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Abstract

Automated cell-type annotation using a well-annotated single-cell RNA-sequencing (scRNA-seq) reference relies on the
diversity of cell types in the reference. However, for technical and biological reasons, new query data of interest may
contain unseen cell types that are missing from the reference. When annotating new query data, identifying unseen cell
types is fundamental not only to improve annotation accuracy but also to new biological discoveries. Here, we propose
mtANN (multiple-reference-based scRNA-seq data annotation), a new method to automatically annotate query data
while accurately identifying unseen cell types with the help of multiple references. Key innovations of mtANN include the
integration of deep learning and ensemble learning to improve prediction accuracy, and the introduction of a new metric
defined from three complementary aspects to identify unseen cell types. We demonstrate the advantages of mtANN over
state-of-the-art methods for cell-type annotation and unseen cell-type identification on two benchmark dataset collections,
as well as its predictive power on a collection of COVID-19 datasets.
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Introduction

Single-cell RNA sequencing (scRNA-seq) techniques outline

the expression profile of a sample in single-cell resolution.

Their recent advances have stimulated efforts to identify and

characterize the cellular composition of tissues, revolutionizing

the understanding of the heterogeneity of complex tissues.

With the various sequencing technologies, like 10x Genomics

Chromium, Drop-seq, and Smart-seq2, having emerged,

understanding the complex tissues has turned into a problem

of cell-type annotation for new sequencing data [1].

There are two typical solutions for the cell-type annotation

tasks. One of the solutions is to unsupervised cluster cells into

groups based on the similarity of their gene expression profiles,

and annotate cell populations by assigning labels to each cluster

according to cluster-specific marker genes [2, 3]. However, the

appropriate marker genes selection needs to conduct extensive

literature reviews and manually test various combinations of

marker genes, which is not only time-consuming but also

unrepeatable across different experiments within and across

research groups [4]. Another strategy annotates new scRNA-

seq data with well-annotated data as a reference atlas [5, 6, 7].

These methods make predictions on query datasets by training

classifiers on the reference atlas [8, 9, 10], or transfer cell

type labels based on the similarity between the reference atlas

and query dataset [11, 12]. The reference-based methods can

alleviate the problems involved with clustering-based methods.

However, previous reference-based methods barely consider the

new issue that the query data may contain cell types not

included in the reference.

In reality, limited by various technical and biological factors,

it is often difficult to collect all cell types in the reference that
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may be present in the query data. For example, in scRNA-seq,

cells that are not easily dissociated in certain tissues are easily

lost, and some sensitive cells may be impaired by excessive

dissociation [13]. These issues can be prevented in single-

nucleus RNA sequencing (snRNA-seq) because snRNA-seq only

requires the isolation of single nuclei [14]. When the reference

is from scRNA-seq, there may be unseen cell types in the query

data from snRNA-seq. Another example is that the reference

is from healthy samples (e.g., the Human Cell Atlas Project

[15]), but we need to annotate query data from disease (e.g.,

tumor) samples. In this context, identifying unseen cell types in

query data may lead to new biological discoveries. Therefore,

reference-based methods need to simultaneously consider two

key factors: (i) accurately distinguishing cells belonging to

unseen cell types from cells belonging to known cell types; (ii)

annotating cells belonging to known cell types with the correct

type.

In order to handle the above two tasks, we propose mtANN

(multiple-reference-based scRNA-seq data annotation), a

novel method that automatically identifies unseen cell types

while accurately annotating query datasets by integrating

multiple well-annotated scRNA-seq datasets as references. The

main idea of mtANN is first to learn multiple deep classification

models from multiple reference datasets, and the multiple

prediction results are used to calculate the metric for unseen

cell-type identification and to vote for the final annotation.

mtANN has the following characteristics: (i) it integrates

multiple reference datasets to enrich cell types in the reference

atlas to alleviate the unseen cell-type problem; (ii) it combines

the ideas of deep learning and ensemble learning to improve

prediction accuracy; (iii) it proposes a new metric from three

complementary aspects to measure whether a cell belongs

to an unseen cell-type; and (iv) it introduces a new data-

driven approach to automatically determining the threshold for

unseen cell-type identification. We benchmark mtANN using

two collections of benchmark datasets, each from different

tissues, sequencing technologies, and containing different cell

types. We prepare a total of 75 benchmark tests, including

annotations across different technologies when different cell

types are the unseen cell types. We also use a COVID-19 dataset

and prepare a total of 249 tests to assess the performance

of mtANN. Experimental results demonstrate that mtANN

outperforms state-of-the-art methods in both unseen cell-type

identification and cell-type annotation.

Methods

Notations and problem statement

For convenience, we first introduce some notations (Supplemen-

tary Table S1). We assume that M well-labeled reference

datasets with the same tissue type as the query dataset are

collected. Let
{(
Xr,i, Y r,i

)}M
i=1

denote the references, where

Xr,i is an nr,i × pr,i matrix that denotes the gene expression

matrix after library size normalization of the i-th reference

dataset with rows representing cells and columns representing

genes, and Y r,i denotes the corresponding cell type labels.

The number of cells and genes of the i-th reference dataset

are denoted by nr,i and pr,i separately. Let Kr,i denote the

set of cell types observed in Y r,i and mr,i = |Kr,i| denote

the cardinality of Kr,i, i.e., the number of cell types observed

in Y r,i. Let K = union
({
Kr,i

}M
i=1

)
denote all cell types

present in all reference datasets. Let Xq be an nq × pq matrix

that denotes the gene expression matrix after library size

normalization of the query dataset. The number of cells and

genes of the query dataset are denoted by nq and pq separately.

Let Y q denote the corresponding cell type labels which is

unknown. Let 1[·] denote the indicative function, i.e., 1[·] = 1

when [·] is true, otherwise, it is equal to 0. Let ‖·‖F denote the

Frobenius norm of a matrix.

In this study, we focus on annotating cells in a new query

dataset with multiple well-labeled references. Mathematically,

our goal is to estimate Y q based on observed data,{(
Xr,i, Y r,i

)}M
i=1

and Xq. Note that the cell type labels of

these reference datasets should be provided with consistent

terminology. In addition, although multiple reference datasets

are integrated, there may still be cell types in the query dataset

that are not observed in any reference dataset. We call such

cell types “unseen cell types”. It is necessary to identify cells

belonging to unseen cell types to avoid misclassification. To

achieve our goal, we propose a novel multiple-reference-based

scRNA-seq data annotation method (Figure 1, Supplementary

section 1). Our method consists of four steps. First, we adopt

eight gene selection methods to generate a series of subsets

that retain distinct genes for each reference dataset. This step

facilitates the detection of biologically important genes and

increases data diversity for effective ensemble learning. Second,

we train a series of neural network-based deep classification

models based on all subsets of all reference datasets. Third,

we annotate the query dataset through integrating the results

output by all base classification models. Finally, we identify

cells that may belong to unseen cell types and mark them as

“unassigned”.

Gene selection

For each reference dataset
(
Xr,i, Y r,i

)
, we adopt eight gene

selection methods to pick genes from different perspectives,

including Limma, Bartlett’s test, Kolmogorov-Smirnov test,

Chi-squared test, Bimodality index, Gini index, Dispersion

and Variance-stabilizing transformation. Details can be found

in Supplementary section 2. We index these gene selection

methods using j = 1, . . . , 8. Let Gr,ij denote the genes selected

by the j-th gene selection method for the i-th reference dataset

and Gq denote all genes in the query dataset. Based on the j-th

gene selection method, we construct the j-th subset of Xr,i and

the corresponding (i, j)-th subset of Xq as follows:

X
r,ij

= X
r,i

[:, G
r,ij ∩Gq

], X
q,ij

= X
q
[:, G

r,ij ∩Gq
]. (1)

After obtainingXr,ij andXq,ij , logarithmic transformation,

z-score standardization, and Min-Max scaling are applied

to preprocess them. For convenience, we still denote the

preprocessed results by Xr,ij and Xq,ij . Based on Xr,ij , Y r,i

and Xq,ij , we construct a dataset pair
(
Xr,ij , Y r,i, Xq,ij

)
, as

the training set for the next step to train a base classification

model.

Deep classification model training

Based on each dataset pair
(
Xr,ij , Y r,i, Xq,ij

)
, we train a

classification model based on deep learning. The classification

model involves two components: the embedding component for

extracting cell type-related features and the linear classifier

layer for distinguishing cell types. Let Eij and Cij denote

the embedding component and the linear classifier layer

separately. We take the reference subset as input, and

the forward propagation result of the classification model

after softmax transformation can be defined as P̂ r,ij =
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Fig. 1. Overview of mtANN. (A) The training process of mtANN using multiple datasets as reference datasets. The labeled data i is used as an

example. Eight gene selection methods are applied on data i, obtaining multiple reference subsets. The gene sets selected by the eight gene selection

methods intersect with all the genes in the query dataset, determining the input genes of multiple deep classification models. We conduct the same

steps for every labeled data, thus getting multiple deep classification models. (B) The testing process of mtANN on the query dataset. The multiple

deep classification models obtained on each reference subset make predictions on the query dataset. We perform majority voting and unseen cell type

identification to obtain the final prediction result. (C) Unseen cell identification process. Cell i is used as an example. The unseen cell type identification

metric is defined by averaging three entropy indexes which are calculated from the prediction probability of multiple base classification models and vote

probability. The Gaussian mixture model is applied to the metric to select the threshold.

softmax
(
Cij

(
Eij

(
Xr,ij

)))
, where P̂ r,ij is an nr,i × mr,i

matrix and the (c, k)-th element of P̂ r,ij can be regarded as the

predicted probability of cell c in the reference subset belonging

to cell type k. The cross-entropy loss is used to train the

classification model, and the loss function can be formulated

as

Lce = −
1

nr,i

nr,i∑
c=1

∑
k∈Kr,i

1[k=Y r,i
c

] log P̂
r,ij
ck . (2)

In order to enable the embedding component Eij to

fully capture the characteristics of cells and make the

classification model better fit the query dataset, we employ
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the embedding component as an encoder and use a mirror

image of the embedding component as a decoder to construct

an autoencoder [16, 17]. The reconstruction loss of cells both

from the reference subset and the query subset is taken

into consideration when training the classification model. Let

Dij denote the decoder component. The forward propagation

results of the autoencoder can be defined as X̂r,ij =

Dij
(
Eij

(
Xr,ij

))
and X̂q,ij = Dij

(
Eij

(
Xq,ij

))
, where X̂r,ij

and X̂q,ij denote the reconstruction of Xr,ij and Xq,ij

separately. The reconstruction loss is measured by the mean

squared error, and the loss function can be formulated as

Lre =
1

nr,ipij

∥∥∥X̂r,ij −Xr,ij
∥∥∥2
F

+
1

nqpij

∥∥∥X̂q,ij −Xq,ij
∥∥∥2
F
,

(3)

where pij represents the number of genes in this dataset pair.

Therefore, the final optimization problem for training the

classification model for dataset pair
(
Xr,ij , Y r,i, Xq,ij

)
can be

written as

min
Eij,Dij,Cij

Lce + λLre, (4)

where λ is the tuning parameter and the default value is 1.

Details of the neural network architecture, hyperparameter

settings, and initialization can be found in Supplementary

section 3. Let
{(
Êij , Ĉij

)}
i=1,...,M,j=1,...,8

denote all trained

base classification models.

Query dataset annotation

Based on one base classification model
(
Êij , Ĉij

)
, we

take the corresponding query subset Xq,ij as input.

The forward propagation result along the model after

softmax transformation can be formulated as P̂ q,ij =

softmax
(
Ĉij

(
Êij

(
Xq,ij

)))
. The (c, k)-th element of P̂ q,ij

can be regarded as the predicted probability of cell c in the

query dataset belonging to cell type k. For each cell in the

query dataset, we assign the cell type label with the highest

probability to it according to P̂ q,ij . Let Ŷ q,ij and P̃ q,ij denote

the predicted specific cell type labels and the corresponding

probabilities, separately. For cell c,

Ŷ
q,ij
c = arg max

k∈Kr,i

P̂
q,ij
ck , P̃

q,ij
c = max

k∈Kr,i
P̂

q,ij
ck . (5)

Based on all base classification models
{(
Êij , Ĉij

)}
, we

obtain a series of predictions
{(
Ŷ q,ij , P̃ q,ij

)}
of the query

dataset. Then, we integrate all these predictions for consensus

annotation, denoted by Ŷ q. For cell c, we calculate

Ŷ
q
c = arg max

k∈K

∑M
i=1

∑8
j=1 1[k=Ŷ q,ij

c
]∑M

i=1

∑8
j=1 1[k∈Kr,i]

, (6)

where the numerator represents the number of times that cell

c is predicted to belong to cell type k across all predictions

and the denominator represents the number of dataset pairs

containing cell type k. The role of the denominator is to handle

the situation where a cell is predicted to belong to a cell type

only a small number of times, even if the cell does belong to that

cell type since the cell type is only present in part of the dataset

pairs. In addition, if the maximum value corresponds to more

than one cell type, we determine the final label according to

the maximum sum of their corresponding probabilities obtained

from
{
P̃ q,ij

}
.

Uncertain cell identification

Since there is no training data in the reference datasets for

the unseen cell types, the predictions for the cells belonging

to these cell types can be more uncertain. The uncertainty

can be detected from two perspectives based on all predicted

results of the classification models, including the intra-model

perspective and inter-model perspective. For the former, no one

cell type dominates the probability when making predictions

based on a single classification model. For the latter, there is a

large inconsistency among the predictions obtained by different

classification models. Therefore, we design three entropy-based

measures, denoted by m(1), m(2) and m(3), to quantitatively

characterize the uncertainty, where m(1) is from the intra-

model perspective, and m(2) and m(3) are from the inter-model

perspective.

The first measure m(1) characterizes uncertainty from the

intra-model perspective by calculating the entropy of the

probabilities of belonging to different cell types within each

classification model and then averaging all entropy values

for each cell. Higher entropy indicates higher uncertainty in

prediction. For cell c,

m
(1)
c =

1

8M

∑
i,j

H
(
P̂

q,ij
c

)
, (7)

where H(·) represents entropy and is defined as H
(
P̂ q,ij

c

)
=

−
∑

k∈Kr,i P̂
q,ij
ck log2

(
P̂ q,ij

ck

)
.

The second measure m(2) characterizes uncertainty from the

inter-model perspective by first integrating the probabilities of

all classification models and then calculating the entropy. Let

Q(2) be an nq × K matrix that denotes the integrated result.

The (c, k)-th element of Q(2) is defined as

Q
(2)
ck =

∑
i,j 1[k∈Kr,i]P̂

q,ij
ck∑

i,j 1[k∈Kr,i]

. (8)

The value of Q
(2)
ck represents the average of the predicted

probabilities that cell c is assigned to cell type k across

all classification models. Then, Q(2) is transformed into a

probability matrix Q̃(2) by dividing each value by the row sum.

If the predictions of different classification models for cell c are

inconsistent, no one cell type dominates the probability in Q̃(2)
c .

m(2) is the entropy of each cell calculated on the basis of the

probability matrix to characterize the inconsistency. For cell c,

m
(2)
c = H

(
Q̃

(2)
c

)
. (9)

The larger m(2)
c is, the more inconsistent the predictions are,

and thus the more uncertain the prediction of cell c is.

The third measure m(3) is similar to m(2). The difference

is that it integrates the predicted specific cell type labels of all

classification models, just as it does when estimating Ŷ q. Let

Q(3) be an nq × K matrix that denotes the integrated result

for this measure. The (c, k)-th element of Q(3) is defined as

Q
(3)
ck =

∑
i,j 1[k=Ŷ q,ij

c
]∑

i,j 1[k∈Kr,i]

. (10)

Then, as before, we transform Q(3) into a probability matrix

Q̃(3). If the predicted specific cell type labels for cell c are

inconsistent, no one cell type dominates the probability in Q̃(3)
c
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as in Q̃(2)
c . We calculate the entropy to get m(3), i.e., for cell c,

m
(3)
c = H

(
Q̃

(3)
c

)
. (11)

After obtaining m(1), m(2) and m(3), the values are scaled

to [0, 1] linearly through Min-Max scaling within each measure,

and the results are denoted by m̄(1), m̄(2) and m̄(3) separately.

The ensemble uncertainty measure m is defined as the mean of

these three measures for each cell, i.e., for cell c,

mc =
m̄(1)

c + m̄(2)
c + m̄(3)

c

3
. (12)

A larger value of mc indicates a higher probability that cell

c belongs to an unseen cell type. However, how determining

the threshold to distinguish cells belonging to unseen cell types

from all cells remains challenging. To this end, we provide a

new method for automatically recognizing the cells with higher

uncertainty than others. The identification method is based on

Gaussian mixture models, which can be written as

p(m) =
S∑

s=1

πsN(µs, σ
2
s), (13)

where µs, σ2
s represent the mean and variance of the s-th

component and πs is the weight of the s-th component. We

determine the number of mixture components S by trying

different numbers from 1 to 5 and selecting the number

according to the Akaike information criterion (AIC). If the most

suitable value of S determined by AIC is 1, we consider that

there is no cell belonging to unseen cell types. Otherwise, all the

cells are divided into different groups according to the ensemble

uncertainty measure m through the Gaussian mixture model,

and then the uncertain groups are distinguished based on the

mean of the ensemble uncertainty of cells within each group. If

there are groups with a mean greater than or equal to 0.6, these

groups are considered to be uncertain groups. Otherwise, the

group with the largest mean is considered to be the uncertain

group. All the cells in the uncertain groups are annotated as

“unassigned”.

Experiments and results

Benchmark mtANN for unseen cell-type identification

To demonstrate the ability of mtANN in identifying unseen

cell types, we use two collections of datasets from two tissues:

peripheral blood mononuclear cells (PBMCs) collection [18]

and pancreas collection [19, 20, 21, 22] (Supplementary section

4 and Supplementary Tables S3-4). In each collection, each

dataset is used as a query dataset alternatively and the

remaining datasets are reference datasets. We remove one cell

type shared by all the reference datasets and the query dataset

for one test experiment (for details, please see Supplementary

Figure S1, Tables S5-S6). We compare mtANN with existing

popular methods, including scmap-clust, scmap-cell, Seurat

v3, ItClust, scGCN (entropy), scGCN (enrichment), and

scANVI (Supplementary section 5) in terms of the auprc scores

(Supplementary section 6).

The results are presented in Figure 2 and Supplementary

Figure S2. The boxplots show that mtANN is superior to the

competing methods on all the datasets in PBMCs collection

(Figure 2A). mtANN exceeds the competing methods when

“Baron human”, “Segerstolpe” and “Xin” are used as the

query datasets in pancreas collection (Supplementary Figure

S2A). We also count the number of times each method ranks

first in auprc scores across all tests, and we find that the

number of mtANN ranking first is much higher than the

competing methods in both PBMCs and pancreas collections

(Supplymentary Figures S2B-C).

To further investigate which unseen cell type is better

identified, we compare the auprc scores when each cell type

is missing from references on PBMCs collection. mtANN

outperforms all the competing methods when B cell, CD14+

monocyte, Megakaryocyte, CD4+ T cell, and Plasmacytoid

dendritic cell are treated as unseen cell types in the query

data (Supplementary Figure S3). When the unseen cell type

is similar to a known cell type, it is difficult to identify cells

belonging to the truly unseen cell type as “unassigned”. For

example, when we remove B cells in all the references, the

competing methods confuse unseen cell types and shared cell

types while mtANN can clearly distinguish these two types of

cells (Figure 2B and Supplementary Figure S4). We also remove

CD14+ monocyte and Megakaryocyte from all the references,

and the distribution of metrics calculated from mtANN also

validates its superiority (Supplementary Figures S5-S6).

To validate the performance of the threshold selection,

mtANN is compared with Seurat v3, scmap-clust, and scmap-

cell in terms of F1 score (Supplementary section 6). The results

are displayed in Figure 3 and Supplementary Figure S7. The

barplots represent that mtANN achieves the best performance

when “Celseq”, “inDrop”, “Smart-seq2”, “10X v2”, and “10X

v3” are used as the query datasets (Figure 3A), and mtANN

outperforms other methods when “Baron human” and “Xin”

datasets are the query datasets (Supplementary Figure S7).

We also find that the number of mtANN ranking first has large

margins than other methods in PBMCs and pancreas collections

(Figures 3B-C). These results demonstrate that, compared to

scmap using a fixed threshold, and Seurat v3 selecting the 20-th

percentile of scores as the threshold (the proportion of unseen

cell types is substantially fixed), the data-driven approach

proposed by mtANN is more flexible in choosing an appropriate

threshold.

Benchmark mtANN for cell-type annotation when there are

unseen cell types in the query dataset

To evaluate the performance of mtANN to annotate unlabeled

sequencing data when there are unseen cell types, we also

use the PBMCs and pancreas collections. Based on previous

benchmarks, We compared the accuracy of mtANN with other

methods on the entire dataset (Supplementary section 6). As

threshold selection will affect the entire annotation accuracy

of the query dataset, we conduct two ways to determine the

thresholds: the actual proportion of unseen cells and the default

threshold provided by each method.

When using the actual proportion of unseen cell types in

the query dataset as the threshold to assign unseen cells, the

performances of mtANN and other methods are presented in

Figure 4 and Supplementary Figure S8. In Figure 4A, we find

that mtANN outperforms other methods in all the datasets

from PBMCs collection, and mtANN has the best performance

when “Baron human”, “Segerstolpe” and ”Xin” in the pancreas

collection are used as the query datasets (Supplementary Figure

S8A). We count the number of times each method ranks first in

accuracy across all tests, and the results show that the number

of ranking first of mtANN is much higher than other methods
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Fig. 2. Performances of mtANN and other compared methods in identifying unseen cell types. (A) Boxplots of the auprc scores of different methods

on the PBMCs collection. The results with different query datasets are displayed in different panels. (B) The distributions of mtANN’s metric of

uncertainty and the score of Seurat v3. The test when “10X v3” is the query dataset and the B cell is the unseen cell type is taken as an example.

The color of the histogram distinguishes unseen cell types from shared cell types. The black dotted line represents the subpopulations of the Gaussian

mixture model fitted by mtANN. The red solid line represents the default threshold selected by each method. Cells with a metric greater than the

threshold are identified as “unassigned” in mtANN and cells with a score less than the threshold are identified as “unassigned” in Seurat v3.

in PBMCs and pancreas collections (Supplementary Figures

S8B-C).

To further illustrate the specific annotation of each

cell type when there are unseen cell types, we use the

heatmap of the confusion matrix between the real cell type

labels and the predicted cell type labels. We obtain the

hierarchical relationship of cell types by performing hierarchical

clustering on the average expression profiles of the cell types

(Supplementary Figure S9). As an example, we remove the B

cells from all the reference datasets and use mtANN and other

methods to annotate the query dataset. The confusion matrices

of mtANN and other methods are shown in Figure 4B. From

the heatmaps, we can find that mtANN identifies most B cells

as “unassigned” while all the other compared methods annotate

most B cells as similar cell types (CD4+ T cell). For shared cell-

type annotation, mtANN is better at distinguishing two similar

cell types in the query dataset (such as CD14+ monocyte

and CD16+ monocyte, CD4+ T cell and Cytotoxic T cell),

while scmap-clust, scmap-cell, and, ItClust annotate a part of

Cytotoxic T cells as CD4+ T cell, and Seurat v3 annotates most

CD16+ monocyte cells as CD14+ monocyte. We also remove

CD14+ monocyte cells from all reference datasets and find that

mtANN identifies most CD14+ monocyte as “unassigned” while

scmap-clust, scmap-cell, and, Seurat v3 identify most CD14+

monocyte cells as CD16+ monocyte (Supplementary Figure

S10). This illustrates that mtANN can better distinguish two

types of cells with small biological differences when an unseen

cell type is present.

In reality, we cannot know the actual proportion of unseen

cell types, so the default threshold provided by each method is

more practical and essential. When using the default method

to select threshold, the prediction accuracy of mtANN, scmap-

clust, scmap-cell, and, Seurat v3 in all the tests are exhibited

in Supplementary Figure S11. We can see that the accuracy of

mtANN is higher than those of the compared methods when

“Celseq”, “Drops”, “inDrop”, “Smart-seq2”, “10X v2”, and

“10X v3” are evaluated as the query datasets (Supplementary

Figure S11A). Supplementary Figure S11B shows that mtANN

also has the best performance when “Baron human” and “Xin”

are used as the query datasets. We find that mtANN has the

best performance in almost all tests (Supplementary Figures

S11C-D) when we count the number of times each method

ranks first in accuracy across all tests. In particular, the

result of mtANN under the default threshold is similar to the

result under the actual proportion (Supplementary Figures S12-

S13), which shows that the threshold selected by mtANN is

comparable to the actual proportion of unseen cells.

Cell-type annotation of COVID-19 patients with different

symptoms

Coronavirus disease 2019 (COVID-19) has caused more than

536 million infections and more than 6.3 million deaths,

according to World Health Organization (WHO) statistics as

of June 19, 2022. It is thus important to annotate the cell

type of the sequencing data from patients for understanding the

disease mechanism. With many scRNA-seq data from COVID-

19 patients available, we select the study of COVID-19 [23]

which offers a comprehensive immune landscape, including 284

samples from 196 COVID-19 patients and controls to assess the
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Fig. 3. The performance of each method for identifying unseen cell types under the default threshold. (A) Boxplots of the F1 scores of different

methods on the PBMCs collection. The results with different query datasets are displayed in different panels. (B) and (C) Barplots of the statistics of

the number of times that the F1 score ranks first for each method in all tests on the PBMCs (B) and pancreas (C) collections. The x-axis represents

the method, and the y-axis represents the counts.

performance of mtANN on real data. We use the dataset from

PBMC cells in the COVID-19 dataset as the query datasets

and the PBMCs collection we used above as reference [18] to

evaluate the performance of mtANN and other methods.

We group the cells according to samples’ id, resulting

in 249 query datasets. mtANN is compared with scmap-

clust, scmap-cell and, Seurat v3 under the default threshold

parameters of identifying unseen cells. The accuracies of

mtANN and other methods on the 249 query datasets are

presented in Figure 5A. It can be seen that the prediction

accuracy of mtANN for patients with different symptoms is

higher than other methods, and scmap-cell suffers a decrease.

We further conduct a one-to-one comparison and find that

mtANN significantly (two-sided paired Wilcoxon test, p-value

< 0.01) outperforms the compared methods (Figure 5B). We

compare the composition of cell types between patients with

different symptoms and find that the proportion of B cells

increases in patients with severe symptoms, and the percentage

of dendritic cells and T cells decreases, particularly in patients

with severe symptoms (Figure 5C), which is consistent with the

lymphopenia phenomenon previously reported [24]. We get the

conclusion that the percentage of megakaryocyte and CD14+

monocyte elevates in patients with severe symptoms, which is

also the same phenomenon as observed in the original datasets

[23].

Discussion

With the development of single-cell sequencing technology,

traditional unsupervised clustering-based cell-type annotation

methods are difficult to adapt to rapidly generated datasets

since they are time-consuming [25, 26]. Another method for

automatic cell-type annotation based on a reference atlas has

been widely studied, but these methods are barely able to

discover unseen cell types [27]. The identification of an unseen

cell type may lead to new biological discoveries, while the

erroneous identification may lead to missing new biological

discoveries or lead improper biological conclusions. Only some

of the previous methods for automatically annotating cell types

address the problem of identifying unseen cell types [11, 12],

and all of them only set a default threshold instead of proposing

a methodology to automatically select a threshold. The choice

of threshold determines the exactitude and useability of the

method.

In this study, we propose a novel ensemble learning-based

cell-type annotation method, mtANN, to annotate cell type

labels for a query dataset automatically. Firstly, mtANN

integrates datasets containing different cell types, enriching

the cell types of the reference atlas to reduce the presence

of unseen cell types in the query dataset. Secondly, mtANN

proposes a metric to efficiently discriminate unseen cell types

in query datasets. Finally, mtANN provides a data-driven

methodology to adaptively select thresholds, enabling mtANN

to automatically identify unseen cell types and simultaneously

annotate shared cell types. Recently, several methods have

emerged that integrate multiple reference datasets to annotate

query datasets [28, 29], but they do not focus on the presence

of unseen cell types. Our comprehensive benchmark and

application on an extensive set of publicly available benchmark

datasets indicate that mtANN has achieved state-of-the-art

performance for unseen cell-type identification and cell-type

annotation in the meantime.

There may be two challenges in integrating multiple

reference datasets that we have not considered in this work.

The first one is the inconsistent terminology of cell types across

different reference datasets. In this work, we avoid this problem

by collecting reference datasets with as consistent terminology

as possible. However, if we want to integrate more datasets,

this problem will be inevitable. Several approaches can be

attempted in the future to match cell types between datasets,

such as matching based on marker genes of cell types or

matching by mutual prediction between datasets [30]. Another

more challenging problem is that the annotation resolutions of

the reference datasets may be inconsistent [31]. Two directions

can be taken into consideration in the future. On the one

hand, based on the existing labels of the reference datasets, we
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Fig. 4. Performances of mtANN and other compared methods in cell-type annotation when using the actual proportion of unseen cells as thresholds

to identify unseen cells. (A) Boxplots of the accuracies of different methods on the PBMCs collection. The results with different query datasets are

displayed in different panels. (B) Heatmaps of the confusion matrices of mtANN and other methods when B cells in the query dataset are the real

unseen cell type. In a confusion matrix, the row and column names correspond to the true cell labels and the predicted cell labels of the query dataset,

while the element represents the proportion of cells belonging to one cell type that is predicted to be of other cell types. Note that NK cell and pDC

are abbreviations for the Natural killer cell and the Plasmacytoid dendritic cell.

can further subcluster these datasets separately to a uniform

resolution level. On the other hand, incorporating hierarchical

relationships among cell types which can be constructed

according to some prior knowledge (e.g., Cell Ontology [32])

into the development of cell-type annotation methods can not

only help to improve the validity of a method but also provide

clues for exploring the identities of the uncertain cells [7, 33].

So far, we have marked the cells that are considered to

belong to unseen cell types as “unassigned”. One limitation

of our method is that we do not provide a further biological

interpretation of these cells. A straightforward way to explore

the identities of these cells is to use unsupervised annotation

methods. In addition, as mentioned earlier, integrating Cell

Ontology into the method may enable automatic annotation of

“unassigned” cells, such as assigning them to supertypes of an

observed cell type [34]. In the future, we will extend our method

to implement this functionality.

Supplementary data and code

Supplementary data is available online. The source code is

available at https://github.com/Zhangxf-ccnu/mtANN.
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Fig. 5. Performances of mtANN and other compared methods in cell-type annotation on the COVID-19 dataset. (A) Boxplots of the accuracies of

different methods on samples in different symptoms. (B) One-to-one comparison between mtANN and scmap-clust, scmap-cell and Seurat v3. Each

point represents a query dataset. P-values of two-sided paired Wilcoxon signed-rank tests used to test the performance difference are reported. (C)

Boxplots of the compositions of B cells, T cells, dendritic cells, megakaryocyte cells and, CD14+ monocyte between samples with different symptoms.

The significance of the two-sided T-test is represented by stars where one star, two stars and, three stars mean the corresponding p-value less than 0.05,

0.01 and, 0.001, respectively and ns means the corresponding p-value greater than 0.05.

Key Points

• Supervised cell-type annotation relies on the diversity of

cell types in the reference. For technical and biological

reasons, new query data of interest may contain unseen

cell types that are missing from the reference. Identifying

unseen cell types is critical for new biological discoveries.

• We propose a new method to automatically annotate

query data while accurately identifying unseen cell types.

It improves predictive power by combining the ideas of

deep learning and ensemble learning. It also introduces

a new metric to measure whether a cell belongs to an

unseen cell type and a new data-driven approach to

automatically determining the corresponding threshold.

• Using two collections of datasets, we conduct a total

of 75 benchmark experiments to show that our method

outperforms state-of-the-art methods in both unseen

cell-type identification and cell-type annotation. We also

demonstrate the predictive power of mtANN on a total

of 249 tests using a COVID-19 dataset.

• A Python package mtANN is developed to implement

our proposed cell-type annotation procedure.
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