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ABSTRACT 

Circulating cell-free DNA (ccfDNA) sequencing for low-burden cancer monitoring is limited by sparsity of 

circulating tumor DNA (ctDNA), the abundance of genomic material within a plasma sample, and pre-analytical 

error rates due to library preparation, and sequencing errors. Sequencing costs have historically favored the 

development of deep targeted sequencing approaches for overcoming sparsity in ctDNA detection, but these 

techniques are limited by the abundance of ccfDNA in samples, which imposes a ceiling on the maximal depth of 

coverage in targeted panels. Whole genome sequencing (WGS) is an orthogonal approach to ctDNA detection that 

can overcome the low abundance of ccfDNA by supplanting sequencing depth with breadth, integrating signal 

across the entire tumor mutation landscape. However, the higher cost of WGS limits the practical depth of coverage 

and hinders broad adoption. Lower sequencing costs may thus allow for enhanced ctDNA cancer monitoring via 

WGS. We therefore applied emerging lower-cost WGS (Ultima Genomics, 1USD/Gb) to plasma samples at ~120x 

coverage. Copy number and single nucleotide variation profiles were comparable between matched Ultima and 

Illumina datasets, and the deeper WGS coverage enabled ctDNA detection at the parts per million range. We 

further harnessed these lower sequencing costs to implement duplex error-corrected sequencing at the scale of the 

entire genome, demonstrating a ~1,500x decrease in errors in the plasma of patient-derived xenograft mouse 

models, and error rates of ~10-7 in patient plasma samples. We leveraged this highly de-noised plasma WGS to 

undertake cancer monitoring in the more challenging context of resectable melanoma without matched tumor 

sequencing. In this context, duplex-corrected WGS allowed us to harness known mutational signature patterns for 

disease monitoring without matched tumors, paving the way for de novo cancer monitoring. 
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INTRODUCTION 

Circulating cell-free DNA (ccfDNA) was shown 

to be a promising clinical tool for non-invasive cancer 

detection1–8. This can be achieved via analysis of cancer-

specific epigenetic markers, such as DNA methylation 

and histone modifications9–14. Alternatively, mutation-

based approaches using direct genomic sequencing of 

somatic variants found in circulating tumor DNA 

(ctDNA)15–18 can afford specificity and clinically-

actionable information. ctDNA genome sequencing can 

also aid in detection of low burden of disease, such as 

cancer screening, detection of minimal residual disease 

(MRD) after treatment or surgery17,19–22, and relapse 

monitoring23,24. In these scenarios, when disease 

burden is low, the fraction of tumor-derived ccfDNA in 

the plasma is also low, such that robust detection 

requires methods with exquisite sensitivity to detect 

ctDNA signal over the background rate of sequencing 

error. The technical challenge imparted by the sparsity 

of ctDNA in low-burden disease settings is typically 

overcome by increasing sequencing depth at select 

genomic locations, accompanied by techniques that 

decrease sequencing error rate.  Thus, approaches for 

reducing sequencing error rates, such as unique 

molecular identifier (UMI) error suppression 

techniques16,25 or duplex sequencing18,26–28, which 

enable increased accuracy in differentiating true 

somatic variants from errors introduced by sequencing, 

can be combined with deep sequencing to optimize 

successful detection of low-burden disease. 

Prevailing methods of ctDNA detection use 

targeted sequencing protocols, which increase the 

number of genomes sequenced at a targeted location.  

However, high throughput targeted sequencing rapidly 

exhausts available genomes for sequencing (1,000-

10,000 genome equivalents (GEs) per mL of plasma29), 

which sets a design-based ceiling on ctDNA detection, 

where further increases in sequencing depth at 

targeted sites afford no advantage after the limited 

number of GEs has already been sequenced. 

Alternatively, to overcome this limitation, whole 

genome sequencing (WGS) approaches exploit breadth 

of coverage to supplant depth, eliminating the reliance 

on the detection of few sites to increase ctDNA 

characterization in low tumor fraction settings. For 

example, our recent method MRDetect20 uses primary 

tumor mutational profiles to inform genome-wide 

tumor single nucleotide variant (SNV) detection in 

ccfDNA, such that the available number of GEs is no 

longer the limiting factor for successful ctDNA 

detection. 

The detection challenges presented by sparsity 

are significant, calling for broad, accurate and deep 

ccfDNA sequencing. Thus, whole-genome, low-error, 

high-coverage methods are necessary for robust ctDNA 

analysis. However, the costs associated with these 

approaches are often prohibitive, particularly for 

clinical application. Although genome sequencing costs 

have rapidly dropped since the introduction of high-

throughput next generation sequencing, more recently 

this decrease has stagnated30. As such, sequencing cost 

is still a significant barrier for the implementation of 

high-depth WGS for liquid biopsies, where in clinically 

important applications, tumor fractions are low (~10-5) 

and shallow WGS is insufficient for ctDNA detection.  

Recently, a new low-cost, high-throughput 

sequencing method utilizing mostly natural 

sequencing-by-synthesis (mnSBS)31 has been developed 

by Ultima Genomics. The Ultima platform produces 

single-end reads at ~10 billion reads per run for 

1USD/Gb, thus substantially lowering sequencing costs 

compared with current platforms. This cost efficiency 
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holds great promise for many genomics applications, 

and this approach has now been applied to Genome-In-

A-Bottle and 1000 Genomes reference samples31 and 

adapted for single-cell RNA-seq studies32. However, to 

date mnSBS/Ultima sequencing has not been harnessed 

for application to clinical ccfDNA samples for ctDNA 

sequencing. In addition, the error rate profiles of this 

new sequencing method have not been fully 

characterized, nor have they been rigorously compared 

with competing technologies. Importantly, for potential 

application to clinical disease monitoring of ctDNA, it is 

crucial to have accurate error rate estimates due to the 

required high sensitivity of ctDNA detection33. 

Here, to investigate the utility of deep WGS for 

ctDNA detection, we used the Ultima platform to 

sequence ccfDNA from plasma samples from healthy 

controls, cancer patients and patient-derived xenograft 

mouse models. In a first proof-of-principle study, we 

show that deep WGS (~120x) with analytic error 

correction allows tumor-informed ctDNA detection 

within the part per million range. We further leveraged 

the cost-effective and high-throughput nature of mnSBS 

to develop high coverage WGS duplex error corrected 

libraries of ccfDNA, achieving error rates as low as 

9.2x10-8. This allowed us to combine the advantages of 

genome-wide mutational integration on the one hand, 

and molecular error correction on the other, to 

accurately assess disease burden in melanoma patients 

without the reliance on matched tumor sequencing. 

Together, our results demonstrate the feasibility and 

utility of deep WGS for ctDNA detection. 

 

RESULTS 

Deep sequencing and accurate mutation detection 

empower low tumor burden detection with plasma 

whole genome sequencing 

Lower limits of ctDNA mutation detection by 

plasma WGS are dictated by the mutational burden of 

the tumor, the depth of sequencing, and the rates of 

error resulting from library preparation and 

sequencing. To explore these dependencies, we 

modeled variable tumor fractions (TF), depths of 

coverages and error rates for a cancer with 10,000 

single nucleotide variants (SNVs, approximately 3.7 

mutations/Mb) (Methods). Tumors with more than 

10,000 SNVs are seen across ~30% of cancers analyzed 

in the Pan Cancer Analysis of Whole Genomes 

consortium (PCAWG)34 and are enriched in lung (85%), 

skin (79%), bladder (83%), and other cancers. This 

analysis suggests that detection of TFs below 10-5 

requires a depth of sequencing of ~100x with error 

rates below 10-4 (Figure 1A).  

Given the need for deeper plasma WGS, 

sequencing costs impose a significant barrier for broad 

application. We therefore hypothesized that the 

recently developed lower cost Ultima sequencing 

protocol can help overcome this barrier, provided that 

sequencing error profiles are sufficiently low. To 

examine this potential application, we performed 

Ultima WGS on 15 ccfDNA libraries (n = 10 samples 

from cancer patients [ages 48-86; n = 7 stage IV 

melanoma and n = 3 III-IV lung adenocarcinoma]; n = 5 

controls [ages 58-86, 2 former smokers, 2 current 

smokers, 1 never smoker]; depth of sequencing of 115x 

± 34x [mean ± standard deviation]) with matching 

Illumina sequencing of the same libraries (33x ± 10x) 

(Figure 1B,C, Supplementary Tables 1 and 2). We 

first measured circulating tumor DNA burden by 

estimating the relative abundance of large copy number 

alterations using ichorCNA35 (Methods). Tumor 

fractions had a wide range (<3%, n = 3; 3-10%, n = 5; 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.17.516904doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516904


Cheng, A.P., Widman, A.J., Arora, A. et al. (2022). bioRxiv. 4

>10%, n = 2) and measurements were strongly correlated between 

 

Figure 1. Ultralow ctDNA detection requires deep sequencing coverage and low error rates. A Simulation 

of ctDNA detection given different error rates (columns), whole genome coverages (rows) and tumor fractions 

(x-axis). Simulation analysis shows that low error rates and high sequencing coverage are required for accurate 
ctDNA detection when tumor fractions are at or below 10-5 (top right box). B Cell-free DNA library preparation 

pre-analytical workflow. C Sequencing depth of matched Illumina and Ultima datasets. D Normalized read 

coverage for Illumina (top) and Ultima sequenced (bottom) matched cell-free DNA sample. E Left: Copy number-
based tumor fraction estimation measured with Illumina or Ultima sequencing in matched samples using 

ichorCNA. Matched cancer-free controls were used to create a panel of normals prior to tumor fraction 

estimation. Right: Single-nucleotide variant-based tumor fraction estimation measured with Illumina or Ultima 
sequencing. Somatic SNVs were identified through matched tumor-normal sequencing. Two samples without 

tumor sequencing and with low ctDNA fraction (<5% measured through CNV analysis) were omitted from this 
analysis. F In silico mixing study of metastatic melanoma sample MEL-01 with cancer-free control CTRL-05 (50 

replicates per tumor fraction, 80x coverage per replicate) with (red) and without (blue) tumor-informed analytic 

denoising applied using Ultima-specific quality filtering.  
matched Illumina and Ultima datasets (spearman’s 

ρ=0.998, p-value = 2.79x10-11, Figure 1D,E). Next, we 

sought to estimate ctDNA burden using a tumor-

informed SNV approach. We performed WGS of tumor-

derived DNA (or used standard mutation calling on 

plasma DNA if tumor DNA was unavailable and ctDNA 

burden was above 5% according to ichorCNA35) and 

matched normal DNA from peripheral blood 

mononuclear cells (PBMCs) to identify tumor-specific 

mutations. To remove sequencing errors, we developed 

a quality-filtering pipeline informed by Ultima-specific 

feature cutoffs and blacklisted regions 

(Supplementary Figure 1, Methods). Traditional 

sequencing by synthesis technologies add all 4 bases 

(A,T,C,G) per sequencing cycle and determine the 

template nucleotide based on the fluorescence of the 
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complemented base (one base pair is measured per 

sequencing cycle). However, Ultima’s flow-based 

technology uses a mix of fluorescently-labelled and 

unlabeled nucleotides (all nucleotides added in one 

flow are either A, T, C or G) and relies on the intensity of 

fluorescence to assign the number of consecutive 

identical bases that complement the template32. 

Therefore, Ultima technologies may be less susceptible 

to single-nucleotide substitution errors, given that only 

a single base type is added per cycle, at the cost of 

increased difficulty in gauging the size of 

homopolymers (typically, homopolymers greater than 

11 base pairs31). Thus, our denoising methods and 

blacklisted regions were designed to minimize the 

effect of homopolymer errors instead of single 

nucleotide substitutions (for example, by ensuring that 

the 5 flanking bases of a putative variant match the 

reference, see Methods). We then mined the denoised 

cell-free DNA reads for somatic variants to estimate 

ctDNA fractions (see Methods) and found strong 

agreement between Illumina and Ultima sequencing 

sets (spearman’s ρ=0.993, p-value = 2.01x10–6, Figure 

1E). Next, we intersected ccfDNA reads from cancer-

free controls (n = 5) with the SNVs found in patient 

tumors (n = 6) and measured the frequency of 

mutations from tumors that were observed in cancer-

free control ccfDNA. We found that these error rates 

were approximately 8.68 x 10-5 ± 4.05 x 10-5 (mean ± 

standard deviation, Supplementary Figure 2) 

supporting the utility of Ultima sequencing for 

detection of low-burden ctDNA. 

ccfDNA has been characterized as having a 

modal length of 167bp with smaller peaks every 10bp, 

representing the length of DNA wrapped around a 

single nucleosome and its subsequent degradation36,37. 

Shorter fragment lengths have been associated with 

ctDNA38,39. We therefore compared fragment lengths on 

matched Ultima and Illumina datasets and found 

similar distributions below 180 base pairs, 

underscoring the comparability of the two platforms, 

with an expected drop beyond 180bp in Ultima datasets 

(Methods, Supplementary Figure 3). 

Finally, to evaluate the impact on the lower limit 

of detection (LLOD) of tumor-informed, deeply 

sequenced WGS, we performed an in silico mixing study, 

as previously shown20. We admixed reads from MEL-01 

(stage IV melanoma patient, TF = 22%) and CTRL-05 

(no known cancer) at different ratios to create 

admixtures of tumor fractions ranging from 10-7-10-2 (n 

= 50 technical replicates per admixture) at 80x 

sequencing depth. Our group previously developed 

MRD-EDGE SNV40, a cancer-specific deep learning 

classifier that uses mutation sequence context and 

other features to analytically distinguish ctDNA from 

sequencing error at low tumor fractions. Our Ultima-

specific denoising framework, in combination with the 

MRD-EDGE SNV deep-learning architecture, allowed 

ctDNA detection in the part per million range (Figure 

1F), demonstrating the power of deeper WGS to 

increase ctDNA detection sensitivity. Specifically, 

performance was evaluated at different simulated 

tumor fractions using a receiver operating curve (ROC) 

analysis, showing an area under the curve (AUC) of 0.83 

at tumor fractions of 1:106 with analytic error 

correction, compared to 0.58 in the absence of error 

correction. These analyses indicate that our framework 

for ctDNA detection is sensitive enough at low tumor 

fractions for use in challenging clinical applications 

such as MRD monitoring. 

 

Duplex sequencing of ccfDNA applied to the level of 

the entire genome delivers ultra-low error rates  
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Recent advances in molecular error correction 

were shown to radically enhance deep-targeted 

sequencing approaches, for example through the 

application of unique molecular identifiers (UMIs) that 

are incorporated during library preparation for 

sequencing error correction16,41. While strand-agnostic 

UMIs can help correct for sequencing and PCR errors, 

UMIs that link forward and reverse DNA strands (i.e. 

duplex sequencing) can be used to correct for errors 

that arise on only one strand (such as G>T 

transversions due to oxidative DNA damage42) during 

library preparation28. At the whole genome scale, 

duplex sequencing was to date cost prohibitive due to 

the need for high rate of duplicate reads. Nonetheless, 

studies applying duplex sequencing at the genome scale 

have shown promise for genome-wide rare variant 

identification26,27. These applications have been limited 

to ultra-low pass (0.005 GEs/sample26) or high input 

DNA (>50ng27) applications, and have not been 

previously leveraged for liquid biopsies.  

We reasoned that the lower sequencing cost 

afforded by mnSBS can thus be transformative, as it 

opens the way for affordable genome-scale duplex 

sequencing in clinical settings. The attendant decrease 

in sequencing and library preparation errors could be 

of particular importance for the challenging context of 

tumor-agnostic (de novo) ctDNA detection, where 

matched tumor tissue cannot be used to reduce 

background noise. This advance is of significant clinical 

importance as the necessity of tumor tissue is an 

exclusion criterion for many patients43,44.  

For this important clinical context, we 

developed duplex WGS for single-end Ultima reads. 

Here, we created duplex libraries by replacing standard 

sequencing adapters with adapters containing 3 

random nucleotides, thus creating a 6bp duplex-UMI 

(using the random nucleotides from both ends of the 

DNA). Libraries were then sequenced using the Ultima 

sequencer. While duplex sequencing was developed for 

paired-end sequencing technologies, we were able to 

recover the ends of most cell-free DNA molecules (80% 

of all sequenced molecules) due to their modal length of 

~170bp (Supplementary Figure 3) to create 6bp 

UMIs. Then, to ensure compatibility with duplex-

processing software that require paired-end reads 

(here, using the fgbio45 suite of tools, Methods), we 

created an in silico paired-end read containing the same 

mapping and quality information as the original single-

end read before processing the alignment files. While 

duplex error correction offers theoretical sequencing 

error rates below 10-9, true error rates are higher26,28 

due to mutations mainly originating from library 

preparation27. We note that recent modifications to 

duplex sequencing offer lower error rates by removing 

errors resulting from end repair27. However, these 

modifications require either high DNA input for 

exonuclease use (>50ng) or the use of restriction 

enzymes, which limit genome coverage. As these 

requirements are incompatible with ccfDNA WGS, we 

applied alternative methodology to lower error rates, 

such as read end trimming (Methods). 

To first test the accuracy of duplex error 

correction, we prepared duplex libraries using ccfDNA 

obtained from the plasma of mice with patient-derived 

xenografts (n=4, NOD/ShiLtJ species; n = 1 lung cancer; 

n = 3 diffuse large B cell lymphoma). Tumor fractions, 

defined as the fraction of reads uniquely mapping to the 

human genome, were 0.4%, 40%, 73% and 96% 

(Supplementary Table 2). For each sample, we 

denoised our sequencing reads in three different ways: 

i) in a UMI-agnostic manner, where PCR duplicates 

(identified by their mapping positions) are removed 
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from analysis and reads are denoised based on their 

sequencing and mapping qualities (Methods); ii) using 

UMIs to identify PCR duplicates for single-strand error 

correction (reads used to create a consensus are 

profiled base-by-base and a consensus base pair is 

determined by computing the likelihood of that base 

being either an A,T,C or G, using the sequenced 

nucleotides and their qualities as priors); and iii) using 

PCR duplicates and forward and reverse strands of a 

same double-stranded DNA template for error 

correction (duplex error correction). We defined error 

rates as the number of base pairs in denoised reads that 

were discordant with the reference genome and 

occurred two times or less in each position in 

uncorrected reads (thus removing potential germline 

mutations), divided by the total number of mapped 

base pairs in a sample (Methods). Overall, we obtained 

error rates of 6.8x10-5±2.0x10-5, 2.2x10-5±1.18x10-5 and 

1.9x10-7±1.6x10-7 for UMI-agnostic, single-strand 

corrected and duplex corrected reads, respectively 

(Figure 2A, left), thus achieving a two orders-of-

magnitude reduction in error rate with duplex 

sequencing. When compared to uncorrected reads 

(without any quality filtering), we observe a ~1,500x 

improvement in error rates using duplex WGS (2.0x10-

4±4.4x10-5 error rates in uncorrected reads). Our duplex 

error rate results are consistent with a previous report 

employing whole genome duplex sequencing (Abascal 

et al. reports error rates of 2x10-7 using similar 

protocols27), and further suggest that ccfDNA errors are 

driven more by library preparation and DNA 

degradation than by sequencing errors.  

To further characterize the accuracy of our 

duplex sequencing approach, we sought to estimate 

effective background error rates, that is, the frequency 

of errors that occur in sites identified in tumors through 

standard mutation-calling workflows. For this analysis, 

we performed duplex-corrected plasma WGS on five 

serial samples obtained from a patient with metastatic 

melanoma throughout treatment with immunotherapy 

and obtained duplex coverages of 6.1±3.3 GEs (samples 

MEL-12A,B,C,D,E). We then intersected somatic 

variants identified in 107 melanoma tumor mutational 

profiles from the Pan-Cancer Analysis of Whole 

Genomes (PCAWG) consortium. As these profiles are 

unmatched, overlapping mutations may be considered 

errors. After removing regions with known sequencing 

artifacts (Methods) and filtering for patient specific 

germline (through matched PBMC sequencing) and 

somatic mutations (Methods), we estimated error rates 

of 4.7x10-5±6.4x10-6 (mean ± standard deviation) in 

UMI-agnostic denoised reads, 9.9x10-6±1.8x10-6 in UMI 

single-stranded corrected reads, and 1.4x10-7±4.0x10-8 

in duplex corrected reads (Figure 2A, right). We note 

that these error rates likely represent the upper bound 

of the true error rate, as rare variants from diverse 

origins such as clonal hematopoiesis46, sample 

contamination27 or somatic mosaicism27 would be 

classified as errors here. Collectively, these analyses 

demonstrate that duplex error correction applied to the 

scale of a whole genome results in ultra-low error rates.  

To further illustrate the potential of duplex 

error correction for variant calling in ccfDNA, we first 

assessed the variant allele frequency (VAF) distribution 

in non-cancer control ccfDNA. While UMI-agnostic WGS 

showed only 75%±4.8% of base substitutions identified 

at the expected VAF range for germline events (see 

Methods and Supplemental Figure 4), this increased 

to 99%±0.0005% after duplex error correction. In high 

burden metastatic melanoma ccfDNA samples, the 

application of duplex error correction and removal of 

germline mutations allowed the emergence of somatic 
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mutation VAF modes consistent with tumor fraction 

estimates using ichorCNA (Figure 2B,C), rendering this 

approach feasible for ctDNA mutation detection in 

clinical samples without a matched tumor (non tumor-

informed). 

 

Figure 2. Duplex correction allows ctDNA identification without tumor sequencing. A Left: Error rates in 

WGS sequencing on mouse PDX samples (n = 4). Right: WGS in patient sample MEL-12.D intersected with tumor 

mutational profiles of 107 melanoma patients retrieved from the Pan Cancer Analysis of Whole Genomes 
Consortium. Base changes matching the somatic mutation of the tumor were considered errors (after removing 
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germline and somatic mutations from the matched patient data, see Methods). B Variant allele frequencies 

(calculated using unfiltered sequencing reads) in positions where a variant was found using uncorrected reads 
(top row) and in duplex corrected reads (bottom row). C Comparison between the modal allele fraction of a 

patient with progressive disease (samples MEL-12.A-E) in duplex corrected positions (allele fractions above 5% 

and below 30% only) and copy-number based tumor fraction estimations. D Trinucleotide frequencies from the 
melanoma-associated UV signature SBS7 reported in Alexandrov et al47. E Trinucleotide frequencies in two 

samples (CTRL-06, left column) and MEL-12.D (right column) in UMI-agnostic corrected WGS, single-stranded 

correction and duplex correction. Cosine similarity with either SBS7 (UV damage) and clonal hematopoiesis (CH) 
is compared across conditions.  F In silico mixing study of metastatic melanoma samples MEL-12.A with cancer-

free control CTRL-06, CTRL-07 and CTRL-08 (10 replicates per tumor fraction, 5x coverage per replicate). Tumor 
fractions were estimated by fitting the sample’s tri-nucleotide frequencies to that of signatures SBS7 and CH. Top 

row: signature score to estimate the contribution of signature SBS7 (melanoma UV associated) in the 

decomposition of a sample’s trinucleotide frequencies into reference signatures. Bottom row: ctDNA detection by 
expected tumor fraction. Z-scores estimation was used to calculate mutation signature SBS7 detection in 

comparison to detection in TF=0 replicates. Ground truth variants originating from either the high-burden 

sample MEL-12.A. or the cancer-free control samples are shown in blue (full circle: MEL-12.A; open circle: 
cancer-free controls). Error bars represent the standard deviation in the number of variants per replicate at a 

given expected tumor fraction. G Signature scores of melanoma signature 7 in plasma cell-free DNA samples 

using duplex WGS (n = 9 melanoma samples; n = 3 controls). Samples in red are from patient MEL-12 with stage 
IV melanoma at different time points in their clinical course. Samples in blue each represent a separate patient 

(MEL-08 to MEL-11). Samples in pink represent control samples. H Estimated tumor fraction of samples with 

elevated signature scores. X-axis depicts the clinical timepoint for each patient sample. Tumor fractions were 
estimated by multiplying the number of single nucleotide variants found in duplex corrected reads by the weight 

of signature 7 after reference signature decomposition and normalization by depth of coverage. 

De novo (non tumor-informed) monitoring of low 

burden cancer through mutational signature 

patterns in duplex ccfDNA WGS. 

 Current methods for de novo detection of somatic 

mutations (i.e., non tumor-informed) rely on “off the 

shelf” sequencing panels that target recurrent 

mutations of a given cancer-type. These methods are 

inherently limited by the scarcity of cell-free DNA in 

plasma (only up to 1,000-10,000 genomic equivalents 

in a mL of plasma29) and require a given patient’s 

cancer to harbor the targeted mutations. In addition, 

somatic mutations in ccfDNA can also originate from 

mutations occurring in blood cells rather than ctDNA of 

solid tumor origin. For example, previous studies have 

identified mutations arising from clonal hematopoiesis 

as significant background, hindering ctDNA detection48.  

 WGS-based non tumor-informed mutation 

detection requires a different perspective as the 

detection of individual cancer hotspots in WGS is not 

sensitive due to relatively lower coverage per genomic 

position. Thus, SNV-based WGS methods of ctDNA 

detection must rely on genome-wide mutational 

integration, where the identification of multiple 

mutations improves detection power20. We 

hypothesized that signatures of somatic mutation 

accumulation46,49,50 could serve as such a framework for 

genome-wide mutational integration for non tumor-

informed WGS ctDNA detection. 

 Specifically, we reasoned that genome-wide 

mutations from the sequencing reads could be 

integrated and summarized as a weighted sum of 

single-base substitution (SBS) reference mutational 

signatures and could originate from the tumor in cancer 

patients and clonal hematopoiesis (CH)46. We explored 

the trinucleotide contexts of ccfDNA variants through 

mutation signature analysis at each level of denoising 

(UMI-agnostic, UMI single-stranded and duplex), to 

investigate the potential sources conferring alterations 
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in these samples. Cosine similarities (often used49 to 

measure the similarities between two mutational 

signatures) between the UV-associated SBS7 signature 

(COSMIC51 v2) and high burden samples (MEL-12A-E, 

stage IVB melanoma) were highest after duplex 

correction (mean cosine similarities to SBS7 of 

0.38±1.58 (range 0.24-0.64), 0.90±0.15 (0.66-0.99), and 

0.99±0.006 (0.98-0.99) between UMI-agnostic 

denoising, single-strand and duplex corrected datasets, 

respectively, Figure 2D,E and Supplementary Figure 

5). We found similar improvements when measuring 

cosine similarities between the clonal hematopoiesis 

signature and cancer-free controls, highlighting the 

importance of duplex correction for accurate signature 

analysis, and demonstrating that clonal hematopoiesis 

is an abundant source of mutations in ccfDNA WGS 

(Figure 2E, Supplementary Figure 5). 

 Given the ability of de novo mutation 

identification in error corrected ccfDNA WGS to deliver 

profiles matching SBS7 and CH signatures for 

identifying melanoma and age-associated circulating 

DNA fragments, respectively, we developed a tumor-

agnostic approach for ctDNA detection based on 

mutational patterns. As a first step, we tabulate the tri-

nucleotide frequencies of plasma ccfDNA mutations, 

which are fitted to the reference mutational signatures 

(here, SBS7 and CH) using a non-negative maximum 

likelihood model. The relative contributions of the 

reference mutational signatures are thus obtained, and 

a tumor score is estimated by taking the weight of the 

tumor-associated SBS7 signature and multiplying by 

the number of variants per duplex genomic equivalents 

sequenced. Then, a signature score is calculated to 

empirically determine the importance of SBS7 to the 

estimated tumor score. The signature score is obtained 

by repeating the fit of the plasma ccfDNA mutations to 

the reference, but the tri-nucleotide frequencies of SBS7 

are randomly permuted N times for each fit. We then 

count the number of times (P) the weight of SBS7 is 

increased after permutation and calculate the signature 

score as -log( P / N).  

 To analytically validate our approach, we 

performed an in silico mixing study combining duplex-

denoised reads from a high burden ctDNA samples 

(MEL-12.A, tumor fraction estimate of 7.9% via 

ichorCNA; 148,819 variants at 9.3x duplex sequencing 

coverage) and the three cancer-free controls (CTRL-06, 

CTRL-07, CTL-08; 2,936 variants at 7.77x aggregated 

duplex sequencing coverage) at 5x duplex sequencing 

depth, in varying proportions (expected tumor 

fractions of 0, 10-5-10-2). We found that signature scores 

were high (greater than 5) at tumor fractions greater or 

equal than 10-3. Signature scores dropped at tumor 

fractions at or below 10-4, given that the number of 

mutations originating from ctDNA was significantly 

below the number of mutations arising from cancer-

free ccfDNA (~100 vs 2,000 variants  at 10-4, from MEL-

12.A vs from cancer-free controls, respectively, Figure 

2F). However, estimated ctDNA was still readily 

detectable at tumor fractions of 10-4 (receiving 

operating characteristic area under the curve 1.00 

compared to TF=0) (Figure 2F). Tumor scores 

correlated strongly with expected tumor fractions 

(spearman’s ρ = 0.88, p-value <2.2x10-16). Importantly, 

these results highlight that we can identify ctDNA 

contributions when the number of tumor-derived 

variants is below the number of variants originating 

from background biological processes such as CH 

(~100 cancer-derived mutations in ~2,000 background 

mutations, at tumor fraction of 10-4), which are 

expected to dominate rare variant signal in early-stage 

and minimal residual disease contexts. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.17.516904doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516904


Cheng, A.P., Widman, A.J., Arora, A. et al. (2022). bioRxiv. 11

 Next, we applied our signature-based ctDNA 

detection platform for pre-operative ctDNA detection 

(i.e. tumor-agnostic ctDNA detection). We sequenced 

plasma samples from four patients with resectable 

locoregional stage III melanoma (without tumor or 

normal DNA available), three cancer-free controls, and 

one treatment-unresponsive patient with stage IV 

melanoma (5 separate time points, patient MEL-12; 

with PBMC-derived normal DNA available). Detection of 

locoregional melanoma is clinically relevant, given that 

stage IIIA has a 5 year survival rate of 93%52. However, 

current methods often fail to detect somatic variants in 

plasma of stage III melanoma patients52,53. In our 

cohort, tumor fractions were readily detectable via 

ichorCNA for the stage IV melanoma samples (Figure 

2C) but were undetectable in samples from patients 

with stage III disease, suggesting tumor fractions below 

3%, the limit of detection of ichorCNA35 

(Supplementary Figure 6). Denoised duplex reads 

from stage III samples were kept if they were the only 

read carrying a given variant, thereby reducing the 

probability of germline mutations. We note that this 

form of germline variant filtering is not expected to 

result in substantial loss of ctDNA, given that the tumor 

fractions are below 3%, and thus we could reasonably 

expect, at most, one supporting ctDNA read at any given 

tumor-derived mutated locus. 

 Tumor scores were readily separable between 

the control, stage III pre-operative melanoma and stage 

IV melanoma samples (3.66±4.06, 58.03±39.65 and 

17,104.10±4,304.55, respectively, Figure 2H). Previous 

studies have shown that undetectable ctDNA using 

targeted panels is associated with favorable prognosis 

in stage III melanomas. However, patients with 

undetectable ctDNA often still experience disease 

recurrence, highlighting the need for more sensitive 

tools for improved stratification. Here, signature and 

tumor scores for ctDNA detection showed strong 

separation between cancer-free controls and samples 

from melanoma patients (Figure 2G-H). Our results 

thus suggest that deep error corrected sequencing can 

identify ctDNA in a non tumor-informed approach using 

mutational signatures, even when ctDNA burden in the 

plasma is low such as in resectable melanoma. 

 

DISCUSSION 

 High-throughput short-read sequencing has 

revolutionized the liquid biopsy field, and sequencing 

costs have historically decreased at a rate faster than 

Moore’s Law30.  However, the decrease in cost has 

stagnated over the last 5 years. While sequencing costs 

are less of a barrier for targeted panels given that they 

profile < 2% of the genome, targeted panel sensitivity is 

limited by the low abundance of cell-free DNA in the 

plasma. Conversely, WGS overcomes the ccfDNA 

abundance barrier by profiling the entirety of the 

genome, but is limited by costs of sequencing.  

Ultima Genomics has recently debuted a mostly 

natural sequencing-by-synthesis platform that 

generates low-cost (1USD/Gb) whole genome 

sequencing31,32. To date, Ultima sequencing has been 

benchmarked in germline variant calling31 and single-

cell RNA sequencing32.  While these data are 

informative for these specific experimental contexts, 

several important technical performance parameters in 

the context of deep ccfDNA WGS remained unknown. 

Specifically, it was unclear if Ultima sequencing could 

operate at sufficiently low error rates to be used for 

ctDNA detection, where error rate is critical, or if the 

technology could be leveraged for deep WGS or duplex 

sequencing, neither of which had been explored 

previously. Thus, to assess Ultima’s suitability for low-
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error, deep WGS applications, here, we performed a 

comparative analysis of Ultima and Illumina short-read 

sequencing platforms, generating comprehensive error 

rate profiles and demonstrating that these two 

approaches have comparable tumor-informed analysis 

capabilities for circulating tumor DNA detection 

(Figure 1). Our analyses demonstrated that Ultima 

sequencing is suitable for deep WGS and provided 

direct comparison to ccfDNA with Illumina WGS, paving 

the way for broader application and adoption by the 

genomics community. 

Importantly, we find that higher depth of 

coverage in WGS tumor-informed approaches allows 

for ctDNA detection even at the parts per million range, 

thereby making such analysis suitable for minimal 

residual disease detection. In such scenarios, where 

ctDNA frequencies are well below 10-4, targeted 

sequencing is often insufficient for ctDNA detection due 

to the limited number of genome equivalents, and 

further increasing sequencing depth affords no 

advantage. In contrast, our modeling shows that WGS 

approaches for ctDNA detection benefit from higher 

sequencing depth, where detection of tumor fractions 

below 10-5 is possible by accurate (error rates below 

10-4), deep (~100X) sequencing (Figure 1A). Hence, the 

cost-efficiency of the Ultima platform can be harnessed 

for ctDNA detection by high-depth WGS at tumor 

fractions reflective of minimal residual disease (MRD), 

where deep panel sequencing has been shown to be 

inadequate (e.g., in only 20–70% of cases positive for 

early-stage cancer by imaging had ctDNA detected by 

deep panel sequencing15,21,54). 

Given that we can achieve ctDNA detection rates 

in the parts per million range with high-depth WGS, to 

further expand and demonstrate the utility of the 

technology, we addressed the more challenging 

problem of ctDNA detection in tumor-agnostic (non 

tumor-informed) settings. We developed single-end 

whole genome duplex sequencing and computational 

denoising (Methods) to achieve low error rates (~10-7) 

and deconvolve the cell-free DNA mutational 

compendium into representative mutational signatures 

to detect ctDNA without matched tumor sequencing 

(Figure 2). Specifically, we leveraged the fact that 

somatic single nucleotide substitutions display 

characteristic enrichment in particular nucleotide 

contexts, and that these patterns have been defined as 

mutation signatures of known (or sometimes 

unknown) sources46,49,50, for example UV signature in 

melanoma. In this way, the genome-wide SNVs from 

ccfDNA can be collapsed into mutation signatures, 

compared with the established reference signatures, 

and assigned as being of cancer origin or not, without 

the need for a comparator tumor sample with 

genotyped SNVs. Thus, this tumor-agnostic, mutation 

signature-informed approach represents a powerful 

way to untether ctDNA detection from patient-specific 

sequencing panels. 

Compared to commonly-used off-the-shelf 

panels, whole-genome analysis has the benefit of 

sequencing breadth, allowing for the detection of 

tumor-derived mutations that may not be present in 

targeted panels.  In addition, whole-genome analysis 

enables analytical distinction between ctDNA-derived 

mutations and those arising during clonal 

hematopoiesis, which can confound ctDNA detection48 

(Fig. 2). Finally, as highlighted above, the breadth of 

coverage in whole-genome analysis removes the 

sequencing depth ceiling imposed by limited number of 

GEs for sequencing at low tumor fractions. While larger 

patient cohorts and applications to different cancer 

types are necessary to validate our cancer-detection 
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platform, the work presented herein is a proof-of-

principle study that shows the potential of deep error-

corrected WGS for sensitive ctDNA detection. We 

anticipate that in addition to melanoma, this approach 

will be applicable to other cancer types where there are 

a high number of SNVs carrying a distinct mutational 

signature, such as smoking-associated lung cancer47,49. 

We envision that our methods can thus be harnessed 

for de novo cancer monitoring in low burden disease 

scenarios, providing a powerful tool for diagnosing 

cancer and detecting relapses at the earliest stages. 

 

CONCLUSION 

Radical decreases in sequencing costs open new 

opportunities in clinical genomics.  Here we harnessed 

low-cost mnSBS to demonstrate that impact of deeper 

WGS (~100X) on tumor-informed ctDNA monitoring 

ctDNA. Moreover, we also developed methodology to 

integrate duplex sequencing with the single-end 

mnSBS. This allowed to apply duplex error correction 

to plasma clinical samples at the level of the entire 

genome. We leveraged these highly error-corrected 

data for a non tumor-informed ctDNA detection, based 

on the similarity of mutational profiles to known cancer 

mutational signatures. These findings have important 

clinical implications, as uncoupling ctDNA detection 

from a tumor-informed mutation profiles radically 

increases the potential use of ctDNA monitoring in 

common clinical scenarios where tumor samples 

cannot be obtained. Excitingly, this demonstration 

opens up the possibility for the use of WGS in ctDNA 

cancer screening. In particular, such an approach might 

be beneficial for specific settings where there is high 

genetic (e.g. BRCA mutation carriers, Lynch syndrome) 

or environmental (e.g. tobacco smoke exposure) cancer 

risk together with distinct mutational signatures.  
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Methods 

Simulation analysis 

Simulations for ctDNA detection scores (Figure 1A) 

were performed assuming a tumor-mutational 

compendium of 10,000 SNVs with different error rates 

(10-3, 10-4 and 10-5), coverages (1, 10 and 100) and 

tumor fractions (0, 10-6, 10-5). For each of the 10,000 

SNV mutations, coverage was simulated using a Poisson 

distribution55. Each simulated sequenced base pair was 

classified as either ctDNA or ccfDNA according to the 

tumor fraction, and errors misclassified as ctDNA were 

determined according to the error rate. Estimated 

tumor fractions were calculated by summing the ctDNA 

molecules and the errors and dividing by the total base 

pairs simulated. Z scores were calculated as: 

� ����� �
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Pan-Cancer Analysis of Whole Genomes (PCAWG) 

datasets 

We downloaded n = 107 datasets from the PCAWG 

database (Supplementary Table 3). These datasets 

correspond to somatic single nucleotide variants from 

whole genome sequencing of melanoma tumor tissue. 

Specifically, these datasets originate from the SKCM-US 

and MELA-AU cohorts, processed through the PCAWG 

SNV-MVN calling pipeline. 

 

Human subjects sample processing 

Blood samples were obtained from patients after 

obtaining informed consent and following protocols 

approved by institutional review boards and in 

accordance with the Declaration of Helsinki protocol. 

Samples were obtained from either NewYork-

Presbyterian/Weill Cornell Medical Center, Memorial 

Sloan Kettering Cancer Center, Massachusetts General 

Hospital, or the Royal Marsden NHS Foundation Trust 

in the United Kingdom (Supplementary Table 1). 

Tumor, normal and plasma samples from the Royal 

Marsden NHS Foundation Trust were obtained under 

an ethically approved protocol (Melanoma TRACERx, 

Research Ethics Committee Reference 11/LO/0003). 

Tumor tissues were collected from resected lung or 

melanoma specimens. Cancer diagnosis was established 

according to World Health Organization criteria and 

confirmed in all cases by an independent pathology 

review. 

 

Tumor and germline DNA extraction, library 

preparation and sequencing 

Genomic DNA was extracted using the QiAamp DNA 

Mini Kit (Qiagen, cat#56304) and the QIAamp DNA 

blood Kit (Qiagen, cat#51104) for tissue and blood 

samples, respectively, and sheared to 450bp (Covaris 

cat#500569). Sequencing libraries were prepared on 

1µg of DNA using the TruSeq DNA PCR-Free Library 

Preparation Kit (Illumina, cat#20015963), with one 

additional bead cleanup performed after end-repair and 

after adapter ligation. DNA was quantified using a Qubit 

3.0 fluorometer and length analysis was performed 

using an Agilent Bioanalyzer or High Sensitivity 

Fragment Analyzer. 2x150bp paired-end sequencing 

was performed on either a HiSeq X or NovaSeq v1.0 

Illumina machine. 

 

Cell-free DNA extraction 

Cell-free DNA was extracted from plasma using the 

Magbind ccfDNA extraction kit (Omega Biotek 

cat#M3298). Manufacturer recommendations for 

extraction were followed, but elution volume was 

increased to 35 µL, and elution time was increased to 

20 minutes on a thermomixer at 1,600 rpm (room 

temperature). Extracted ccfDNA was quantified using a 
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Qubit 3.0 fluorometer and length analysis was 

performed using an Agilent Bioanalyzer or High 

Sensitivity Fragment Analyzer. 

 

Cell-free DNA library preparation 

Whole genome library preparation (without duplex) 

Next generation sequencing libraries were generated 

using a double-stranded preparation kit (Kapa Hyper 

Prep Kit, Roche, cat#KK8502). Full-length adapters 

(IDT TruSeQ UDI plate, Illumina, cat# 20023784) were 

used for adapter ligation. Six PCR cycles were carried 

out when input DNA was above 5ng, and 8 cycles were 

performed when the input was below 5ng. Libraries 

were quantified using Qubit 3.0 fluorometer and length 

analysis was performed using an Agilent Bioanalyzer or 

High Sensitivity Fragment Analyzer. Illumina 

sequencing libraries were sequenced on a HiSeq X or 

NovaSeq1.0 using 2x150 paired-end sequencing. 

 

Whole genome library preparation (with duplex) 

ccfDNA libraries were generated in a similar fashion as 

described above, although the full-length adapters were 

replaced with stubby Y-adapters containing 3 UMI 

bases (IDT Duplex Seq adapters, cat#1080799) and 

sample indexing was carried out during PCR 

amplification. To enhance duplicate recovery in human 

samples, 4ng of prepared libraries was subjected to 6 

additional PCR cycles prior to Ultima library 

conversion. Mouse PDX samples did not undergo 

additional PCR cycles prior to Ultima library 

conversion. 

 

Ultima sequencing 

Illumina sequencing libraries underwent Ultima library 

conversion. Briefly, Illumina libraries were converted to 

Ultima libraries by PCR, using primers matching 

Illumina read 1 and read 2 sequences and containing 

Ultima-specific barcodes (R1 conversion adapter: TCC 

ATC TCA TCC CTG CGT GTC TCC GAC TGC ACA ATG TGT 

GCT AGA TCT ACA CGA CGC TCT TCC GAT CT, R2 

conversion adapter: CTG TGT GCC TTG GCA GTC TCA 

GCT CAG ACG TGT GCT CTT CCG ATC T). Samples were 

then pooled and sequenced on an Ultima sequencer 

prototype. 

 

Whole genome sequencing (without duplex) adapter 

trimming and alignment 

Illumina fastQ reads were adapter trimmed using 

skewer56 (version 0.2.2). Trimmed reads were then 

aligned to the human genome (version hg38) using bwa 

mem. Duplicate reads were marked in a UMI-unaware 

fashion using novosort57. Depth of coverage was 

estimated using mosdepth58 (version 0.2.9). For Ultima 

reads, adapter trimming was carried out to remove the 

Illumina conversion adapters. Cutadapt59 (version 2.10; 

cutadapt --mask-adapter -a 

CTACACGACGCTCTTCCGATCT;max_error_rate=0.15;mi

n_overlap=10;required... 

AGATCGGAAGAGCACACGTCTGCTG;max_error_rate=0.2

;min_overlap=6) was used to mask adapter sequences, 

and adapter trimming was then carried out using 

GATK60 (private Ultima fork, since merged to the latest 

4.3.0.0 GATK release) (ClipReads function). Alignment 

was performed using bwa mem61 (version 0.7.15-

r1140). 

 

Copy-number based tumor fraction estimation 

Genome-wide coverage was calculated over a 1Mbp 

window and normalized for mappability and GC 

content biases (using hmmcopy62 version 0.99). Tumor 

fractions were estimated using ichorCNA35 (version 

0.3.2) after correcting for library and sequencing 
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artifacts via a panel of normals (PoN) from cancer-free 

controls (CTRL-01 to CTRL-05). A separate PoN was 

created for Illumina and Ultima sequenced samples 

using libraries sequenced on the respective machines. 

For plotting purposes (Figure 1D), corrected log2 read 

counts outputted by ichorCNA were used. Bins marked 

by ichorCNA as copy gains, amplifications and high-

level amplifications were marked and colored as 

chromosome gains (pink). Bins marked as homozygous 

deletion states and hemizygous deletions were marked 

and colored as chromosome losses (blue). Copy neutral 

regions were marked as neutral (black). Bins with 

corrected log2 read counts between -0.05 and 0.05 

were marked as neutral (black) as well. 

 

Whole genome sequencing (without duplex) SNV-based 

tumor fraction estimation 

SNV-based tumor fraction estimation was carried out 

by counting cell-free DNA reads with matching tumor-

specific somatic mutations. To limit the effect of 

problematic regions of the genome, a platform-specific 

blacklist was built. For Illumina sequencing, regions 

identified in the ENCODE blacklist63, centromeres64, 

simple repeat regions64 and positions with high 

mutation rates (GNOMAD65, AF>0.001) were not 

considered. For Ultima sequencing, Ultima-specific low-

confidence regions composed of homopolymers, AT-

rich regions, tandem repeats, and regions with poor 

mappability and high coverage variability were 

additionally excluded (Supplementary figure 1). 

 

To limit the effect of sequencing errors, custom scripts 

were used for platform-specific denoising. Illumina 

alignment files were filtered to contain read pairs 

overlapping somatic mutation positions. Paired-end 

reads were filtered for mean base pair quality (greater 

or equal to 10), base pair quality of the queried position 

(greater or equal to 25), template length (below 240), 

and coverage of the position (greater or equal to 25) 

and were only kept if both R1 and R2 carried the 

mutation. Tumor fractions were estimated by dividing 

the number of filtered reads containing the somatic 

mutation by the total number of filtered reads. 

 

Ultima alignment files were subset to reads overlapping 

with somatic mutation positions (bedtools66, version 

2.29). Reads were filtered by mapping quality (mapping 

qualities below 60 were discarded) and template length 

(measured as the length of the sequencing read after 

adapter trimming; reads greater than 200bp were 

discarded). Variants were identified using the 

FlowFeatureMapper tool from the UG-specific GATK 

suite of tools with additional filters. Reads were only 

considered if the five bases flanking each side of a 

variant were identical to the reference, and if the flow-

based cycle score was greater or equal than 3. Ultima 

sequencing data is flow-based in nature31, so that in 

each sequencing cycle a single nucleotide base type is 

incorporated, and the length of the respective 

homopolymer is measured. Sequencing errors are 

therefore most commonly homopolymer indels, while 

substitution error can occur due to changes in one or 

more flow cycles. In order to assign qualities, or 

sequencing error likelihoods, to substitutions, Ultima 

has developed the FlowFeatureMapper tool that was 

made public as part of the Genome Analysis Toolkit 

4.3.0.0 release. Briefly, the tool extracts all the single 

nucleotide substitution from a CRAM file, filters them 

and assigns a likelihood score. In this study, reads were 

filtered for MapQ=60, and each substitution was 

required to match the reference in the adjacent -+5 

base pairs. The former was done in order to avoid 
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alignment artifacts, and the latter to avoid indels being 

interpreted as substitutions by the aligner. A likelihood 

score is then calculated by considering two candidate 

short local haplotypes – one matching the reference 

genome and one differing in the considered 

substitution. Using the flow-homopolymer probability 

matrix decoded from the UG CRAM files, describing the 

probability for each homopolymer in each flow cycle31, 

the log likelihood of the read to have arisen from each 

of the two haplotypes is calculated, and their difference 

is reported as a log likelihood score (X_SCORE). This 

score can be interpreted as the likelihood of a 

substitution to be the result of a sequencing error. 

Substitution were filtered for a minimal quality 3, 

corresponding to an error likelihood of 0.1%. 

Tumor fractions were estimated by dividing the 

number of filtered reads containing the somatic 

mutation by the total number of filtered reads. For the 

lower limit of detection estimation, denoised-reads 

were processed through MRD-EDGE40 as described 

below. 

 

SNV model training sets and feature space 

Our training sets were obtained from plasma enriched 

for ctDNA SNV fragments (true label) from specific 

melanoma tumors and ccfDNA SNV reads from Ultima 

datasets (false label) from healthy controls without 

known cancer.  Candidate reads were extracted from 

our custom denoised alignment files. For our true label 

sets we used patients with high burden metastatic 

disease and only reads which represented matched 

tumor variants were retained. We used a custom deep-

learning model for signal to noise enhancement40 to 

categorize candidate SNV reads. Briefly, an ensemble 

model using CNN and MLP classifiers was used. 

 

CNN model architecture 

A one-hot encoded tensor structure was used for each 

candidate read containing a single-nucleotide variant. 

The encoded tensor has and image-like structure with a 

shape of 12x240. The rows correspond to one hot 

encoded nucleotides (N, A, C, T, G) corresponding to the 

reference and the read. The penultimate row dimension 

is used to mark the position along the read highlighting 

the SNV of interest. Lastly, a binary version of the 

variant flow score (1 = flow score of 10; 0 = flow score 

below 10) is encoded along the last row dimension to 

add further relevance to tri-nucleotide context of the 

SNV of interest. The columns correspond to individual 

nucleotides along the length of the read. While our 

reads are mostly below 200 base pairs 

(Supplementary Figure 1), the extra base pairs are 

padded with the reference genome to add additional 

contextual information. Estimated error rates were 

obtained by running the cancer-free controls through 

the aforementioned pipeline. Each control was 

intersected with the mutational landscape of each 

tumor. The rate of denoised reads matching the somatic 

mutations of a tumor was taken as the error rate. 

 

MLP model architecture 

A tabular set of feature values is provided as an input to 

the MLP. Epigenetic features (available at 

Supplementary Table 4) at potential variant positions 

as well as read-specific quality metrics were used to 

distinguish true variants from sequencing noise. Read 

quality metrics included Levenshtein edit distances of 

the read upstream and downstream of the variant, 

forward or reverse mapping strands of the read, the 

number of SNVs present on a read, as well as the 

number of SNVs present on a read where the 5 flanking 

bases match the reference genome. 
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SNV model design and training 

Our deep-learning model has an ensemble structure 

and consists of two major components - a regional/read 

specific multi-layer perceptron (MLP) and a sequence 

based convolutional neural network (CNN), whose 

weight matrices are jointly learnt. The MLP which takes 

a feature matrix as input consists of a linear stack of 

four dense blocks. We define each block as consisting of 

a fully connected layer with a ReLU activation. 

Furthermore, for the purpose of regularization the 

input to each fully connected layer is batch normalized 

and the output is passed through a dropout layer. The 

CNN consists of four one dimensional convolution 

layers with non-linear ReLU activations, which extract 

sequential information at different spatial resolutions. 

Moreover, as in classical deep learning frameworks, 

each convolution layer (post nonlinear activation) is 

followed by a max pooling layer. The output is then 

passed through a stack of 3 dense blocks as defined 

above. Subsequently, the latent output of both the MLP 

and CNN is then concatenated and passed through a 

single dense block. Finally, a probability score between 

0 (sequencing noise) and 1 (true somatic mutation) is 

obtained by using a single sigmoid-activated fully-

connected layer. This probability score reflects the 

model's estimate on whether a candidate SNV mutation 

present in the encoded read is likely from signal or 

noise. Our ensemble model is built in Keras (v.2.3.0) 

with a Tensorflow base (1.14.0). To train our ensemble 

model, we minimize the objective function defined as a 

binary cross entropy loss.  We report our performance 

metrics within balanced sets. 

 

Analytical lower limit of detection estimation 

We created in silico mixes at various tumor fractions by 

computationally combining aligned reads from a high 

tumor-burden plasma sample (MEL-01, estimated 

tumor fraction of 22%) with aligned reads from a 

cancer-free control (CTRL-05). Reads were mixed to 

create 80x bam files harboring 10-7, 10-6, 10-5, 10-4, 10-3 

or 10-2 tumor fraction. Tumor fractions were estimated 

either without any denoising, or with Ultima-specific 

denoising and MRD-EDGE integration. Z-scores were 

calculated as described above. 

 

UMI WGS data processing 

FastQ reads were adapter and UMI trimmed using 

cutadapt (version 2.10). Trimmed reads were then 

aligned to the human genome (version hg38) using bwa 

mem (with parameters -K 100000000 -p -v3 -t 16 -Y). 

Trimmed UMI’s were added to the alignment files as an 

additional RX tag. Single-strand and duplex correction 

was carried out using the fgbio suite of tools (version 

2.0). Because duplex correction via fgbio requires 

paired-end reads, we created a synthetic R2 read 

directly from single-end bam alignment files. R2 reads 

were built using the same mapping information (such 

as CIGAR string and mapping quality) and read 

information (such as sequence and qualities) as the R1 

read. The subsequent paired-end alignment file was 

grouped by UMI (fgbio GroupReadsByUMI with 

parameters -m0 -s paired -e 1). Single-strand consensus 

sequences were created with 

CallMolecularConsensusReads and duplex consensus 

sequences were created using 

CallDuplexConsensusReads. Consensus reads were 

filtered with FilterConsensusReads and remapped to 

the human genome. Single-strand and/or duplex 

metrics (such as consensus read depth, consensus error 

rate, number of Ns on the consensus molecule, number 
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of reads with matching UMIs) and mapping information 

were integrated as additional read tags to the original 

single-end alignment file. Variant frequencies in the 

original alignment files (without denoising) were 

calculated using lofreq67 (version 2.1.3a, with all 

filtering modes disabled). The original single-end bam, 

with the additional single-strand or duplex tags, was 

processed through the FlowFeatureMapper tool, 

(described above) which allows for the processing of 

the additional UMI tags, to obtain putative variants. 

Variants in duplex-resolved data were filtered based on 

the following conditions: i) duplex read must contain 

less than 4 Ns; ii) variant must not be within 25bp of 

either the 5’ or 3’ end of the molecule; iii) variant must 

be present on top and bottom strands; iv) all reads with 

the same UMI must have the 5bp flanking the variant 

match the reference. For single-strand correction data, 

variants were only considered if: i) the consensus read 

contains less than 4 Ns; ii) the variant must not be 

within 25bp of either the 5’ or 3’ end of the molecule; 

iii) all reads with the same strand-specific UMI must 

have the 5bp flanking the variant match the reference. 

Finally, UMI-agnostic denoising was performed by 

filtering by: i) variant position in read (the variant 

cannot be within 25bp of an end of the read); ii) 

template length (must be lower than 200bp); iii) 

mapping quality (cannot be below 60); iv) edit distance 

(must be below 4) and v) total variants on the read 

(must be below 11). 

 

Duplex, single-strand, and UMI-agnostic error rates in 

mouse PDX plasma samples 

Denoising was performed as described above. Variants 

at a given genomic position, for each correction method, 

were compared to the frequency of that variant in 

uncorrected datasets. If the variant occurred two or less 

times in an uncorrected dataset, the variant was 

considered an error. The error rate was defined as the 

sum of the errors divided by the total number of base 

pairs for that correction method. For example, the error 

rate for duplex datasets corresponded to the number of 

errors divided by the total number of mapped base 

pairs from consensus duplex reads. 

 

Duplex, single-strand, and UMI-agnostic error rates in 

human plasma samples 

We used samples from patient MEL-12 (n = 5 plasma 

samples) to estimate error rates. Here, we benefited 

from n = 5 Ultima-sequenced datasets, n = 5 Illumina-

sequenced datasets and n = 1 WGS of normal DNA 

(PBMC, Illumina sequencing). Variants were identified 

in all datasets using lofreq67 (without filtering) or 

HaplotypeCaller60 (using GATK best standard practices) 

for plasma and PBMC data, respectively. For each 

Ultima-sequenced plasma sample, a patient-specific 

SNV mask was created by tabulating all variants 

appearing in any of the other 10 datasets, thereby 

extensively removing somatic and germline mutations 

specific to MEL-12. Variants were intersected with the 

mutation profiles of the 107 melanoma tumor datasets 

obtained from PCAWG (variants from the SNV mask 

were ignored). The error rate per PCAWG tumor was 

defined as the number of variants in the sample 

matching tumor mutations, divided by the number of 

tumor mutations multiplied by the average depth of 

sequencing of the sample. 

 

Statistical analysis 

Statistical analysis was performed in R (version 3.6). 

Boxplots were generated using the ggplot2 R package.  

The lower and upper ends of the boxes represent the 

25th and 75th percentiles of the data, respectively, and 
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the horizontal line represents the median. The whiskers represent at most 1.5 times the IQR. 
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Supplementary Figure 1. Effect of artifact blacklisting on single nucleotide variant detection 

A. Ultima Genomics (UG) specific blacklist includes regions with low GC content, tandem repeats, regio

poor mappability, regions with high coverage variability and regions with homopolymers greater than 

pairs. 

B. Overlap between UG specific blacklist and other publicly available low confidence regions 

C. Effect of blacklists on the recovery of somatic single nucleotide variants (SNVs) in 107 melanom

samples obtained from the Pan Cancer Analysis of Whole Genomes (PCAWG) consortium. 
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Supplementary Figure 2. Estimated ctDNA (red) and error rates (blue) for Ultima whole genome sequencing 

samples. ctDNA estimates were obtained by intersecting putative plasma variants with the tumor-specific SNVs. 

Background estimates were obtained by intersecting cancer-free samples (CTRL-01 to CTRL-05) with the tumor-

specific SNVs, and couting the rate of false positives.  
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Supplementary Figure 3. Cell-free DNA fragment lengths in single-end Ultima sequencing datasets matche

paired-end Illumina sequencing. Fragment lengths are accurately recovered between single-end Ultima rea

when compared to paired-end Illumina sequencing for cell-free DNA molecules below 200 base pairs. 
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Supplementary Figure 4. Variant allele frequencies (calculated using unfiltered sequencing reads) in positions 

where a variant was found using UMI-agnostic denoised reads (left column) and in duplex corrected reads (right 

column).  
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Supplementary Figure 5. Cosine similarities in high burden and cancer-free samples for UV and CH-associated 

signatures and SBS7 and CH, respectively. 
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Supplementary Figure 6. Tumor-agnostic copy-number based tumor fraction estimation in cancer-free control 

samples (n=3) and pre-surgery melanoma plasma (n=4). 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.17.516904doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516904

