rich (Supplementary Table S2). Protein maps of these filaments (Fig. 3C, Fig. 4B) 355 
suggest that sulfur granules are surrounded by proteins. The spectrum of cells exhibits a major 356 
peak at 288.2 eV (amide bonds), a peak at 285.2 eV attributed mostly to aromatic groups in 357 
proteins and a peak at 289.5 eV attributed to nucleic acids, consistent with prior studies at room 358 
temperature [41,62–64], see Supplementary Table S2 for details. Resonances are more defined, 359 
likely due to reduced Debye-Waller thermal disorder at low temperature. Cells, filaments and 360 
extracellular polymeric substances (EPS) exhibited a shifted carbonate peak at 290.7 eV that 361 
corresponds to either organic carbonates or carbonate minerals[65], and originates mainly from 362 
dissolved carbonates and carbonate precipitates present in the groundwater at circumneutral pH 363 
(Supplementary Tables S1, S2). Cells and filaments both contained potassium, but not the EPS. 364 
Strikingly, ultra-small cells were found along the surfaces of the filaments in both MS4 biofilms 365 
(Fig. 2F-G, Fig. 3, Fig. S3D) and MS11 biofilms (Fig. S3A), these cells are typically about 480 366 
nm long, 250 nm wide, as estimated from STXM images. Other ultra-small cells (290 ±20 nm 367 
long, 120 ±10 nm wide) were also found in the vicinity of the filaments but not on their surfaces. 368 

 369 
Biofilms contain diverse bacteria and archaea and include CPR bacteria 370 
 371 
We used genome-resolved metagenomics to investigate microbial consortia, metabolisms and 372 
microbial interactions that underpin the Alum Rock communities. In total, we recovered 212 non-373 
redundant genomic bins from the MS4 and MS11 samples (57 from MS11 and 155 from the 374 
biofilm + planktonic samples from MS4). Of these, 38 were classified as near-complete (>95%, 375 
Supplementary Table S3). Taxonomic affiliations of all of the bacterial genomes were 376 
established based on concatenated ribosomal protein trees (Fig. 5A). 377 
            Genomically represented groups in the biofilms and planktonic fractions from both sites 378 
include Gammaproteobacteria (Thiotrichales, Chromatiales, Beggiotales), Campylobacterota 379 
(Campylobacterales), Betaproteobacteria (including Thiomonas), Deltaproteobacteria 380 
(specifically Desulfobacterales), Bacteroidota, Chloroflexi, Ignavibacteria, Spirochaetes, 381 
Lentisphaerae, Riflebacteria, Verucomicrobia, Acidobacteria, Planctomycete, KSB1, 382 
Caldisericota, Planctomycetota, Edwardsbacteria, Dependentiae (TM6), and Margulisbacteria. 383 
Diverse groups of CPR are present, including Uhrbacteria (OP11), Gracilibacteria (BD1-5), 384 
Peregrinibacteria (PER), Moranbacteria (OD1), Woesebacteria (OP11), Roizmanbacteria and 385 
Gottesmanbacteria (OP11), Saccharibacteria (TM7), Falkowbacteria (OD1), Absconditabacteria 386 
(SR1), Berkelbacteria and Doudnabacteria and Dojkabacteria (WS6).                  387 
 (see: https://ggkbase.berkeley.edu/alumrock-genomes/organisms).  388 
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        To estimate the abundances of organisms in the two springs (independent of binning) we 389 
calculated the DNA read coverage of ribosomal proteins from all of the genomic bins  (Fig. S4). 390 
The MS4 spring was dominated by Halothiobacillales, Beggiatoales and Thiotrichales and, 391 
Campylobacterales based on relative abundance among genomes (Supplementary table S4) . 392 
The most abundant species in MS4 shares genome-wide average 51% amino acid similarity with 393 
the sulfur oxidizer Thiothrix nivea[66]. The MS11 spring was dominated by a single Beggiatoa sp. 394 
(Beggiatoa-related_37_1401).  395 
 396 
Diverse bacteria are implicated in sulfur cycling 397 
  398 
The MS4 biofilms are estimated to be ~1.4 x as diverse as the MS11 biofilms, based on the 399 
number of phylogenetically informative marker genes detected (normalized for sequencing 400 
depth). We focused our analysis of the sulfur metabolism of MS4 bacteria for this reason, and 401 
given that we detected ultrasmall and surface-attached cells on filamentous bacteria implicated 402 
in sulfur oxidation. The most abundant organism in MS4, which is closely related to the 403 
filamentous bacterium Thiothrix nivea, encodes genes (soxABC, periplasmic thiosulfate-oxidizing 404 
; aprAB, adenylylsulfate reductase; dsrAB, reverse dissimilatory sulfite reductase) to convert 405 
sulfide to thiosulfate, elemental sulfur and sulfate (Fig. 5B). The absence of dsrD genes indicates 406 
that the Dsr complex operates in the sulfide oxidation direction (i.e. rDsr pathway). This Thiothrix 407 
bacterium also lacks any soxC genes, which in bacterial genomes has been associated with the 408 
accumulation of sulfur granules or polysulfide [67,68].  Based on the abundance of these 409 
organisms and their likely association with sulfur granules, it is possible that Thiothrix are the host 410 
for the ultra-small cells. 411 

MS4 contains various other bacteria capable of oxidation of sulfur compounds. A 412 
subdominant population of Sulfurovum bacteria encode sqr genes and thus likely oxidize sulfide 413 
to S0. Some Sulfurovum bacteria in both communities have genomes also encode soxCDYZ 414 
complexes, suggesting they mediate thiosulfate oxidation (potentially coupled to nitrate reduction, 415 
e.g., via narG and napA. Sulfuricurvum species are also relatively abundant in MS4 and encode 416 
genes for sulfur and thiosulfate oxidation, in line with culture-based studies [69]. [69]. The 417 
genomes of Chloroflexota encode the capacity for  thiosulfate disproportionation via thiosulfate 418 
reductase / polysulfide reductase (phsA) and sulfide oxidation via flavocytochrome c sulfide 419 
dehydrogenase. Two low abundance Gammaproteobacteria species related to Acidthiobacillus 420 
have the capacity for thiosulfate oxidation. Several genomes from moderately abundant 421 
Halothiobacillales have the metabolic capacity for sulfide and thiosulfate oxidation via fccB, dsrAB 422 
and soxBCY respectively (Supplementary Table S5, S6). 423 
    Some bacteria from MS4 spring also potentially mediate dissimilatory sulfate reduction. 424 
Specifically, the genomes of some Desulfobacteriales belonging to the families of 425 
Desulfatiglandaceae, Syntrophobacterales, Desulfurivibrionaceae and Desulfarculales encode 426 
the capacity to reduce sulfate back to sulfide via Dsr genes, likely coupled to oxidation of organic 427 
carbon or H2. Some rare Desulfocapsaceae from MS4 that are related to bacteria of the genus 428 
Desulfocapsa have thiosulfate reductase, group Group 3b [NiFe] (Hyd; possibly 429 
sulfhydrogenase), as well as SAT and APR for the oxidation of sulfite to sulfate. Thus, it appears 430 
these bacteria are involved in sulfur disproportionation whereby S0, thiosulfate, and sulfite are 431 
converted to H2S and sulfate., as has been demonstrated in cultures of bacteria from this genus 432 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.17.516901doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516901


 
 

11 

[70]. Other Desulfocapsa spp. have tetrathionate reductase genes, suggesting they are capable 433 
of converting tetrathionate to thiosulfate. The Desulfocapsa-related bacteria also contain dsrABD 434 
genes, which fall within the reductive cluster closely related to those from Desulfocapsa 435 
sulfexigens. We infer that the Desulfocapsa-related bacteria are capable of S disproportionation, 436 
as reported previously [71]. This presence of dsrD suggests that the species in the spring is 437 
capable of sulfate reduction. Only members of the candidate phylum Riflebacteria, family 438 
Ozemobacteraceae, have the capacity of anaerobic sulfate reduction via anaerobic sulfite 439 
reductase system (asrABC). A bacterium from a new class of Caldithrix from the MS4 spring is 440 
predicted to perform sulfur oxidation via dissimilatory sulfite reductase, sulfite oxidation, sulfate 441 
reduction and thiosulfate disproportionation (Supplementary Table S5, S6). We also identified 442 
abundant bacteria from novel families of Bacteroidetes, which generally encode thiosulfate 443 
reductase genes (phS) and adenylylsulfate reductase (aprA) involved in thiosulfate 444 
disproportionation and sulfate reduction.    445 

Surprisingly, we identified persulfide dioxygenase (sdo) and rhodonase (thiosulfate 446 
sulfurtransferase) in genomes of Elusimicrobia, Riflebacteria, Oscillatoriophycidae and in a novel 447 
family of Syntrophales (Fig. 6A). These enzymes are also present in the mitochondria of plants 448 
and animals, as well as in a number of heterotrophic bacteria, where they play important roles in 449 
the detoxification of intracellular sulfide and sulfur assimilation respectively [72,73]. We also found 450 
a putative sulfur dioxygenase encoded in a Doudnabacteria genome that clusters with protein 451 
sequences of other CPR bacteria from public data. In the operon there is adjacent a sulfur 452 
transferase, suggesting its potential function in thiosulfate oxidation (Fig. 10). This is interesting 453 
because persulfide dioxygenase has not been linked to CPR bacteria previously.  Modeling of the 454 
persulfide dioxygenase from Doudnabacterium using AlphaFold2 indicates that it has structural 455 
homology with the biochemically characterized persulfide dioxygenase (Fig. 6B-D). We identified 456 
these two adjacent genes in the genomes of several other CPR from high sulfide environments, 457 
including Kaiserbacteria (groundwater from California), Pacebacteria (wastewater), 458 
Moranbacteria, and Gracilibacteria (Crystal Geyser aquifer). Thus, we suggest that these genes 459 
may enable a variety of CPR bacteria to grow and generate energy from sulfur oxidation.  460 

Like MS4, the most abundant microorganisms likely mediate sulfur compound oxidation, 461 
thoughBeggiatoa are the dominant species rather than Thiothrix. As expected, the Beggiatoa 462 
genome encodes a single contig that contains the Dsr genes (dsrABPOJLCKMCHFE); s dsrD 463 
was not identified, we conclude that the Dsr genes are operational in a reverse Dsr pathway 464 
(rDsr). The genome also encodes AprAB (adenylylsulfate reductases), and Sat (sulfate 465 
adenylyltransferase) for the oxidation of sulfide to sulfate, sulfide-quinone oxidoreductase (Sqr) 466 
as well as sulfide dehydrogenase (fccB) genes for the oxidation of hydrogen sulfide to S0. The 467 
genomes do not contain a complete set of sulfur-oxidizing sox pathway genes, but soxDXYZ were 468 
identified. Given the lack of soxC, we conclude that (like Thiothrix) the primary role of Beggiatoa 469 
in the community is the conversion of sulfide to thiosulfate, elemental sulfur and sulfate. The 470 
absence of soxCD in bacterial genomes has been associated with the accumulation of sulfur 471 
granules or polysulfide [67,68].   472 

 473 
 474 
 475 
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Sulfur oxidizing bacteria also contribute to nitrogen cycling 476 
 477 

The dominant bacteria in MS4 and MS11 are predicted to mediate nitrogen fixation and 478 
denitrification processes. In both MS4 and MS11, genes encoding nitrogenase implicated in N2 479 
fixation are widespread in Proteobacteria, including in the dominant Thiothrix, Beggiatoa and 480 
Sulfurovum and Verrucomicrobia. Other organisms with this capacity include other 481 
Gammaproteobacteria, Chromatiales, Campylobacteriales, Sulfurovum, Sulfuricurvum, 482 
Ignavibacteria, Sulfosprillum, Spirochaetes, Desulfocapsa, and potentially Lentisphaerea.  483 

The Thiotrichales genomes encode numerous genes for the reduction of nitrate and nitrite, 484 
although the dominant Thiothrix species only has the capability to reduce nitrite to nitrous oxide 485 
via nirS and norBC genes. Some Chromatiales bacteria in both sites also appear to be capable 486 
of dissimilatory nitrite oxidation to ammonia. The sulfur-oxidizing Campylobacterales that occur in 487 
both MS4 and MS11 have numerous genes implicated in the reduction of nitrate (napAB) and 488 
nitric-oxide (norBC). Two low abundance Acidithiobacillales in MS4 that are predicted to perform 489 
thiosulfate oxidation have ammonia monooxygenase (amoA) genes, suggesting they may be 490 
involved in ammonia oxidation and nitrite ammonification. Chloroflexi that occur in both springs 491 
have the capacity for nitrite reduction via nitrite reductase (nirK), nitric oxide reduction (norBC) 492 
and nitrite ammonification. A novel Caldithrix species from MS4 has the potential of nitric oxide 493 
reduction via nitric oxide reductase (norBC) and nitrite reduction via periplasmic nitrate reductase 494 
NapA (Fig. 5B). 495 

In addition to being the most abundant sulfur oxidizers in the MS11 spring, Beggiatoa are 496 
metabolically versatile with regards to nitrogen cycling. Their genomes encode genes with 497 
similarity to nitrate reductase (narABG), nitrite reductase (nirS), nitric oxide reductase (norBC), 498 
and nitrous-oxide reductase (nosZ) for the complete reduction of nitrate to N2. They also contain 499 
nrfA potentially for dissimilatory nitrite reduction to ammonia (DNRA) or nitrite ammonification. 500 
Thus, although these bacteria can grow aerobically, they also can likely couple sulfur oxidation to 501 
nitrate reduction, in line with previous studies. 502 
 503 

 504 
 505 

Extensive links between hydrogen and sulfur metabolism 506 
 507 
To gain insight into the role of hydrogen metabolism in the Alum Rock springs, we analyzed the 508 
distribution of hydrogenases and associated enzymes in the genomes. There was considerable 509 
capacity for fermentative H2 production using nicotinamides (via group 3b and 3d [NiFe]-510 
hydrogenases), ferredoxin (via group A [FeFe]-hydrogenases and group 4 [NiFe]-hydrogenases), 511 
and formate (via formate hydrogenases) as electron donors (Fig. 7A). Some putative H2 512 
producers are likely to be metabolically flexible bacteria such as Sulfurospirillum and 513 
Flavobacteriales, which switch to fermentation when limited for respiratory electron acceptors 514 
based on previous reports [55,74], CPR bacteria, TA06, and Spirochaetes with group 3b and 3d 515 
[NiFe]-hydrogenases are likely to be obligate fermenters given they apparently lack terminal 516 
reductases (Supplementary Table S7). The gene arrangements of the group 3b [NiFe]-517 
hydrogenases in the genomes of the CPR bacteria Berkelbacteria and Moranbacteria (Fig. 7B) 518 
are similar to the biochemically characterized hydrogenase and sulfhydrogenase of Pyrococcus 519 
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furiosus [75] and those previously reported in other CPR bacteria[25,76], suggesting that these 520 
hydrogenases may be capable of reversible oxidation of hydrogen or the reduction of sulfur 521 
compounds like polysulfide. We modeled the complex from Berkelbacteria genome using 522 
AlphaFold and the model suggests a hydrogenase module (α and γ subunits) with an electron 523 
wire of FeS clusters connecting to a nucleotide reducing module (β subunit) (Fig. 7C). The δ 524 
subunit has no close structural analogues but contains an additional FeS cluster and may 525 
accommodate an additional electron-accepting partner (Fig. 7D). Based on this structural analysis 526 
there are two separate paths for the electrons suggesting this 3b [NiFe]-hydrogenase complex is 527 
potentially an electron-bifurcating hydrogenase. 528 
 529 

Numerous bacteria in the Alum Rock springs are predicted to consume H2 for energy 530 
generation. Most of these hydrogenotrophs are predicted to use H2 to reduce sulfate (via group 531 
1b and 1c [NiFe]-hydrogenases; primarily Deltaproteobacteria), elemental sulfur (via group 1e 532 
[NiFe]-hydrogenases; primarily Gammaproteobacteria), or heterodisulfides (via group 3c [NiFe]-533 
hydrogenases; various lineages including Acidobacteria). The most abundant 534 
Gammaproteobacteria and Campylobacteria likely oxidize both H2 and sulfur compounds either 535 
mixotrophically or alternatively autotrophically. The hydrogenase repertoire of these organisms 536 
includes the oxygen-tolerant group 1b and 1d [NiFe]-hydrogenases [77,78]. 537 

 538 
 539 

Organic carbon cycling and fermentation 540 
  541 
The ability to fix inorganic carbon (CO2) is a common predicted capacity for bacteria from both 542 
sites (Supplementary Table S5, S6). The dominant Thiothrix, Beggiatoa, and Chromatiales-543 
related bacteria have type II RuBisCO genes that function in the Calvin-Benson-Bassham (CBB) 544 
cycle (Fig. S6). One Absconditabacteria genome has a RuBisCO that phylogenetic analysis 545 
places within the form II/III CPR clade, as reported previously [25,79]; these enzymes are inferred 546 
to function in a nucleoside salvage pathway in which CO2 is added to ribulose-1,5-bisphosphate 547 
to form 3-phosphoglycerate [80]. Elusimicrobia and Campylobacterota, including species related 548 
to Sulfurimonadaceae, have ATP citrate lyase genes that encode the key enzyme for CO2 fixation 549 
via the reverse TCA (rTCA) cycle.  We also identified rTCA genes in a novel Bacteroidetes 550 
organism (Supplementary Table S5, S6). Genes of the Wood Ljungdahl carbon fixation pathway 551 
(cooS/acsA, acsB and acsE) were widespread in both springs, including in members of the 552 
Bacteroidetes, Desulfocapsa, Lentisphaerae, Chloroflexi, and Aminicenantia with the potential of 553 
oxidation of small organic compounds. 554 

To infer polymer biomass degradation capacity of the biofilm organisms, we used marker 555 
genes involved in carbohydrate metabolism. Many bacteria in both springs have the capacity of 556 
hydrolyzing complex organic molecules to produce a varierity of electron donors such as acetate, 557 
hydrogen and lactate (Fig. 8A). Of the organisms in the community, Bacteroidetes and 558 
Ignavibacteria contain the most glycosyl-hydrolase genes and thus they likely play important roles 559 
in polysaccharide degradation.  Notably, one Bacteroidetes from MS11 has 66 glycoside 560 
hydrolase genes. This organism is the only bacterium that appears to be capable of degrading 561 
cellulose, hemicellulose, polysaccharides, and monosaccharides. Gammaproteobacteria, 562 
Spirochaetes, Bacilli, Lentisphaerae also contain genes for the degradation of a variety of 563 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.17.516901doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516901


 
 

14 

complex carbohydrates, but these genes are at relatively low abundance in the sulfur-oxidizing 564 
Proteobacteria.  Similarly, many bacteria other than the sulfur-oxidizing Proteobacteria (and CPR) 565 
have indications of the capacity for beta-oxidation pathway of saturated fatty acids to acetyl-CoA. 566 
Many of the CPR bacteria have a few glycosyl hydrolase genes, which is significant given the 567 
scarce indications of other metabolic capacities in these organisms. Methane oxidation is 568 
predicted to be a capacity of members of Verrucomicrobia, specifically members of the 569 
Methylacidiphilales. This reaction involves particulate methane monooxygenase (pMMO-ABC), 570 
the genes for which were identified and classified phylogenetically.  571 
 One of the more interesting organisms present in the MS4 spring is a Gracilibacteria, 572 
which is predicted to have minimal metabolic capacities beyond glycolysis, production of 573 
peptidoglycan and generation of formate, some of which may be exported for use by other 574 
community members. Other capacities predicted for this bacterium are production of riboflavin, 575 
amino-sugars, RNA degradation, 1C by folate, interconversion of purines and pyrimidines and 576 
biosynthesis of a few amino acids. 577 
 578 
Phages may contribute auxiliary metabolic genes 579 
 580 
We genomically sampled 36 dsDNAv phages (Supplementary Figigure S7) (28 from MS4 and 581 
8 from MS11) to and one nucleocytoplasmic large DNA phage.  These phages have genes 582 
potentially involved in translation (bacterial ribosome L7/L12 and ribosomal protein S1), nitrogen 583 
utilization, carbon metabolism, iron metabolism (ferritin), and nucleotide metabolism (pyrimidine 584 
deoxyribonucleotide and adenine ribonucleotide biosynthesis) and defense systems such as 585 
CRISPR-Cas and TROVE (Telomerase, Ro and Vault module).  586 
 587 
 588 
Discussion 589 
 590 
Some springs are hotspots where resources associated with deeply sourced water can sustain 591 
chemoautotrophic ecosystems independent of sunlight. We studied two closely spaced but 592 
distinct sites that discharge a mixture of deeply sourced and shallow groundwater, providing 593 
microorganisms with both reduced compounds and access to oxygen. Our research integrated 594 
geochemical, X-ray spectromicroscopy, and genome-resolved metagenomic data to resolve the 595 
network of microorganisms that define the ecosystems.  This approach provided insights into 596 
organism associations, including those that involve CPR bacteria, and the biogeochemical 597 
processes that sustain autotrophic ecosystems in the context of their spring-based hydrological 598 
setting.  599 

Analysis of the metabolisms of the dominant bacteria in the springs revealed that genes 600 
implicated in sulfur cycling are common at both sites (Fig. 8B). As expected, the main energy 601 
source is reduced sulfur in the form of sulfide. Overall, the most common sulfur metabolisms are 602 
sulfide oxidation, thiosulfate disproportionation, sulfur oxidation, and less commonly sulfite 603 
oxidation and sulfate reduction. Sulfide can be oxidized aerobically and in some cases 604 
anaerobically, coupled with nitrate reduction. The genomic analyses suggest that intermediate 605 
sulfur compounds, as well as sulfate and sulfide, are actively cycled by Campylobacterota 606 
(Sulfurovum, Thiovulum), Gammaproteobacteria (Thiotrichales and Beggiotales) in the spring 607 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.17.516901doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516901


 
 

15 

communities, probably coupled to nitrogen compound reduction in some microhabitats. Partly 608 
oxidized sulfur in the form of elemental sulfur likely serves as an energy source that is stored as 609 
sulfur granules. Interestingly, elemental sulfur-bearing granules within filamentous cell 610 
compartments of Beggiatoa and/or Thiothrix likely serve as an energy source for the growth of 611 
these bacteria. The sulfur oxidizers are the primary source of fixed carbon and nitrogen. 612 

A higher flow rate and a higher concentration of sulfate was observed at MS11 compared 613 
to MS4, and the communities have distinct microbial characteristics (Supplementary Figure S3). 614 
The MS4 ecosystem is highly diverse and dominated by abundant sulfide-oxidizing 615 
Gammaproteobacteria (Thiothrix, Sulfurovum) and sulfate-reducing Desulfobacteriales. The 616 
MS11 spring has relatively low diversity and is highly dominated by Campylobacterota 617 
(Sulfurovum, Thiovulum) and Gammaproteobacteria (Thiotrichales and Beggiotales). Our findings 618 
are consistent with predictions from studies that indicate that filamentous Campylobacterota 619 
dominate biofilms with high sulfide/oxygen (>150) ratios whereas Gammaproteobacteria 620 
(Beggiatoa-like) prefer lower (<75) ratios[9].  621 

We focused some analyses on the diverse CPR bacteria within these communities, as 622 
their roles in sulfur-based chemoautotrophic ecosystems remain poorly known. CPR bacteria are 623 
characterized by small genomes and minimal anaerobic fermentative metabolism[81], however 624 
recent studies have shown auxiliary metabolisms such as the presence of hydrogenases[25,76], 625 
rhodopsin[82], nitrite reductases[83] and F-type ATPase[84], that may contribute to alternative 626 
energy conservation and adaptations to different environments and host associations. Notably, 627 
we identified genes potentially involved in elemental sulfur reduction (Sulfyhydrogenase) and 628 
thiosulfate oxidation (persulfide dioxygenase and rhodonase) in genomes of some CPR bacteria, 629 
suggesting a potential new energy generation mechanism for these bacteria. We found that other 630 
CPR from high sulfur environments have the same predicted potential for thiosulfate oxidation, 631 
suggesting an important general adaptation of CPR bacteria in sulfur-rich environments. 632 

Perhaps the most interesting aspect of the current study regards interactions involving 633 
CPR bacteria and their host microorganisms. CPR-host associations have rarely been 634 
documented, with the exception of oral microbiome-associated Saccharibacteria (TM7) [29,85] 635 
and Actinobacteria. For this association, laboratory studies[86] have validated genomic 636 
predictions of metabolic interdependency[76]. One study imaged the CPR cells on the surfaces 637 
of their Actinobacteria hosts via SEM and showed them to be rod-shaped and < 0.2 µm in 638 
diameter and ~0.5 µm in length[87]. Another study linked Vampirococcus with anoxygenic 639 
photosynthetic Gammaproteobacteria[88]. Two studies suggest links between Parcubacteria and 640 
archaea, in one case Methanosaeta[89] and Methanothrix[89].  In the case of the Nealsonbacteria 641 
CPR associated with Methanosaeta, cryo-TEM images indicate that the cells are ~0.5 µm in 642 
diameter. Other cultivation-independent studies have verified that CPR cells are ultra-small, so 643 
can be enriched via filtration through a 0.2 µm filter[81]. Cryo-TEM images and tomographic 644 
analyses have documented ultra-small cells in direct association of CPR cells and host 645 
bacteria[31,81]. Generally, these data indicate that CPR cells are a fraction of a micron in length 646 
and diameter, consistent with the size for filament-associated ultra-small cells reported here  647 
(~600 nm long, ~200 nm width). Thus, we conclude that the ultra-small cells imaged in the MS4 648 
biofilm are CPR bacteria. 649 

Here, STXM imaging and NEXAFS spectroscopy of MS4 biofilms revealed the putative 650 
CPR bacterial cells occur in close proximity to filamentous cells with large sulfur granules. We 651 
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infer that these filamentous cells are probably Thiothrix, given that they appear to be the only 652 
abundant filamentous bacteria in this sample and that they have the genomic capacity for sulfur-653 
oxidation, including the capacity to produce elemental sulfur. Given the combination of  imaging 654 
and genomic information, we predict that certain CPR cells are episymbionts of filamentous sulfur-655 
oxidizing Thiothrix. Likely CPR identifications include Gracilibacteria, Berkelbacteria, 656 
Moranbacteria or Doudnabacteria, based on microbial community abundance information. Co-657 
cultivation of Thiothrix and their episymbionts is needed to identify the CPR types, and to better 658 
understand the nature of their association (e.g., mutualistic, parasitic). Although only based on in 659 
vitro data from Pyrococcus[75,90], the prediction that some CPR bacteria have the capacity to 660 
produce H2S raises the possibility that these episymbionts are involved in cryptic sulfur cycling 661 
that involves sulfur-oxidizing bacteria. If so, it seems plausible that  Berkelbacteria or 662 
Moranbacteria, which may be able to produce H2S, are the CPR episymbionts that were imaged 663 
in this study. 664 

 Hydrogen is an important resource in many environments[91], yet little is known about 665 
the distribution and importance of hydrogenases in sustaining groundwater microbiomes. The 666 
most common chemolithoautotrophs in the Alum Rock spring biofilms are H2-oxidizing bacteria, 667 
which use H2 as an energy source via the enzyme hydrogenase. Specifically, group 3b [NiFe]-668 
hydrogenases are widely distributed in the genomes of many of the microbial community 669 
members. These complexes may mediate hydrogen metabolism or the direct hydrogenation of 670 
elemental sulfur to hydrogen sulfide [90]. Other hydrogenases of the microbial community 671 
members are implicated in hydrogen production and oxidation. Together, these findings suggest 672 
that most bacteria in Alum Rock springs cycle hydrogen gas and sulfur compounds, reactions that 673 
underpin the biology and geochemistry of this ecosystem. 674 
 675 
 676 
 677 
 678 
 679 
 680 
 681 
 682 
 683 
 684 
 685 
 686 
 687 
 688 
 689 
 690 
 691 
 692 
 693 
 694 
 695 
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 737 
 738 
Figure 1 A) Shaded relief map showing the location of Alum Rock springs, CA, USA. Insets show 739 
the location of Alum Rock and of the MS4 and MS11 springs. Photographs of B) MS4 and C) 740 
MS11 biofilms. Thin white streamers (5-10 cm) are mostly found attached to the surfaces of rocks. 741 
Hydrogeological properties D) Discharge E) δ18Ο, and F) Temperature are steady over periods 742 
greater than a decade, except following large regional earthquakes. A discharge increase in late 743 
2007 followed a magnitude 5.6 earthquake with an epicenter 4 km from the springs (vertical red 744 
line), neither δ18Ο nor the temperature changed indicating that fluid sources did not change. The 745 
horizontal lines show averages of plotted quantities over the entire sampling period, except 746 
discharge for which the average excludes the first two years after the earthquake. Vertical grey 747 
lines show dates of biofilm and planktonic sampling. 748 
 749 
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 750 
 751 
Figure 2 Microscopic characterization of the biofilms. A), B) Scanning electron micrographs 752 
of MS4 and C) MS11 biofilms. Scanning transmission x-ray microscopy of MS4 biofilms. D) 753 
Distribution map of S0 suggesting the presence of sulfur granules (378 ± 50 nm in diameter) within 754 
the compartments of the filaments. The width of top, middle and bottom filaments are 1.23 ± 0.48 755 
µm, 1.01 ± 0.19 µm and 1.33 ± 0.3 µm respectively.  E) Corresponding carbon map. White arrows 756 
point to cells. F) An ultra-small cell (476 ± 36 nm long, 246 ± 22 nm, blue arrow) in contact with 757 
an apparently episymbiotic cell (red arrow), imaged at 280 eV (region R1, panel E) and  758 
corresponding G) Carbon map. H) Two apparently episymbiotic cells (red arrows) connected to 759 
filaments, imaged at 280 eV (region R2, panel E) and corresponding I) carbon map. The intensity 760 
scales correspond to the optical density. 761 
 762 
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 763 
 764 
Figure 3 Scanning transmission x-ray microscopy of MS4 and MS11 biofilms. A) Protein 765 
map and corresponding B) Distribution map of S0 in MS4 biofilms (in white boxed area, Fig. 2).  766 
Cells that are 893 ± 29 nm long, 370 ± 20 nm wide (red arrow), 657 ± 30 nm long, 242 ± 32 nm 767 
wide (green arrow), seen in close contact with filaments. C) Protein map and corresponding D) 768 
Distribution map of S0 in MS11 biofilms, showing the presence of large sulfur granules (~180 nm 769 
to ~1.2 µm in diameter) in a small area of a long filament. The intensity scale corresponds to the 770 
optical density. Scale bars are 1 micron. 771 
 772 
 773 
 774 
 775 
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 778 
Figure 4  Scanning transmission x-ray microscopy at 87o Kelvin of frozen-hydrated MS11 779 
biofilms. A) A small filament imaged at 288.2 eV (peak of the amide carbonyl groups in proteins) 780 
and corresponding B) protein map, granules are pointed by white arrows. C) Extracellular S0 781 
granules (~300 to 850 nm in diameter) near cells imaged at 288.2 eV  and  corresponding D) 782 
protein map. The intensity scale corresponds to the optical density. E) Carbon K-edge NEXAFS 783 
spectra of the filament (S0 granule-free areas), exhibiting a major peak at 288.2 eV, of a cell (red 784 
arrow) with main peak at 288.2 eV and of extracellular polymeric substances (EPS, circled in blue) 785 
exhibiting a main peak at 288.7 eV (carboxyl groups in acidic polysaccharides), see Table S2 for 786 
details. Dashed line is at 288.2 eV. Scale bars are 1 micron. 787 
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 788 
Figure 5 Phylogenetic analysis and metabolism of bacteria represented by MAGs from the 789 
MS4 and MS11 sites. A) The tree is based on 16 concatenated ribosomal proteins (rpL2, 3, 4, 5, 790 
6, 14, 15, 16, 18, 22, 24 and rpS3, 8, 10, 17, 19) generated using iQ-TREE. An archaeon, 791 
Thermoccocus alcaliphilus, was used as the outgroup. B) The metabolic capacities for 792 
generalized biogeochemical pathways in Alum Rock genomes are represented by colored circles. 793 
A pathway is present if the core KEGG orthologs encoding that pathway are identified in each 794 
genome. Abbreviations in the metabolic capaticites figure are as follows; WLP, Wood–Ljungdahl 795 
pathway, rTCA, eductive tricarboxylic acid cycle; ANR, Assimilatory nitrate reduction; DNRA, 796 
dissimilatory nitrate reduction to ammonia; Thiosulfate oxidation by SOX complex; DSR, 797 
Dissimilatory sulfate reduction; Hydrogen oxidation, [NiFe] hydrogenase and NAD-reducing 798 
hydrogenase. 799 
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 802 
 803 
Figure 6 Novel Persulfide dioxygenase within CPR Bacteria. A) Phylogenetic analyses of 804 
persulfide dioxygenase proteins from the Alum Rock genomic bins. The blue monophyletic clade 805 
shows the persulfide dioxygenase found in CPR bacteria from sulfur-rich environments. B) 806 
AlphaFold models of Doudnabacterium putative rhodonase (green) and persulfide dioxygenase (blue) 807 
aligned with the corresponding domains of the characterized natural fusion protein BpRF (PDB ID: 808 
5VE3). C) and D) Zoomed views of the active sites of the aligned structures reveal a strong 809 
coincidence of the key residues. 810 
 811 
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 812 
Figure 7  Hydroenases distribution in Alum Rock genomes and structural insights of Group 813 
3b [NiFe]-hydrogenase complex. A) Total distribution of hydrogenases from the Alum Rock 814 
spring. B) Genomic organization of novel Group 3b [NiFe]-hydrogenases from different organisms 815 
present in the springs. C and D) Alphafold multimeric model for the Berkelbacterium putative Group 816 
3b [NiFe]-hydrogenase complex with the closest known structural matches aligned to each protein.  817 
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 822 

 823 
Figure 8 Inference of partitioning of carbon, sulfur and nitrogen cycling in the Alum Rock 824 
springs. Based on the gene content of genomes reconstructed from the springs. Arrows indicate 825 
metabolic capacities reconstructed from metagenomes recovered from the Alum Rock mineral 826 
springs. The dashed lines represent potential electron donors for anaerobic respiration processes. 827 
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