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Abstract1

Currently, bioimaging databases cannot be queried by chemical structures that induce the phenotypic2

effects captured by the image. We present a novel retrieval system based on contrastive learning that is able3

to identify the chemical structure inducing the phenotype out of ∼2,000 candidates with a top-1 accuracy4

>70 times higher than a random baseline.5

Brief Communication6

Biological and chemical databases and their querying mechanisms are at the heart of research in molecular biology.7

Sequence databases, such as RefSeq [1] or UniProt [2], contain DNA or protein sequences, and are often queried8

with a given sequence using BLAST [3] or its variants. Genome databases [4] usually allow for multiple types of9

querying methods, such as genetic location, gene names, or accession numbers. Protein structure databases, for10

example, the Protein Data Bank (PDB) [5], offer a range of querying approaches from sequence similarities to11

structural queries based on 3D shape. The chemical databases ChEMBL [6] and PubChem are huge corpora12

of chemical structures that contain billions of small molecules. The International Chemical Identiőer (InChI)13

[7] was designed to facilitate querying for chemical structures in such databases, which is difficult because of14

the graph matching problem. While BLAST, the structural search in PDB, and the InChI-based queries can15

be considered as associative or content-based querying, bioimaging databases still rely on manual annotation16

and text-based search. However, querying large bioimaging databases by a chemical structure that induces17

the phenotypic effect captured by the image could considerably empower biomedical research. Additionally,18

unlocking chemical databases for queries with a microscopy image capturing the phenotypic effects of a chemical19

structure could be equally important (see Figure 1A,B).20

Recently, contrastive learning has emerged as a powerful paradigm to learn rich representations [8]. The21

contrastive learning methods CLIP and CLOOB embed natural language and images into the same representation22

space [9, 10]. Contrastive learning enforces that images and their matching captions are close to one another in23

this embedding space, while un-matched images and captions are separated. Therefore, text prompts can query24

an image database by extracting nearby images in the embedding space and vice versa [9].These text-image25

embedding spaces enabled the generation of realistic images from short text prompts and led to the recent26

boom of žAI artž [11]. In this work, we use these powerful contrastive learning paradigms to enable retrieval or27

querying systems for microscopy images.28

In order to characterize cell phenotypes, tissues, or cellular processes, microscopy imaging has been used as29

an informative and time- and cost-efficient biotechnology [12, 13]. Consequently, there have been efforts by the30

scientiőc community to use high-throughput microscopy imaging [14] as informative read-out and characterization31

of cellular systems and phenotypes under diverse perturbations [13, 15]. In addition to the wealth of information32

that is comprehensible and informative for human experts, these microscopy images also contain large amounts of33

biological information inaccessible to humans, but which can be successfully extracted by computational methods,34

such as Deep Learning [16]. The immense amount of microscopy imaging data are stored in large databases,35

many of which are publicly available. Their querying procedures, however, are still limited to queries by textual36

annotations. A common embedding space of (a) microscopy images capturing phenotypic effects of perturbations,37

and (b) chemical structures inducing those effects would allow for content-based or associative querying of both38

imaging and chemical databases. Such an embedding space would represent cellular processes both in terms39

of the chemical structures that induce them and in terms of images that capture the cell phenotypes caused40

by these processes. New applications such as the detection of novel cell phenotypes are possible through such41

embedding spaces (see Figure 4C,F).42
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Figure 1: A, B The CLOOME encoders can be used to query a microscopy imaging database (A) by a chemical
structure, and vice versa, query a chemical database by a microscopy image (B). C Visualization of the embedding
space in terms of a t-SNE projection of image embeddings of new cell phenotypes. Each point represents a
microscopy image from a hold-out set. The color indicates the cell phenotype, which was also withheld from
training. The CLOOME embeddings (left) are indicative of the cell phenotype (clustered colors). CellProőler
features are less indicative of cell phenotypes (only few colors cluster together). D A multi-modal setting for
imaging cell phenotypes. Small molecules are administered to cells which are then imaged to capture potential
phenotypic changes. In this way, matched image-structure pairs are obtained. E Schematic depiction of the
training procedure of CLOOME. During training, the similarity of matched image-structure pairs is increased
(black arrows), while the similarity of un-matched image-structure pairs is decreased (grey arrows). F The
encoders of CLOOME map chemical structures and microscopy images to the same embedding space using a
structure and a microscopy image encoder. Both encoders are deep neural networks. Matched pairs of chemical
structures and microscopy images are mapped to embeddings that are close together, whereas un-matched pairs
are mapped to embeddings that are separated.
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CLIP and CLOOB models have been constructed via contrastive learning on large image-text datasets [9].43

Analogously to image-text pair datasets, the Cell Painting dataset [15] contains image-structure pairs (see44

Figure 1D). Therefore, we were able to use contrastive learning to jointly train a microscopy image encoder45

and a chemical structure encoder to construct a common embedding space of microscopy images capturing cell46

phenotypes and chemical structures representing the perturbations (see Figure 1E, F). We propose a contrastive47

learning framework for image-structure pairs that we call CLOOME (see Online Methods). The training process48

of CLOOME would yield a) an image encoder that can map microscopy images to an informative embedding49

space, b) a structure encoder that can map chemical structures to the same embedding space (see Figure 1F).50

Both encoders are deep neural networks that build the basis of a search engine, which we also call CLOOME, for51

microscopy images and chemical structures (Figure 1F). If CLOOME achieves similar results for microscopy52

images to CLIP or CLOOB for natural images [9, 10], the image encoder should produce features, or equivalently53

cell proőles [17], that are highly transferable and robust to distribution shifts.54

We trained the encoders of CLOOME on 674,357 pairs of microscopy images and chemical structures of55

the Cell Painting dataset, setting aside 28,632 for validation and 56,793 pairs for testing, ensuring that no56

data leakage occurred between these sets (see Online Methods). We used a Residual Network [18] to encode57

microscopy images [19], and a fully-connected neural network to encode chemical structures [20]. For each58

training step, 256 image-structure pairs are randomly drawn from the training set and the encoders are updated59

to increase the cosine similarities of the matched pairs and decrease the cosine similarity of un-matched pairs60

(Figure 1E). We trained the CLOOME encoders for the retrieval system for 51 epochs, based on validation61

performance (details in Online Methods). After the training process, we investigated CLOOME models for62

a) the use as a retrieval systems for microscopy images and chemical structures, b) the quality of the image63

embeddings to predict bioactivities c) the expressiveness of the image embeddings to distinguish between unseen64

cell phenotypes.65

a) The CLOOME encoders as retrieval system for microscopy images and chemical structures.66

On a hold-out set of new 2,115 molecules and images, we tested whether CLOOME is able to correctly identify67

the chemical structure with which the cells have been treated, and vice versa. This, to our knowledge, is a68

task that is considered almost impossible for human experts. The trained CLOOME system is able to identify69

the matched microscopy image given the chemical structure, and vice versa, with an top-10 accuracy of 8.4%70

(95%-CI 7.3-9.7%) an 7.9% (95%-CI 6.8-9.1%), respectively. The task is extremely difficult because there are71

many chemical structures that induce similar cell phenotypes or no phenotypic changes at all and because72

one correct image or chemical structure has to be selected from a large set of ∼2,000 candidates. Therefore,73

the performance of human experts would likely be close to random, over which CLOOME exhibits a 70-fold74

improvement for image retrieval and 64-fold improvement for structure retrieval over this random baseline (see75

Table 1). This means that by just investigating the cell phenotype displayed on the microscopy image, CLOOME76

is able to identify the matched chemical structure from a large database, and vice versa (see Table 1). Therefore,77

the CLOOME encoders can be used as a content-based or associative retrieval system for microscopy images78

and chemical structures 1.79

Method
Top-k accuracy (%)

Top-1 (rel.) 95%-CI Top-5 (rel.) 95%-CI Top-10 (rel.) 95%-CI

CLOOME (structure retr.) 3.03 (64.4x) [2.34, 3.85] 6.62 (25.4x) [5.60, 7.76] 8.42 (17.8x) [7.27, 9.68]
CLOOME (image retr.) 3.31 (70.4x) [2.59, 4.16] 6.24 (24.0x) [5.24, 7.36] 7.90 (16.7x) [6.78, 9.13]
Random 0.0473 [0.0012, 0.263] 0.236 [0.0768, 0.551] 0.473 [0.227, 0.868]

Table 1: Results for the database retrieval (retr.) task. Given a molecule-perturbed microscopy image, the
matched molecule, i.e. chemical structure, must be selected from a set of ∼2,000 candidate molecules (őrst row).
Vice versa, given a chemical structure, the matched microscopy image, capturing the phenotype induced by
the chemical perturbation, has to be selected from ∼2,000 candidate images (second row). Top-1, top-5 and
top-10 accuracy in percentage are shown for a hold-out test set, along with the upper and lower limits for a 95%
conődence interval on the proportion.

b) Bio-activity prediction. Next, we investigated whether the embeddings are transferable to other tasks.80

To this end, we used bioactivity prediction tasks as these have been approached before with cell proőling [16]81

and convolutional neural networks (CNNs) [19]. We found that without the need for re-training or őne-tuning82

any neural network, the CLOOME image embeddings could predict 209 activity prediction tasks with an AUC83

of 0.714± 0.20, which is on par with the best method CNNs trained in an end-to-end fashion. For CLOOME, we84

just trained a logistic regression model, and, thus, we can conclude that the embeddings are highly transferable85

and predictive for a diverse set of activity prediction tasks.86

c) Zero-shot image classification. Lastly, we investigated how well the CLOOME image embeddings87

characterize new cell phenotypes and whether new phenotypes could potentially be detected. We again used a88

1The search engine is available here https://huggingface.co/spaces/anasanchezf/cloome
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hold-out set of microscopy images. We took the simpliőed assumption that each chemical structure induces a89

separate new cell phenotype. If different structures in reality induce the same phenotype, this would even make90

the prediction task simpler. Since multiple different samples, i.e. images, were treated with the same chemical,91

they should produce similar embeddings or cell proőles. Therefore, a t-SNE plot, in which each point represents92

a microscopy image embedding colored by phenotype, should show clusters of datapoints of the same color (see93

Figure 1C left). For comparison, we also produced the same plot using the cell proőles computed with the94

CellProőler [17] software (see Figure 1C right). Besides the visual conőrmation, the classiőcation accuracy can95

also be quantiőed (see Online Methods). Indeed, the CLOOME embeddings are similar for images capturing the96

same, but previously unknown cell phenotype, and are thus highly expressive features of cells.97

To conclude, we have demonstrated that self-supervised contrastive learning methods can be readily used for98

multi-modal data arising from informative biotechnologies, such as microscopy images. Our contrastive learning99

framework CLOOME was used to construct a common embedding space for microscopy images capturing cell100

phenotypes and chemical structures inducing cellular processes. This enabled us to build a content-based retrieval101

system for microscopy images and chemical structures. Furthermore, the learned microscopy image encoder has102

been shown to produce highly transferable and expressive embeddings, or cell proőles, that can be efficiently103

used to predict bioactivities or detect new phenotypes. We envision that our work paves the way for retrieval104

systems for other pairs of modalities, for example querying microscopy imaging databases with transcriptomics105

signatures or vice versa. We provide the CLOOME search engine as a free web application, the CLOOME106

framework, the encoders and all code on github https://github.com/ml-jku/cloome.107
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A Online Methods171

"CLOOME" is a contrastive learning framework for multi-modal microscopy imaging data. Within the CLOOME172

framework, a microscopy image encoder and a chemical structure encoder are learned by contrasting representa-173

tions of matched image-structure pairs against un-matched examples from other pairs. Because our framework174

extends the contrastive learning methods CLIP [1] and CLOOB [2] to image-structure pairs, we call it Contrastive175

Learning and leave-One-Out-boost for Molecule Encoders (CLOOME). In the following we provide details on176

the method, data, training, assessment and evaluation. Concretely,177

• we introduce a new contrastive learning approach for image- and structure-based representations of178

molecules,179

• we show that the learned representations are highly transferable to relevant downstream tasks in drug180

discovery by linear probing on activity prediction tasks;181

• we demonstrate that our approach learns rich representations of molecules which allow to retrieve potential182

bioisosteres from image or chemical databases.183

A.1 CLOOME: Contrastive Learning and Leave-One-Out Boost for Molecule184

Encoders185

We propose contrastive learning of representations from pairs of microscopy images and chemical structures186

to obtain a common embedding space of these two modalities, and to obtain highly transferable encoders (see187

Figure 2). In contrast to previous approaches, in which chemical structure encoders learned representations using188

activity data [3, 4] or microscopy image encoders used hand-crafted representations [5, 6], CLOOME optimizes189

representations without activity data or human expertise.190
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Figure 2: Schematic representation of CLOOME. Contrastive pre-training of embeddings of the two modalities,
microscopy image and chemical structure, of a molecule using the CLOOB [2] approach. b) Using the CLOOME
embeddings for activity prediction. A logistic regression model is trained for activity prediction tasks. c) The
resulting embeddings can be used to rank chemical structures that induce similar phenotypic effects, which can
be considered a bioisosteric replacement task.

The training dataset consists of N pairs of microscopy images of molecule-perturbed cells and chemical191

structures of molecules {(x1, z1), . . . , (xN , zN )}. We assume that an adaptive image-encoder h
x(.) and an192

adaptive structure-encoder h
z(.) are available that map the microscopy images and chemical structures to their193
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embeddings xn = h
x(xn) and zn = h

z(zn), respectively. Note that the original image is denoted as xn, which is194

mapped to an image embedding xn by a neural network h
x(.), e.g. a ResNet. The stacked microscopy image195

embeddings are denoted as X = (x1, . . . ,xN ) and the stacked structure embeddings as Z = (z1, . . . , zN ). The196

embeddings are normalized such that ∥xn∥ = ∥zn∥ = 1 ∀n. For notation, see also Table 6.197

In a contrastive learning setting, methods aim at increasing the similarity of matched pairs and decrease the
similarity of un-matched pairs. This task has often been approached by maximizing the mutual information of
the embeddings using the InfoNCE loss [1, 7, 8], which is also used in the CLIP approach [1]. The InfoNCE
objective function has the following form:

LInfoNCE = −
1

N

N∑

i=1

ln
exp(τ−1

x
T
i zi)∑N

j=1
exp(τ−1 xT

i zj)
−

1

N

N∑

i=1

ln
exp(τ−1

x
T
i zi)∑N

j=1
exp(τ−1 xT

j zi)
, (1)

where τ−1 is the inverse temperature parameter, which is a hyperparameter of the method.198

The contrastive learning method CLIP has the problem of "explaining away" [2, 9, 10]. Explaining away199

describes the effect in which few features are over-represented while others are neglected. This effect can be200

present a) when learning focuses only on few features and/or b) when the covariance structure in the data is201

insufficiently extracted. Explaining away can be caused by saturation of the InfoNCE objective [2, 11, 12]. To202

ameliorate these drawbacks, CLOOB [2] has introduced the InfoLOOB objective together with Hopőeld networks203

as a promising method for contrastive learning. Our contrastive learning framework CLOOME comprises both204

methods CLIP [1] and CLOOB [2].205

For our extension of the CLOOB method, őrst image- and structure-embeddings are retrieved from stored206

image embeddings U and structure embeddings V . Uxi
denotes an image-retrieved image embedding, Uzi

a207

structure-retrieved image embedding, Vxi
an image-retrieved structure embedding and Vzi

a structure-retrieved208

structure embedding. In analogy to CLOOB, these retrievals from continuous modern Hopőeld networks are209

computed as follows:210

Uxi
= U softmax(β U

T
xi) , (2)

Uzi
= U softmax(β U

T
zi) , (3)

Vxi
= V softmax(β V

T
xi) , (4)

Vzi
= V softmax(β V

T
zi) , (5)

where β is a scaling parameter of the Hopőeld network which is considered a hyperparameter. These retrieved
embeddings Uxi

,Uzi
,Vxi

,Vzi
are also normalized to unit norm. By default, we store the current minibatch in

the modern Hopőeld networks, that is, U = X and V = Z. Note that X contains the image embeddings (Z the
structure embeddings) and we use N ambiguously both as dataset size, but also as mini-batch size to keep the
notation uncluttered. The choice that U = X and V = Z is mostly taken because of computational constraints,
while U and V could hold the whole dataset or, alternatively, exemplars. For further details on notation, see
Table 6. Then, the InfoLOOB objective [2, 13] for the retrieved embeddings is used as objective function:

LInfoLOOB = −
1

N

N∑

i=1

ln
exp(τ−1

U
T
xi
Uzi

)
∑N

j ̸=i exp(τ
−1 UT

xi
Uzj

)
−

1

N

N∑

i=1

ln
exp(τ−1

V
T
xi
Vzi

)
∑N

j ̸=i exp(τ
−1 V T

xj
Vzi

)
. (6)

Microscopy image encoder. Microscopy images differ from natural images in several aspects, for example the211

variable number of channels that depends on the staining procedure [3, 14]. Although standard image encoders,212

such as Residual Networks [15] could be in principle used with minor adjustments, alternative architectures,213

such as multiple instance learning approaches, could be required for very high resolution datasets [16]. In all214

our experiments, we use a ResNet-50 encoder with őve input channels and downsized the microscopy images to215

320x320 pixels.216

Molecule structure encoder. Since the advent of Deep Learning, a large number of architectures to encode217

molecules have been suggested [17ś21]. In contrast to computer vision and natural language processing, in which218

only few prominent architectures have emerged, there is yet no standard choice for chemical structure encoders.219

Because of their computational efficiency and good predictive performance, CLOOME uses a descriptor-based220

fully-connected network [22, 23] with 4 hidden layers of 1024 units with ReLU activations and batch normalization221

(for further details see Sec. A.2 and Sec. A.6). However, also any graph [20, 24ś26], message-passing [27], or222

sequence-based [28] neural network with an appropriate pooling operation can be used as structure encoder.223

A.2 Experiments224

Dataset and preprocessing. Cell Painting. We use pairs of microscopy images and molecules from the225

Cell Painting [6, 29] dataset. This dataset is a collection of high-throughput ŕuorescence microscopy images226

of U2OS cells treated with different small molecules [29]. The dataset consists of 919,265 őve-channel images227
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corresponding to 30,616 different molecules. The experiment to obtain the microscopy images was conducted228

using 406 multi-well plates, and each one of the before mentioned individual images are views from a sample229

spanning the space in the corresponding well, so that six adjacent views belong to one single sample. After230

disregarding erratic images (out of focus or containing high ŕuorescence material) as well as images of untreated231

cells that were used as controls, our őnal dataset comprises 759,782 microscopy images treated with 30,404232

different molecules.233

Pre-processing. We followed the pre-processing protocol of Hofmarcher et al. [3], which consisted of converting234

the original TIF images from 16-bit to 8-bit, simultaneously removing the 0.0028% of pixels with highest values.235

Moreover, the images were normalized using the mean and standard deviation calculated for the training split.236

Concerning molecules, their corresponding SMILES strings were transformed to 1024-bit Morgan őngerprints237

with a radius of 3, taking chirality into account [30, 31].238

Data splits. We split our dataset into training, validation, and test set, using the splits of Hofmarcher et al.239

[3]. Samples which have not been used in the previous study due to missing activity data, are assigned to240

the training split. Note that all images belonging to the same molecular structure are moved into the same241

set. Finally, training, validation and test set consist of 674,357, 28,632 and 56,793 image and molecule pairs,242

respectively.243

Pre-training, architecture and hyperparameters. We use the suggested hyperparameters of OpenCLIP244

[32] and CLOOB [2] wherever applicable, and tuned a few critical hyperparameters, such as learning rate and245

the β parameter of the Hopőeld layer on a validation set. The architecture of the structure encoder was inspired246

by previous successful models [23] and was not subject to substantial hyperparameter optimization. Due to247

computational constraints, the search was limited to the hyperparameters shown in Table 7. We used the Adam248

optimizer [33] with decoupled weight decay regularization [34]. The value for weight decay was 0.1. For the249

learning rate scheduler, we used cosine annealing with a warm-up of 20,000 steps and hard restarts every 7250

epochs [35]. We set the dimension of the embedding space to d = 512, which determines the size of the output of251

both encoders. We use a batch size of 256 as default due to computational constraints. For activity prediction252

as downstream task, the inverse temperature parameter τ−1 = 30 was used. For the Hopőeld layers, the scaling253

hyperparameter β = 22 was selected, and the model was trained for 63 epochs based on linear probing results254

in the corresponding validation set. For data augmentation and to allow large batch sizes, the images were255

cropped and re-scaled from the original 520x696 pixel resolution to 320x320 during training. For the retrieval and256

zero-shot image classiőcation tasks, a higher validation performance was achieved by a CLIP-like architecture257

directly using the embeddings returned from the image and structure encoders and the InfoNCE loss. In this258

case, the inverse temperature parameter τ−1 was set to 14.3, and the model was trained for 51 epochs based259

on the top-1 accuracy in validation. In this case, images were cropped and re-scaled to a pixel resolution of260

520x520, based on performance in the validation set. Hence, different pre-training settings have been found261

to yield best results for bioactivity prediction and for both the retrieval and zero-shot image classiőcation262

task, respectively. However, the large majority of hyperparameters were shared in both strategies. Because263

of the limited exploration of the vast hyperparameter space, we expect potential improvements from further264

investigations. For further details on the hyperparameter selection, see Sec. A.6.265

a) A retrieval system for imaging and chemical databases to enable bioisoteric replacement and266

scaffold hopping. In this experiment, we assessed the ability of CLOOME to correctly retrieve the matched267

chemical structure given a microscopy image of cells treated with this molecule. Notably, this is an extremely268

challenging task for human experts: given a microscopy image of cells, the task is to select the chemical structure269

with which they have been treated from a set of thousands of candidate structures. Since cells often do not270

exhibit any or only subtle phenotypic changes, this task is highly ambitious.271

This image-based retrieval task can also be understood as a bioisosteric replacement task [36]: Bioisosteres272

are molecules with roughly the same biological properties or activities, which is highly relevant in drug discovery273

when a chemical scaffold should be replaced with another, but at the same time its biological activity should274

be kept. With this experiment, we evaluate the ability of CLOOME to correctly rank the matched molecular275

structure given the image. Other high-ranked structures could be potential bioisosteres, which makes this276

experiment a proxy for the bioisteric replacement problems (see Figure 2 b)).277

On hold-out data of 2,115 image and molecule pairs, CLOOME ranked the matched molecule in the őrst278

place for 3% of the cases. A random method would achieve a value of 1/2, 115 ≈ 0.047%, which indicates a279

∼ 70-fold improvement of CLOOME. For this task, different hyperparameters and model were selected based280

on the appropriate validation metric (see Sec. A.6). The top-1, top-5, top-10 accuracy are given in Table 2 for281

retrieving from a database of 2,115 instances. Additionally, we report the same metrics for a sampling rate of282

1%, or equivalently, 1 matched example together with 99 un-matched ones ś a setting often used to evaluate283

retrieval systems, see Table 3. Further, some examples are displayed in Figure 3. This is, to our knowledge, the284

őrst system of cell-image-based retrieval of molecular structures.285
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Method
Top-k accuracy (%)

Top-1 (rel.) 95%-CI Top-5 (rel.) 95%-CI Top-10 (rel.) 95%-CI

CLOOME (structure retr.) 3.03 (64.4x) [2.34, 3.85] 6.62 (25.4x) [5.60, 7.76] 8.42 (17.8x) [7.27, 9.68]
CLOOME (image retr.) 3.31 (70.4x) [2.59, 4.16] 6.24 (24.0x) [5.24, 7.36] 7.90 (16.7x) [6.78, 9.13]
Random 0.0473 [0.0012, 0.263] 0.236 [0.0768, 0.551] 0.473 [0.227, 0.868]

Table 2: Results for the retrieval task among 2,115 candidates. Given a molecule-perturbed microscopy image,
the matched molecule must be selected from a set of candidates, and vice versa. Top-1, top-5 and top-10 accuracy
in percentage are shown for a hold-out test set, along with the upper and lower limits for a 95% conődence
interval on the proportion.

Method
Top-k accuracy (%)

Top-1 95% CI Top-5 95% CI Top-10 95% CI

CLOOME (structure retrieval) 10.4 [9.10, 11.7] 21.3 [19.6, 23.1] 30.6 [28.7, 32.7]
CLOOME (image retrieval) 9.64 [8.42, 11.0] 20.7 [19.0, 22.4] 29.0 [27.1, 31.0]
Random 0.992 [0.616, 1.51] 5.01 [4.12, 6.03] 10.0 [8.78, 11.4]

Table 3: Results for the retrieval task among 100 candidates. Given a molecule-perturbed microscopy image,
the matched molecule must be selected from a set of candidates, and vice versa. Top-1, top-5 and top-10 accuracy
in percentage are shown for a hold-out test set, along with the upper and lower limits for a 95% conődence
interval on the proportion.

b ) Bio-activity prediction as downstream tasks. In this experiment, we tested whether the representations286

learned by CLOOME are transferable by linear probing on 209 downstream activity prediction tasks. The287

linear probing test [8, 37] on downstream tasks is often performed for contrastive learning approaches to check288

the transferability of learned features. In such experiments, the representations of the pretrained encoders are289

used, and only a single-layer network, such as logistic regression, is őt to the given labels for the supervised290

task. If the linear probing test yields good predictive quality, usually below a fully supervised approach [8], the291

representations are considered transferable.292

Linear probing evaluation. The prediction tasks that we employed for linear probing evaluation is the same as293

used in Hofmarcher et al. [3]. It is a subset of the Cell Painting dataset, consisting of 284,035 images for which294

the activity labels of the compound treatments were retrieved from ChEMBL. The retrieved labels correspond295

to 10,574 compounds across 209 activity prediction tasks, which are binary classiőcation problems. However,296

activity data points are not available for all compounds in all of the tasks, which results in a sparse label matrix.297

The data was split into 70% training, 10% validation, and 20% test sets. This split had been carried out by298

grouping views from samples treated with the same molecule.299

We use image features taken from the penultimate layer of the image encoder, omitting the classiőcation layer.300

We train a logistic regression classiőer, and report the corresponding metric for each task. The L2 regularization301

strength λ was tuned individually for each one of the tasks, considering the values {10−6, 10−5, . . . , 106}.302

In order to evaluate model performance for this downstream task, we use the area under the ROC curve303

(AUC), which is one of the most prevalent metrics for drug discovery [3, 4], as it considers the order of the304

molecules regarding their activity. We also show the number of tasks for which this metric is higher than the305

thresholds 0.9, 0.8 and 0.7, respectively. These thresholds have been used in previous studies [3, 4] because306

models within those categories lead to certain levels of enrichment of hit rates in drug discovery projects.307

Baselines. As baselines we consider methods reported in Hofmarcher et al. [3]. They are the best performing308

methods for bioactivity prediction using microscopy images to date and consist of different convolutional neural309

network architectures, used in a fully supervised setting, and a method ("FNN") that uses expert-designed cell310

features [4ś6]. The compared methods were trained in a multi-task setting to predict activity labels for 209311

tasks, extracted from ChEMBL.312

Results. The predictive performance on the downstream activity prediction tasks is reported in Table 4.313

CLOOME reached an average AUC of 0.714± 0.20 across prediction tasks, which indicates that the learned314

representations are indeed transferable since no activity data had been used to train the CLOOME encoders.315

CLOOME even outperformed fully supervised methods, such as M-CNN [38] and SC-CNN [3], with respect to316

AUC.317

c) Zero-shot microscopy image classification. The goal of this analysis is to evaluate the potential of the318

CLOOME image embeddings to distinguish between cell phenotypes. Classifying the phenotype captured by319

the microscopy image is a highly relevant biological question. Especially for drug discovery, where phenotypes320

are induced by chemical perturbations, embeddings that can identify novel phenotypes would provide some321

understanding about its possible mode of action and therefore its potential adverse effects.322
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Query 

image
1 2 3 4 5

Top ranked retrieved structures /

 Corresponding images

Figure 3: Example results for the retrieval task. On a hold-out test set, the őve molecules for which representations
are the most similar to the query image are shown along with their corresponding images. Blue boxes mark the
query image and its matching molecular structure, i.e. the matching pair. CLOOME can be used to retrieve
molecules that could produce similar biological effects on treated cells, i.e. bioisosteres.
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Type Method AUC F1
AUC
>0.9

AUC
>0.8

AUC
>0.7

Linear probing on
CLOOME 0.714±0.20 0.395±0.32 57 84 109

self-supervised

Supervised

ResNet 0.731±0.19 0.508±0.30 68 94 119
DenseNet 0.730±0.19 0.530±0.30 61 98 121
GapNet 0.725±0.19 0.510±0.29 63 94 117
MIL-Net 0.711±0.18 0.445±0.32 61 81 105
M-CNN 0.705±0.19 0.482±0.31 57 78 105
SC-CNN 0.705±0.20 0.362±0.29 61 83 109
FNN 0.675±0.20 0.361±0.31 55 71 90

Table 4: Comparison of the linear probing evaluation of the learned representations against fully supervised
methods [3]. Note that the CLOOME encoders do not have access to any activity data. The features produced
by the CLOOME encoder are still predictive for activity data as shown by őtting a logistic regression model,
considered as linear probing. CLOOME reaches the performance of the several supervised methods, which
indicates transferability of the learned representations [8]. The best method in each category is marked bold.

In the same hold-out test used for this zero-shot image classiőcation task, each molecule is assumed to cause323

a different phenotype. While this assumption is not true, and distinct chemical structures can induce the same324

phenotype, this is the most difficult setting and the more realistic setting would make the classiőcation task even325

easier. To provide details on this classiőcation task, one image for each of the molecules was randomly selected,326

resulting in 2,115 classes. Then, samples corresponding to both the same molecule and plate as those from the327

class set were removed in order to ensure that the classiőcation was not due to plate effects. This yielded a328

44,102 image test set.329

We compared the CLOOME embeddings, to embeddings of a microscopy image encoder trained in supervised330

fashion and to proőles from CellProőler. Regarding GapNet embeddings, the images were encoded using the331

model weights provided by Hofmarcher et al. [3], removing the last layer of its classiőer, which resulted in a332

1024-dimension embedding space. CellProőler embeddings consist in 148 features aggregated in one vector per333

image, as made availabe in Bray et al. [6].334

Method
Accuracy[%]

Top-1 95% CI Top-5 95% CI Top-10 95% CI

CLOOME 17.8 [17.4, 18.2] 40.6 [40.2, 41.1] 55.3 [54.8, 55.8]
GapNet (CNN) 0.363 [0.309, 0.423] 1.07 [0.981, 1.18] 1.80 [1.67, 1.92]
CellProőler 0.497 [0.433, 0.567] 1.75 [1.63, 1.88] 2.89 [2.74, 3.05]

Table 5: Results for the zero-shot microscopy image classiőcation. Given a molecule-perturbed microscopy image,
the image corresponding to the matched molecule must be selected from a set of candidates. Top-1, top-5 and
top-10 accuracy in percentage are shown for a hold-out test set, along with the upper and lower limits for a 95%
conődence interval on the resulting proportion.

A.3 Related work.335

Contrastive learning has had a strong impact on computer vision and natural language processing.336

Over the last decade, supervised deep learning methods have achieved outstanding results in the őeld of computer337

vision [15, 39]. These supervised methods require large amounts of labeled data, which may be very costly or338

unfeasible to obtain, and they have limited generalization abilities [40, 41]. This has led to the exploration of new339

methods that are able to learn robust representations of the data which can be transferred to different downstream340

tasks [8, 42]. With contrastive learning methods [43] and self-supervision these meaningful representations can be341

obtained without the need for large amounts of expensive manually-provided labels [8, 44ś46]. While uni-modal342

methods typically use pre-text tasks [8], for multi-modal methods the self-supervision arises from the availability343

of two modalities of an instance, such as image and text [1, 47]. Both uni-modal and multi-modal contrastive344

learning methods have recently had a substantial impact in computer vision and natural language processing345

[48].346

CLIP for multi-modal data yields spectacular performance at zero-shot transfer learning and has347

recently been improved by CLOOB. An outstanding multi-modal approach is Contrastive Language-348
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Figure 4: t-SNE downprojection of the CLOOME learned embeddings (left) and the CellProőler extracted
features (right) of all microscopy images corresponding to 20 molecules randomly selected from the test set. The
colors represent different molecules.

Image Pre-training (CLIP) [1], which learns both image- and text-representations simultaneously. CLIP shows349

comparable performance to methods that are solely image-based and yields highly transferable representations,350

which is shown by its high performance at zero-shot transfer learning. However, CLIP has recently been shown351

to suffer from the "explaining away" effect [2, 9, 10] (details in Section A.1). Considering this caveat, the352

“Contrastive Leave One Out Boostž (CLOOB) method has been proposed [2]. CLOOB uses a different objective,353

the “InfoLOOBž (LOOB for “Leave One Out Boundž) objective [13], which does not include the positive pair354

in the denominator to avoid saturation effects [2]. Moreover, continuous modern Hopőeld networks [49] are355

used to reinforce the covariance structure of the data. As a result, CLOOB has further improved zero-shot356

transfer learning. The ability to learn transferable representation from multi-modal data makes CLOOB the357

prime candidate for learning representations of molecules in drug discovery.358

Contrastive learning for molecule representations in drug discovery. In drug discovery, the effect of359

the limited availability of data on molecules is even more severe, since the acquisition of a single bioactivity360

data point can cost several thousand dollars and take several weeks or months [50, 51]. Therefore, methods361

that can learn transferable representations from unlabelled data are highly demanded. Thus, several contrastive362

learning approaches have been recently developed for different tasks in drug discovery. MolCLR [52] uses363

contrastive molecule-to-molecule training by augmenting molecular graphs. Stärk et al. [53] contrastively learn364

3D and 2D molecule representations to inform the learned molecule encoder with 3D information. Lee et al. [54]365

and Seidl et al. [55] use contrastive learning for molecules and chemical reactions, and Vall et al. [56] utilizes366

text representations of wet-lab procedures to enable zero-shot predictions. However, none of these methods367

have exploited the wealth of information contained in microscopy images of molecule-perturbed cells [29] and368

demonstrated strong transferability of the learned molecule encoders.369

Image-based profiling of small molecules has strongly improved the drug discovery process.370

Characterizing a small molecule by the phenotypic changes it induces to a cell, is considered promising for371

accelerating drug discovery [4, 29, 57, 58]. The advantages of this biotechnology are that it is time- and372

cost-effective as compared to standard activity measurements. Measuring the effects of a molecule on a biological373

system early in the drug discovery process might be useful to improve clinical success rates [59]. Particularly,374

microscopy image-based proőles of small molecules have been suggested to be effective together with deep learning375

methods [58]. However, the current efforts are still in standard supervised learning settings based on extracted376

features [4] or deep architectures [3]. The amount of labeled images is in the range of few tens of thousands,377

although international efforts are currently building datasets which are magnitudes larger [60]. Instead of the378

currently used activity measurements as labels [3, 4], we propose a self-supervised contrastive learning strategy379

of image- and structure-based molecule encoders: Contrastive Leave One Out boost for Molecule Encoders380

(CLOOME). CLOOME extends recent successful contrastive learning methods to the őelds of biological imaging381

and drug discovery. Our approach intends to overcome the limited transferability of current molecule encoders382

[61, 62].383
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A.4 Discussion and conclusion384

We have introduced a contrastive learning method for learning representations of microscopy images and chemical385

structures. On the largest available dataset of this type, we demonstrate that CLOOME is able to learn386

transferable representations. This opens the possibility to re-use the learned representations for activity or387

property prediction and for other tasks, such as retrieval tasks from microscopy image or chemical databases.388

Limitations. Our method currently has several limitations. Our trained networks are restricted to a particular389

type of microscopy images, which are acquired with the Cell Painting protocol [29]. This protocol has been390

published and currently there are community efforts [60] to increase the amount of available data. Large and391

more diverse datasets of molecule-perturbed cells or internal pharmaceutical company datasets will likely improve392

the learned representations, both image and structure encoder [63]. Due to the computational complexity, the393

hyperparameter and architecture space is currently under-explored such that we expect our method to further394

improve with better hyperparameters or encoder architectures. Furthermore, it has not escaped our notice395

that the learned structure encoder can also be used for transfer learning on molecular activities and properties.396

Also, it is worth noting that, although linear probing has been extensively used for the purpose of evaluating397

the quality of representations [1, 2], if the latter are very high dimensional, this method presents the risk of398

overőtting [37]. Having addressed these limitations, we nevertheless believe that the representations obtained399

with CLOOME could be highly useful for both the community using bioimaging as well as for drug discovery.400

A.5 Notation overview401

Deőnition Symbol/Notation Dimension

molecule-perturbed microscopy image x image dimension, e.g. 320× 320× 5
chemical structure of molecule z symbolic, e.g. graph
image embedding x d
structure embedding z d
stacked image embeddings X d×N
stacked structure embeddings Z d×N
stored image embeddings U d×N
stored structure embeddings V d×N
image-retrieved image embedding Uxi

d
structure-retrieved image embedding Uzi

d
image-retrieved structure embedding Vxi

d
structure-retrieved structure embedding Vzi

d
microscopy image encoder h

x(.) R
320×320×5 → d

molecule structure encoder h
z(.) M → d

temperature parameter of the loss functions τ
scaling parameter of Hopőeld net β
embedding dimension d
batch or dataset size N
chemical space M
indices i, j, n

Table 6: Symbols and notations used in this paper.

A.6 Hyperparameter search space402
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Hyperparameter Explored space

Learning

Optimizer {AdamW}
Learning rate {0.0005, 0.001, 0.005}
Scheduler {Cosine annealing with restarts}
Weight decay {0.1}
Batch size {256, 512}
Warm-up iterations {10000, 20000}
Inverse temperature {30}

Image encoder
Image resolution {320, 520}
Model {ResNet50}

Structure
encoder

Number of layers {4}
Layer dimension {1024}
Activation {ReLU}
Batch normalization {False, True}

Hopőeld layers β {8, 14.3, 22}

Embedding space Number of dimensions {512}

Table 7: Considered hyperparameter space of CLOOME models. The selected conőgurations for downstream
activity prediction based on manual search on validation set shown in bold.
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