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Abstract
The never-ending emergence of SARS-CoV-2 variations of concern (VOCs) has challenged the whole world for
pandemic control. In order to develop effective drugs and vaccines, one needs to efficiently simulate SARS-CoV-2
spike receptor binding domain (RBD) mutations and identify high-risk variants. We pretrain a large protein language
model with approximately 408 million protein sequences and construct a high-throughput screening for the prediction
of binding affinity and antibody escape. As the first work on SARS-CoV-2 RBD mutation simulation, we successfully
identify mutations in the RBD regions of 5 VOCs and can screen millions of potential variants in seconds. Our workflow
scales to 4096 NPUs with 96.5% scalability and 493.9× speedup in mixed precision computing, while achieving a peak
performance of 366.8 PFLOPS (reaching 34.9% theoretical peak) on Pengcheng Cloudbrain-II. Our method paves
the way for simulating coronavirus evolution in order to prepare for a future pandemic that will inevitably take place.
Our models are released at https://github.com/ZhiweiNiepku/SARS-CoV-2_mutation_simulation
to facilitate future related work.
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Justification

We develop a novel multi-constraint variation prediction
framework to simulate SARS-CoV-2 RBD mutations,
reaching a peak performance of 366.8 PFLOPS with 96.5%
scalability and achieving 493.9× speedup. Our method
facilitates the prediction and prioritization of future high-risk
variants for the early deployment of drugs and vaccines.

Performance attributes

Performance attribute Our submission

Category of achievement time-to-solution, scalability
Type of method used machine learning
Results reported for whole application using and except I/O
Precision reported mixed precision
System scale results measured on full-scale system
Measurement mechanism timers, FLOP count, performance modeling

Overview of the problem

Coronavirus Disease 2019 (COVID-19) has spread rapidly
to more than 200 countries or regions since December 2019.
Due to its high infectivity, there have been over 645 million
confirmed cases, including approximately 6.6 million deaths,
reported by the World Health Organization (WHO) as of
December 20221. In addition to being a serious threat to
human health, COVID-19 has had a catastrophic impact on
the global economy.
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The virus that causes the pandemic is the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) (Figure
1a), which belongs to the genus Betacoronavirus and has
nearly 80% sequence similarity with the severe acute
respiratory syndrome coronavirus (SARS-CoV) (Lamers
and Haagmans 2022; Coronaviridae Study Group of the
International Committee on Taxonomy of Viruses 2020;
Zhou et al. 2020).

As the pandemic enters its third year, SARS-CoV-2 has
been creating waves of infections around the world (Figure
1b,c) (Callaway et al. 2022) due to the high mutation rate
of this RNA virus. Which potential SARS-CoV-2 variants
may become the next VOCs? Do we need to develop new
vaccines to deal with new variants? In what direction will the
virus evolve? Shall we just give up as a society and hope that
the virus will finally fade away? These are the inconvenient
questions that every country on this planet must answer.

Before the current pandemic, the best-known Betacoro-
naviruses are SARS-CoV and Middle East respiratory syn-
drome coronavirus (MERS-CoV), which have relatively
more severe clinical symptoms than most coronaviruses,
which can infect humans but cause only mild symptoms (Yin
and Wunderink 2018; Drosten et al. 2003; Zaki et al. 2012;
Su et al. 2016; Lu et al. 2020). In the past two decades, the
viruses mentioned above have led to two epidemics: SARS
(2002) and MERS (2012)(Lu et al. 2020). SARS-CoV-2 can
also infect the human respiratory system, but has a much
higher infection rate than that of SARS-CoV or MERS-CoV
(Walls et al. 2020; Wrapp et al. 2020).

Three sets of proteins, including structural proteins,
nonstructural proteins, and accessory proteins, are encoded
by SARS-CoV-2 (Lamers and Haagmans 2022) (Figure 1a).
There are four main classes of structural proteins, namely,
spike protein (S), nucleocapsid protein (N), membrane
protein (M), and envelope protein (E), which support the
structure of the virus in terms of shape or function (Wu
et al. 2020; Lamers and Haagmans 2022). In particular, in
addition to their high similarity in sequences, SARS-CoV-2
and SARS-CoV have the same mechanism of infecting host
cells, that is, binding to the host entry receptor angiotensin-
converting enzyme 2 (hACE2) (Zhou et al. 2020; Wan et al.
2020; Hoffmann et al. 2020; Li et al. 2003). During infection,
the trimeric S protein is cleaved by host proteases into the
N-terminal S1 subunit and the C-terminal S2 subunit. The
receptor-binding domain (RBD) is an important component
of the S1 subunit (Figure 1a) that is responsible for binding
to hACE2, and is the primary binding target for neutralizing
antibodies (NAbs) (Belouzard et al. 2009; Wrapp et al. 2020;
Lu et al. 2015; Chi et al. 2020). Therefore, the S protein plays
a key role in viral infection and the immune evasion process
(Gallagher and Buchmeier 2001; Simmons et al. 2013).

SARS-CoV-2 continues to mutate with a high mutation
rate (Duffy 2018) and has evolved into five main variants of
concern (VOCs)2 as of May 2022: B.1.1.7 (Alpha), B.1.351
(Beta), P.1 (Gamma), B.1.617.2 (Delta) and B.1.1.529
(Omicron) (Figure 1b,c). These SARS-CoV-2 variants with
novel spike protein mutations have created waves of
infections and reinfections across the globe (Figure 1d). It
is vitally important to identify early (Obermeyer et al. 2022)
or, even better, to predict dangerous viral mutations that

may enhance viral fitness including binding affinity, viral
infectivity, or immunity escape.

The Global Initiative on Sharing All Influenza Data
(GISAID)3 (Shu and McCauley 2017) has recorded more
than 14 million SARS-CoV-2 genomes submitted by
scientists around the world. This large number of genomic
sequences presents an excellent opportunity to study the
spread and evolution of SARS-CoV-2. Computational
methods such as the Gillespie algorithms can be used to
simulate realistic substitution patterns of closely related
genomic large-scale datasets, e.g., simulators targeting gene
trees, ancestral recombination graphs, or phylogenetic trees
(Beiko and Charlebois 2007; Hudson 2002; Laval and
Excoffier 2004; Ewing and Hermisson 2010; Rambaut
and Grass 1997; Fletcher and Yang 2009; Sipos et al.
2011; De Maio et al. 2022; Shchur et al. 2022). Artificial
Intelligence (AI) models can also learn hidden evolution
patterns from the huge number of virus sequences submitted,
prioritizing future potential viral mutations that could
introduce the next VOCs (Chen et al. 2020; Mohamed et al.
2021).

As shown in Figure 1a, the RBD region of the spike
protein is an area of concern because it has a high
mutation rate, which can significantly affect binding to
hACE2, as well as antibodies. In this work, we simulate
RBD mutations by learning, generating, screening, and
fine-tuning based on pretrained protein language models
as shown in Figure 1e. A multi-constrains variation
prediction (MCVP) framework is designed to learn from
millions of RBD sequences and experimental measurements
of binding affinity between single RBD mutations and
hACE2/antibodies. MCVP utilizes active learning based on
a pretrained protein language model. This high performance
computing (HPC) driven work can evaluate RBD mutations
based on protein expression, binding affinity, and antibody
escape to ultimately provide assistance in the fight against
SARS-CoV-2.

Current state of the art

Predictive modeling of SARS-CoV-2 variants
During the pandemic, studies have emerged with a variety
of focuses and models to predict the mutation of SARS-
CoV-2. For example, a renewal-equation-based model was
used to describe the adaptive evolution among multiple
variants of SARS-CoV-2 including R.1, Alpha, and Delta,
and then to predict the dominant variants in Japan before
the start of the Tokyo Olympic Games (Ito et al. 2021).
Furthermore, some work sought to accurately predict
the fitness of SARS-CoV-2 variants, which was used to
characterize how efficiently the virus produces infectious
progeny. A computational model named SpikePro (Pucci
and Rooman 2021) was designed to predict the fitness
of SARS-CoV-2 from the sequence and structure of the
spike protein in order to allow the identification of new
dangerous variants. PyR0 (Obermeyer et al. 2022), a
hierarchical Bayesian multinomial logistic regression model,

Email: binzhou@sdu.edu.cn

Prepared using sagej.cls

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2023. ; https://doi.org/10.1101/2022.11.17.516989doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516989
http://creativecommons.org/licenses/by-nc-nd/4.0/


Smith and Wittkopf 3

Figure 1. Overview of the problem and our solution. (a) The structural diagram of SARS-CoV-2, in which the RBD on the spike
protein is an important region to which hACE2 and the majority of neutralizing antibodies bind. (b) The approximate detection time
and places of the five VOCs (Alpha, Beta, Gamma, Delta, and Omicron). (c) Waves of infections caused by the five VOCs from the
outbreak of COVID-19 to the present. (d) The phylogenetic tree of SARS-CoV-2 VOCs and the comparison of the variation sites of
the five VOCs in the RBD regions. (e) Our methodology for simulating the viral mutation in the RBD. With the support of an HPC
optimization strategy that integrates software and hardware, a protein language model (ProtFound) is efficiently pretrained for the
generation of RBD mutations. With reference to the mutation frequency of each mutation site in the RBD in the real world, ProtFound
can generate billions of RBD variants. These variants are sequentially screened by binding affinity with hACE2, and antibody escape
capability. The screened variants are used to fine-tune the ProtFound generator. The fine-tuned ProtFound model is more likely to
generate viral variants with higher binding affinity to hACE2 and better capability for antibody escape.

was developed to infer relative transmissibility of lineages,
forecast future lineage proportions, and identify mutations
relevant to fitness. Deep Learning (DL) models have
recently been shown to perform well in predicting variant
adaptation. Specifically, a three-dimensional convolutional
neural network (3D CNN) based on spike dinucleotide
composition representation was used to learn the human

adaptation of existing coronaviruses and predict the
adaptation of SARS-CoV-2 VOCs (Li et al. 2022).

Language models have been used to decipher the genetic
sequences of virus. For example, a Transformer-based
discriminative model was trained with SARS-CoV-2 genetic
sequences to predict potential mutations that may lead to
enhanced virus transmissibility (Wu et al. 2021). Language
models have also been applied for protein prediction tasks,
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as common protein motifs and domains can be analogized
to words, phrases, and sentences in human language (Ofer
et al. 2021; Trifonov 2009; Strait and Dewey 1996; Yu
et al. 2019). Motivated by the success of masked language
models such as BERT (Devlin et al. 2018), we design a
pretrained protein language model for comprehensive variant
prediction, aiming to simulate circulating viral mutation
and predict potentially risky variants. In this work, we
pretrain our protein language model on a large-scale set
of protein sequences using a supercomputer with exascale
AI training capabilities and further perform fine-tuning and
multiconstraint screening on RBD sequences of the spike
protein in SARS-CoV-2 to generate possible future variant
branches.

Large-scale language model training
The existing state-of-the-art language models, especially
various BERT variations (Devlin et al. 2018; Yang et al.
2019; Howard and Ruder 2018; Liu et al. 2019; Lan
et al. 2019) with Transformer as the core, have achieved
outstanding performance in many fields. Recently, some
works have emerged with a focus on transferring language
models to large-scale protein representation learning, e.g.,
ESM (Rives et al. 2021) and ProtTrans (Elnaggar et al. 2022),
which were trained on the Summit supercomputer, and
demonstrated that large-scale pretrained language models
can capture latent grammar of protein sequences to a certain
degree (Elnaggar et al. 2022).

Mini-batch stochastic gradient descent has been found to
be very effective for large-scale learning (He et al. 2021).
However, updating the parameters in small batches makes
the optimization unstable (Li et al. 2020). For large-scale
datasets, large-batch training with data parallelism has found
increasing popularity (Liu et al. 2019), as it can improve
data communication and hardware utilization of a model.
However, how to set the best batch size is a complex
optimization problem. Some works (Hoffer et al. 2017;
Keskar et al. 2016; Goyal et al. 2017; Osawa et al. 2022)
have reported that increasing the batch size beyond a certain
point can result in poor generalization performance.

Innovations realized

Overview of MCVP
Our proposed multi-constrains variation prediction (MCVP)
framework is a heterogeneous system for simulating the
effect of the RBD mutations on the fitness of SARS-COV-
2 viruses. This system includes 1) a pretrained protein
language generative model for RBD mutation generation, 2)
an RBD and hACE2 binding affinity prediction model for
selecting RBD mutants that have higher binding affinities
than the wild type, and 3) an immune escape prediction
model for selecting RBD mutants that are more likely to
evade antibody attacks.

The training and validation data for the system are
collected from various authoritative resources. We download
protein sequences from the UniRef database (Suzek et al.
2007) for the training of the protein language model. We
download data related to SARS-COV-2 from the GISAID
database, which includes more than 14 million genome

sequences of SARS-CoV-2 for rapidly sharing. The S protein
sequences are obtained from GISAID, then the RBD region
sequences are segmented for model fine-tuning and analyzed
for the probability of the mutation rate at each position.
SARS-COV-2 VOC defining mutations are obtained from
https://outbreak.info/.

The workflow of MCVP We design the MCVP framework
to follow the workflow as shown in Figure 2a. The first
module of MCVP is a Transformer-based language model,
hereafter called ProtFound (Protein Foundation Model).
ProtFound is trained with the UniRef90 dataset, including
approximately 144 million protein sequences. All protein
sequences are chopped into lengths of 256, as the RBD
region of the spike protein S1 consists of 201 amino acids
within the location range of 331-531 (Starr et al. 2020). The
structure of ProtFound is similar to that of BERT, but there
is no classification token. BERT is a bidirectional model
for natural language processing that attempts to reconstruct
corrupted tokens. For protein language modeling, 15% of
each input protein sequence is masked. During the training
process, ProtFound reconstructs the masked amino acids.
After training, ProtFound can learn protein embeddings that
captured some of the biophysical features of the protein
sequences.

We use ProtFound in two ways. First, we design an
RBD-variation-generating module. Specifically, we fine-
tune ProtFound with RBD sequences truncated from the
spike protein sequences which were downloaded from
GISAID. Subsequently, we generate new RBD mutations
by generating missing amino acids from a masked
RBD sequence selected as the starting sequence. Second,
as a protein embedding extractor, ProtFound provides
meaningful vector representations of RBD mutations. These
embeddings are used as the inputs to a binding affinity
prediction model, and an immunity escape prediction model.
The above models are essential in selecting RBD mutations
that are more advantageous in the sense of virus fitness and
survival because of higher binding affinities and immune
evasion.

We employ ProtFound to generate millions of RBD
mutations with Pengcheng Cloudbrain-II. Subsequently, the
two AI filters are used to screen the various generated
variants of the RBD based on hACE2 binding affinity
and immunity escape respectively in a high-throughput
manner. The in silico screening is designed to simulate the
evolution of SARS-CoV-2 in nature. Therefore, the variants
passing this screening could be considered evolutionarily
more advantageous. After completing one round of mutation
simulation, the selected variants are used as training samples
to fine-tune the mutation model ProtFound, which forces the
model to learn the characteristics of those variations that
are more likely to survive the evolutionary selection. By
repeating this procedure, ProtFound is guided to generate
variants that are more likely to have evolutionary advantages,
thus enabling the simulation of SARS-CoV-2 RBD mutation
generation.

As shown in Figure 2b, the protein embedding generation
process starts with the tokenization of a protein sequence and
the addition of the positional encoding. The resulting vectors
pass through ProtFound to create context-aware embeddings
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Figure 2. (a) The workflow of our multi-constrains variation prediction (MCVP) framework. It consists of four modules, i.e.,
pretraining, fine-tuning, generation, and high-throughput screening. (b) Two transfer-learning models for high-throughput screening.
Three modules make up the whole processing workflow: a feature extractor module, a feature refinement module, and a downstream
task module. The protein embeddings learned by ProtFound are further refined through the coupling of global and local features.
Finally, neural networks are trained for two different downstream tasks.

for each amino acid, which are the last hidden state of
the Transformer’s attention stack. Then these embeddings
are concatenated and pooled along the length-dimension to
obtain a fixed-size embedding irrespective of the sequence
length. In MCVP, the two AI predictors are developed, based
on the sequence embeddings extracted by ProtFound. The
first is a binding affinity predictor designed for forecasting
changes in binding affinity between the mutated RBD and
hACE2. The second predictor can be used to evaluate the
comprehensive antibody escape capability of the variants
through antibody escape prediction.

Generation of variants A variant generation module is
designed based on the ProtFound model. Essentially, the
ProtFound model has learned the general properties of
proteins through self-supervised learning on billions of
protein sequences. Then, by fine-tuning ProtFound on

millions of RBD sequences, the model is exposed to the
subtle amino acid changes in the RBD region of the S1
proteins that are present in the GISAID submissions. We
conclude that the final converged model should be able
to generate RBD like sequences that would be very likely
to new RBD mutations as long as proper constraints are
satisfied, e.g., increased binding affinity to hACE2 and
increased antibody evasion.

We generate RBD variants by performing the following
steps. 1) Spike protein sequences are downloaded from the
GISAID database, and the sequences in the RBD region
are extracted. 2) Training datasets are created from the data
processed in step 1. For each VOC, we create a training
dataset using all RBD sequences from the Spike protein
sequences that are submitted before the first appearance of
that VOC. 3) The ProtFound model is fine-tuned using the
training dataset. 4) A variation probability for each position
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in the RBD is calculated using the training dataset. 5) The
variation probability is used to create masks for each position
in the RBD. 6) The variant generation module is used to
create amino acids at the masked positions.

High-throughput screening Once we have generated a
large number of mutation sequences, the next step is to
simulate the selection pressure faced by viruses through
high-throughput screening. Two screening principles are
adopted to perform the progressive filtering of the generated
mutations. First, since the main receptor for entering human
cells is hACE2, the affinity between the virus RBD and
hACE2 is an important indicator for the viral entrance. In
other words, future variants should maintain ideal binding
affinity with hACE2. Second and more importantly, various
studies have shown that VOCs can escape binding to
antibodies. Therefore, we design a model to predict binding
affinity and a model to predict the immunity escape of the
variants. These two models are built with ProtFound as the
backbone and are developed based on transfer learning.

Simulation of circulating mutations SAR-CoV-2 is con-
stantly evolving within a host. As a result of evolutionary
pressures, viruses tend to mutate to acquire stronger fit-
ness, including better binding affinity, and stronger antibody
escape capabilities. We simulate the mutation of SARS-
CoV-2 through high-throughput screening and fine-tuning. In
each round of stimulation, we use AI models to select those
variants that are predicted to retain ideal binding affinity and
stronger antibody escape capabilities. The screened variants
will then be used for next round of fine-tuning of ProtFound.
These steps complete the in silico mutational simulation of
SARS-CoV-2 RBD.

HPC strategy design
For large-scale distributed AI training, the main goals are to
optimize the throughput and speed up network convergence.
Pengcheng Cloudbrain-II possesses 4096 pieces of AI
processors with 512 server nodes. To efficiently train
the language model on such a large cluster, we adopt
multiple optimization strategies (Figure 3), reaching a peak
performance of 366.8 petaflops with mixed precision.

Operator fusion We run the training task in graph mode
and apply pattern-based operator fusion to accelerate the
training in this mode. In this work, we perform fusion of
the following operators to optimize the ProtFound model:
1) We fuse multiple operators for the forward/backward
layer normalization operations and perform calculations on
multiple neural processing units (NPU) cores. 2) We fuse the
matrix multiplication (matmul) operator and the addition
(add) operator. 3) We fuse the all-reduce operations for all
gradients within one Transformer layer into a single operator.
These optimizations account for more than 30% of the time
consumption.

Operator replacement Operator replacement refers to the
replacement of some operators in a model with new operators
that are more amenable to online deployment. In this work,
we use fast Gaussian Error Linear Unit (GeLU) in place
of the original GeLU operator, since the later is not very
friendly to NPUs. Such operator replacement can improve

the model efficiency by about 10% while maintaining the
accuracy performance.

Operator auto-tuning AI computing chips are usually
composed of computing units, on-chip storage, data
transmission, and other modules. The collaboration among
these modules usually significantly affects the computation
patterns of operators. The Auto Tune tool of Ascend uses
reinforcement learning and genetic algorithm for tuning
particular operators by identifying the optimal tiling policies.
We use the Auto Tune tool to optimize the matmul operator,
which accounts for more than 30% of the time consumption.

Mixed precision We further improve the speed performance
by using mixed precision schedules. In dozens of layernorm
operators, we schedule a reducing sum operation to the
Ascend 910 cube core in FP16 and the other remaining
operations to the Ascend 910 vector core in FP32 to avoid
computation overflow and achieve higher performance. In
addition, the embedding and loss calculations are performed
in single precision, and the remaining operators are applied
in half precision. The optimizer is implemented with single
precision. This mixed-precision implementation greatly
reduces the training latency at the cost of potential overflow
due to the limited representation range of half precision.

How performance was measured
We perform pretraining of our ProtFound model on
Pengcheng Cloudbrain-II with the MindSpore4 AI computa-
tion framework. We run tests with 8 NPUs per NPU Pod. The
tests are scaled from (1 × 8) to (512 × 8) NPUs by powers
of 2, and the largest one is assessed on (512 × 8) NPUs at
full-scale. Our model reports timings, including epoch times,
mini-batch times, and time-to-solution. We measure the full
pretraining time-to-solution, scalability, and peak perfor-
mance at full-scale. We measure the FLOPS for all precisions
by using MindInsight, which is a module of MindSpore. We
collect floating-point instructions of relevant flavors (that is,
addition, multiplication, fused multiply-add, and tensor core
operations for FP16, FP32, and FP64) and multiply them by
corresponding weighting factors, respectively, to transform
them into FLOPS counts. The sum of all these values for all
precisions yields our overall mixed-precision FLOPS count.
In summary, the criteria used to measure the performance of
the ProtFound model are defined as follows:

• Time-to-solution, defined as the epoch times of strong
scaling.

• Mini-batch size, defined as the batch size on a single
NPU.

• Peak performance, defined as total FLOPs
per step time .

Performance results

Strong scaling performance
The strong scalability of the pretraining process is measured
in terms of the epoch times for 1 to 512 nodes of Pengcheng
Cloudbrain-II, as shown in Figure 4. For the strong scaling
assessment, the total size of the problem remains the same,
i.e., the number of protein sequences used for the ProtFound
model pretraining is kept constant at approximately 408
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Figure 3. An overview of the employed optimization strategies. (a) Operator fusion. Op means operator. To reduce the redundant
memory accesses incurred by the successive execution of many small operators, we integrate multiple transdata operators into one
transdata operator. (b) Operator replacement. Conv means convolution. Concat means concatenate. We replace two operators with
one simplified operator to reduce the computational cost and model size. (c) Operator auto-tuning. TBE means Tensor Boosting
Engine. GA means Genetic Algorithm. We use a genetic algorithm for tuning particular operators by identifying the optimal tiling
policies. A well-designed tiling schedule can fully utilize the computing power of the hardware. (d) Mixed precision. All parameters
in the model and optimizer are stored in single precision (32-bit), but most of the calculations in this model are performed in half
precision (16-bit) to accelerate the training process. This mixed-precision implementation greatly reduces the training latency at the
cost of potential overflow due to the limited representation range of half precision.

million. The measured strong scaling, shown as a solid line,
almost coincides with the optimal strong scaling, shown as
a dotted line, which demonstrates that the strong scaling
performance is nearly perfect for 1 to 512 nodes. With the
performance for 1 node as the baseline, the parallel efficiency
at 512 nodes is approximately 96.46%, and the speedup
reaches about 493.9×. In addition, the peak performance
reaches 366.81 PFLOPS, and the time-to-solution is 9.1
minutes when scaled to 512 nodes in mixed-precision, which
enables rapid deployment and iteration of variant generation
models.

Figure 4. Strong scaling performance of the ProtFound model
pretraining for a constant total problem size of approximately
408 million protein sequences. Each data point is labeled with
the PFLOPS and parallel efficiency for the corresponding node
count. The black dotted line represents the optimal scaling
performance for reference.

Weak scaling performance
As shown in Figure 5, the weak scaling performance of
pretraining the ProtFound model on Pengcheng Cloudbrain-
II is also assessed. Unlike the strong scaling case, the
problem size per node in the weak scaling test is kept
constant at 640 thousand protein sequences. Here, the
I/O operations are the saving of checkpoints and trained
models. Even if the I/O time is included, the degradation
in performance at high node is still slight. Specifically, the
parallel efficiency for weak scaling from 1 to 512 nodes
slightly reduces from 96.73% to 95.57%, and the utilization
also remains stable, reducing from 34.99% to 33.54%. In
addition, the peak performance reaches 366.86 PFLOPS
(34.99% of Peak) when the I/O time is removed. In summary,
for the pretraining of the ProtFound model on Pengcheng
Cloudbrain-II, the optimized model scales well to the entire
supercomputer.

In silico validation of RBD mutations of VOCs
The variations of concern (VOCs) that have emerged to
date include B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma),
B.1.617.2 (Delta), and B.1.1.529 (Omicron). Omicron, the
currently most widespread VOC, exhibits a several-fold
accumulation of variants compared with the first four VOCs.
Considering the significant difference between the variants
before and after the appearance of Omicron, we simulate
and verify the RBD mutation process with Omicron as the
dividing line as shown in Figure 6.

For SARS-CoV-2 mutation simulation before Omicron,
we validate the predictive ability of MCVP by simulating
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Figure 5. Weak scaling performance of the ProtFound model
pretraining for a constant problem size of 640 thousand protein
sequences per node. Each data point is labeled with the
PFLOPS and utilization for the corresponding node count. Here,
the I/O operations include the storage of checkpoints and trained
models.

Reference sequence
Wild type

Reference sequence
Omicron BA.2
16 mutations

Target VOC
Alpha

Target VOC
Beta

Target VOC
Gamma

Target VOC
Delta

Target VOC
Omicron BA.5

Generating

one
mutation

three
mutations

two
mutations

two
mutations

three
mutations

(a)

(b)

(c)

(d)

(e)

......

Risk factor: 1.14484

High-throughput screening

(f)

Risk factor: 1.13622

Risk factor: 1.12163

Risk factor: 1.11515

Figure 6. The validation scheme for RBD mutations of VOCs
and potential high-risk variants prediction. (a), (b), (c), (d) Four
VOCs before Omicron, i.e., Alpha, Beta, Gamma, and Delta, are
simulated from wild type to themselves. (e) Omicron BA.5, a
latest subvariant of Omicron, is simulated from Omicron BA.2
to itself. (f)Potential high-risk variants prediction. Omicron BA.5
is adopted as the reference sequence. After the high-throughput
screening of hACE2 binding and antibody binding, the risk factor
is calculated based on mutations relevant to fitness.

the mutational changes from the wild type5 to the four
VOCs (Alpha, Beta, Gamma, and Delta). According to the
pathogenic progression of SARS-CoV-2 (Callaway et al.
2022) based on the data from NextStrain6, these four VOCs
have a parallel evolutionary relationship. Therefore, the

starting sequence used to verify the evolutionary route is
selected as wild type. The sequences used to fine-tune the
model are chosen based on the time when each VOC was
first detected. The first detected times and locations of the
four VOCs before Omicron are identified via Wikipedia7. We
segment the data downloaded from GISAID in accordance
with the times corresponding to each VOC. For example,
Alpha was first reported in September 2020, and we therefore
take the data from those submitted before September 2020 as
the training sequences for fine-tuning ProtFound to predict
the emergence of Alpha. Next we adopt the wild type as
the reference sequence for the mutation generation process.
After the RBD mutation generation and high-throughput
screening, we check the mutated sites to determine if the
RBD of Alpha has appeared in the screened RBD mutations.
If it appears, the mutation simulation from wild type to Alpha
is complete. Otherwise, the filtered RBD mutations are used
for iteratively fine-tuning of ProtFound until the RBD of
Alpha is generated. Following this simulation method, we
have successfully generated the RBDs of the four VOCs
(Alpha, Beta, Gamma, and Delta) from the RBD of wild
type.

To simulate the evolution of Omicron, we select Omicron
BA.2 as the starting point to perform the virus evolving to
generate BA.5 in accordance with the pathogenic progression
of SARS-CoV-2 (Callaway et al. 2022). In this simulation,
the sequences with submission times between BA.2 and
BA.5 are selected to fine-tune ProtFound, and BA.2 is used
as the reference sequence at the time of generation. Through
fine-tuning and identification, BA.5 has been generated
successfully by our workflow.

Table 1 shows the proportion of remaining variants after
each round of screening. Among the above five VOCs,
the variants mutated towards Omicron BA.5 retain more
than 80% of the proportion in both the hACE binding and
antibody escape screening, which indicates that the Omicron
sublineages tend to remain stable binding affinity and have
stronger antibody escape capability.

Table 1. High throughput screening of various variants

Variant 1st screening∗ 2st screening∗∗

Alpha 39.8% 2.0%
Beta 13.3% 51.3%
Gamma 45.2% 33.8%
Delta 46.7% 19.1%
Omicron BA.5 90.4% 80.2%

* Proportion retained in hACE2 binding screening
** Proportion retained in antibody binding screening

Potential high-risk mutation prediction
By simulating the mutation of the RBD, we have
comprehensively demonstrated that the proposed MCVP
can effectively evolve out the RBDs of the known VOCs.
However, the real value of MCVP lies in its ability to predict
potential future VOCs, thus assisting targeted drug design
and vaccine development.

Omicron has been the dominant variant widely spreading
around the world. The phenomenon of intra-VOC evolution
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has been significant due to the sustained transmission of
VOCs, which leading to different descendent lineages. In
view of this, a variant tracking system, termed ”Omicron
subvariants under monitoring”, is added to remind us of
lineages that need priority attention and monitoring8. In
this tracking system, BA.5 sublineages (e.g. BF.7, BF.14,
BQ.1), BA.2 sublineages (e.g. BA.2.75, BA.2.75.2), and
BA.4 sublineage (BA.4.6) need to be focused at present9.
In order to demonstrate the potential of MCVP to predict
future high-risk variants, we simulate the mutational process
of BF.7, BF.14, BQ.1, BA.2.75.2, and BA.4.6. As expected,
we have successfully simulated these variants that WHO
reminds public health authorities around the world to give
priority to.

More importantly, as shown in Figure 6f, we take the
latest sublineage of Omicron, i.e. BA.5, as the reference
sequence, then generate billions of variants in each round
and conduct subsequent high-throughput screening. After
evaluation of binding affinity and antibody escape capability,
we use the screened sequences to fine-tune ProtFound. After
several rounds of iterations, we select a number of potential
RBD mutations with high risk that maintain a stable binding
affinity with hACE2 and a high antibody escape capability.
At this stage, to better evaluate potential VOCs, we calculate
the relative risk factor based on mutations identified as being
associated with fitness of PyR0 (Obermeyer et al. 2022). A
variant whose risk factor is greater than 0 may have greater
risk than wild type, and a variant whose risk factor is less
than 0 may have less risk. As a result, billions of variants can
be evaluated quickly for the identification of potential high-
risk mutations.

Implications

AI models can successfully generate and
identify almost all VOCs

In our experiments, using genomic data submitted before
the appearance of each VOCs, we successfully generate
and identify all VOCs except Omicron. Given the original
Omicron spike sequences, we could also generate the
Omicron subvariants that are currently the dominant viral
variants throughout the world.

During the iterative mutation generation process, the AI
models can prioritize mutations based on their predicted
binding affinity and antibody escape, two key factors for
viral infectivity. Due to their combinatorial nature, it is
impossible to experimentally measure the binding affinity
changes among all possible RBD mutations (20201) and
hACE2 or antibodies. Therefore, under the assumption that
the deep mutational scanning (DMS) measurements of RBD
single mutations might provide reasonable constraints for
the RBD to hACE2/antibody binding affinity spaces, we
approximate these binding affinity spaces using AI models
for prediction of the binding affinities among multiple RBD
mutations and hACE2 or antibodies. These AI models are
key innovations of the whole workflow.

The fact that our workflow could not generate Omicron
despite more than 20 rounds of iteration implies that the
mutational features of Omicron are very different from those

of other VOCs, since all other VOCs are found after a few
rounds of generation.

The simulation of SARS-CoV-2 spike mutation
is an HPC application
The strategy we used to simulate SARS-CoV-2 spike
mutation is dependent on the availability of large-scale
genome data (more than 14 million viral genomes as
provided by the GISAID database) and a large protein
language generation model.

Recent progress in Transformer-based models has enabled
the implementation of protein language models capable
of generating de novo protein sequences following the
principles of natural ones (Ferruz et al. 2022). Inspired by
these successes, we pretrain a BERT-like model to learn from
millions of viral spike proteins. Our mutation generation
workflow heavily relies on the Pengcheng Cloudbrain-
II: first, to train the protein language model; second, to
iteratively generate new mutations; and third, to evaluate the
variants based on AI predictors of: 1) the binding affinity
between RBD and hACE2, 2) the antibody escape capability.
All the processing steps require an HPC facility, as billions
of RBD mutations must be generated in each round and
evaluated accordingly.

Simulating coronavirus evolution is a new
challenge for HPC
The COVID-19 pandemic, caused by SARS-CoV-2, is a
stark reminder that coronaviruses remain a major threat
to humanity. It is crucial to study the evolution of
Coronaviruses to be better prepared for the next pandemic.

SARS-CoV-2 has become the most sequenced virus ever
in history, with 14 million SARS-CoV-2 genomes deposited
in the GISAID database. The efficiency of simulating
these extremely large numbers of closely related genomes
to recreate potential histories of past and future virus
evolution presents a new challenge for HPC. As proof
of concept, in this study, we have initiated the first step
toward elucidating the evolution of SARS-CoV-2 VOCs by
using only RBD sequences of the SARS-CoV-2 S1 protein.
Using all genomes of SARS-CoV-2 in the future, plus other
coronavirus genomes, we will be able to perform more
reliable simulations to study the evolution of coronaviruses
in general and the dynamics of viral transmission across
animal species. Meeting the computational requirements of
such simulations will require some of the finest HPC systems
built to date.

SARS-CoV-2 mutation is a serious threat
It has been estimated that an infected person could carry 109

to 1012 SARS-CoV-2 virions (Sender et al. 2021). Since the
initial outbreak of COVID-19, there have been more than
645 million infections as of December 202210. The potential
mutation space for SARS-CoV-2 is thus approximately
6× 1017 to 1020. The experimentally deduced spontaneous
mutation rate of SARS-CoV-2 is 1.3× 10−6 ± 0.2× 10−6

per base per infection cycle (Amicone et al. 2022), which
is heterogeneous throughout the genome. Taking all these
numbers together, it is not too difficult to conclude that
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every single base mutation is being generated de-novo and
transmitted to a new host every day (Sender et al. 2021). It
is therefore extremely important to be able to simulate the
viral mutation process and rapidly identify potential VOCs,
which is essentially what we have demonstrated in this work
through the state-of-the-art AI technology combined with the
cutting-edge HPC hardware - the Pengcheng Cloudbrain-II.
Any successful prediction of future VOCs of SARS-CoV-2 is
not just good scientific research, but can prevent unnecessary
deaths.

Further details of this paper will be published later.
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