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Abstract

Parkinson is a neurodegenerative disorder of the nervous system involved with disrupting the
motor activity of the body. The current pathogenesis of the disorder is incomplete resulting in
widespread use of exogenous medical treatments targeting the dopamine quantity, posing a
major challenge in appropriate drug development. The plethora of high throughput techniques in
the last decade has yielded a vast amount of Omics dataset with an opportunity of providing a
holistic overview of the disease workings and dynamics. We integrated the Parkinson disease
Omics datasets using network-based integration strategies to build Parkinson disease network.
The most impactful and resilient node of the network was selected as a drug target. Deep
learning based virtual screening estimator was built from physicochemical properties of different
compounds having variable affinity to target binding. Virtual screening of FDA approved drugs
repurposed 19 drugs with 25% of them falling under insomnia treatment; the most prevalent
sleep disorder in Parkinson patients. Source Code of the project is available at
https://github.com/aysanraza/pd_repurposing_protocol
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Introduction

Parkinson is a complex neurodegenerative disorder of the nervous system that is involved in
disrupting the motor and non-motor activity of the human body (Poewe et al., 2017). It was first
discovered, reported, and recognized as a medical condition in a monograph of 1817 titled "An
Essay on the Shaking Palsy", by an English surgeon James Parkinson (Toodayan, 2018). It is
mostly associated with motor dysfunction of the human body including tremors, stiffness in
limbs, slowness in movement, disturbed coordinate balance; non-motor symptoms include
depression, hallucinosis, mood disorders, urinary problems, and REM sleep behavior disorder
(Poewe et al., 2017). Epidemiology shows it to be rare before the age of 50 but increases 5-10
fold with the 6th to 9th decade of normal human lifespan (Lee & Gilbert, 2016). It is a complex
disorder with neuropathology associated with the loss of pigmented area in Substantia nigra
pars compacta and Locus coeruleus as well as the aggregation of Lewy-body pathology
(Dickson, 2018). Current medical treatments are mostly associated with the exogenic drug
administration to balance the dopamine quantity in the affected regions, targeted drug
treatments are in their infancy due to an incomplete molecular level pathogenesis (T. K. Lee &
Yankee, 2022). New research encompassing OMICS technologies is shedding light over
different molecular components of a living cell and disease biology (Hasin et al., 2017). Network
Medicine and its methods are in use to better integrate the dataset coming from OMICS
technologies to have a more broader prospect of dynamic cellular working and identification of
probable drug targets (Dimitrakopoulos et al., 2018). Machine learning based Drug repurposing
strategies are in use to identify faster and accurate new drug indications (Tanoli et al., 2021).

Xing & Gardner (2006) developed the first network science based MNI algorithm that takes in
gene expression network dataset to infer appropriate drug targets. Sridhar et al. (2006) and
Song et al. (2009) utilized the metabolic network dataset to design the respected algorithms that
utilize linear approach of backtracking metabolic network until a suboptimal point of desired
result is achieved for identification of better performing fast drug target identifications.
Kushwaha & Shakya (2010) utilized two fold PPI network analysis to screen impactful and
pathologically relevant proteins to screen 18 potential drug targets in Mycobacterium
tuberculosis. As drug target identification through network methodologies were in their infancy
Ashburn & Thor (2004) started drug repurposing. The advent of drug repurposing was mostly
backed by computational analysis including the all important molecular docking studies. The
utilization of ML in the domain started with the work of Kinnings et al. (2011) to optimize the
docking scores by using ML capabilities. On the other side the development of network based
target identification strategies take a sharp turn with the study of Bánky et al. (2013) to utilize
Google's page rank algorithm to better represent the metabolic dataset for appropriate drug
target identification. Peng & Schork (2014) follows the further refinement, sees integrity and
connectivity of biological networks as an important measure to develop a method that can apply
careful centrality measures to screen cancer therapeutic targets. Biological processes are not
only interconnected but are dynamic in nature hence Wu et al. (2015) set out to utilize network
controllability methods to capture dynamic nature of the biological networks for better screening
of potential drug targets. Patrick et al. (2019) make use of NLP word embedding strategy over
scientific literature to train drug and disease relationship to screen new drug repositioning in
disease states of Immune-mediated diseases. Kuang et al. (2018) utilize electronic medical
records to train and predict new drug indications.
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Pathogenesis of the Parkinson disease is incomplete, posing a major challenge in the selection
of drug target and downstream drug development. Omics sciences on the other hand are
providing a vast amount of disease related datasets that, when integrated, can provide a more
thorough picture of the internal working of the cell and disorders. This holistic approach towards
cellular problems gives us an amazing ability to produce good hypothesis especially in case of a
problem with incomplete molecular insights. Network based models are fulfilling the holistic
integration of Omics datasets for good hypothesis generation, as shown above network-based
strategies to screen or identify drug target molecules for a particular biological problem or
disease. The drug target identification can be led forth with utilization of machine learning
strategies for faster and accurate drug repurposing, a step forth in targeted drug development
for Parkinson treatment.

We will look forward to integrating a disease network model based on its genomics and
proteomics datasets. The disease network model will then be subjected to biological
annotations for better understanding of the disease and its major modules. Network centrality
and robustness analysis will be performed over the network to screen a gene having maximal
impact over the network. The maximal effect producing gene will be selected as a drug target
and all its known inhibitors alongside a decoy dataset will be extracted and subjected to deep
learning based virtual screening estimator building. The trained model will then be further
utilized for screening approved drugs for probable candidates drug repurposing.

Methodology

Data Extraction and Network Building

GWAS Catalog database was used to extract Genome wide association studies dataset of
Parkinson disease on 7th of Jan 2022 (Buniello et al., 2018). STRING database was utilized to
screen PPI dataset with the following parameters (Szklarczyk et al., 2020):

● Data Source value of the STRING was only set to Experimentation only.
● Confidence level was set to Low.
● 1st and 2nd shell values were set to 0 to avoid any Neighbors of the input list.

Cytoscape Software was used to build the disease network containing the SNPs and their
respective PPIs; only between them (Shannon et al., 2003).

Modules Building and Gene Set Enrichment Analysis

The build disease network was then further subjected to the Girvan-Newman Algorithm to
extract the major modules of the input network based on the node difference: correspond to the
functional effect of the nodes/genes (Girvan & Newman, 2002). Gene Set Enrichment Analysis
or GSEA of the build modules of the previous step was conducted through an open source
reactome FIViz software package using the datasets of the reactome database. Module's cutoff
was set to 10 and FDR Value to 0.1 to screen major modules for high confidence pathways (G.
Wu et al., 2014).
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Centrality and Robustness Analysis

Network-analyzer software plugin of Cytoscape was utilized to implement four major network
centrality algorithms including Degree centrality, Betweenness centrality, Closeness centrality
and Stress centrality; four network robustness algorithms including Characteristic path length,
Average Neighbors, Network density and Network Centralization were utilized to calculate the
robustness of the network after manual perturbations (Saito et al., 2012).

Data Engineering and Feature Extractions

The ChEMBL database was used to extract the known inhibitors of the selected drug target
(Gaulton et al., 2016). Strong and Weak IC50 value and decoy dataset (extracted from DUD-E
database) was employed to divide the dataset into three major groups (Mysinger et al., 2012).
CUI based Mordred software was used to generate 2D/3D descriptors of the build dataset and
its respective groups (Moriwaki et al., 2018). Screened molecular descriptors were subjected to
Python scripting for cleaning, modification, and rearrangement related reprocessing.
SKlearn-based Train test split was used to split the input dataset into training and testing
groups. SKlearn-based Standard Scaler was used to standardize the dataset by subtracting the
mean and then scaling to unit variance.

Model Training, Testing and Deployment

SKLearn objects were called to implement major ML algorithms including Multilayer Perceptron,
Support Vector Machine, Decision Tree, Random Forest. GridSearchCV algorithm was
employed to perform model optimizations for hyperparameter space of the ML algorithms
(Pedregosa et al., 2012). The predicted results of the four algorithms were also subjected to four
evaluation parameters including Precision, Recall, F1 and Support. Python-based JobLib library
was used to pipe the build Deep ML Virtual Screening Estimator for batch deployment.

Drug Repositioning

The CHEMBL database was utilized to extract ATC Level 1 bio-active compounds of the
Nervous system on 20th Oct 2022 (Gaulton et al., 2016). Python based feature extractions and
prepossessing were performed to prepare the dataset to be subjected for predictions.
Bourne-again SHell command language was used to automate the prediction process for
experimental reproducibility and future usage.
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Figure 1: Research Methodology of current study. (A) The dataset coming from genomics and proteomics is
integrated towards the building of the Parkinson disease network. Different network communication and connectivity
analytics were employed to select the drug target for disrupting the disease network (B) The inhibitors of selected
drug targets were divided into three groups and their physicochemical features were used to build a deep learning
based virtual screening system. (C) Virtual screening of FDA Approved drugs yields the repurposed drug leads

Results:

Disease Network

The Genome Wide association dataset of Parkinson Disease contains 54 studies having 505
GWAS associations. The 505 GWAS associations were then subjected to manual cleaning and
preprocessing resulting in 270 extracted GWAS associations. A total of 270 SNPs were then
subjected to the STRING database and 205 identifiers were mapped in the STRING database
against the human protein-protein interaction network. Manual file creation guidelines of the
Cytoscape software were used to build a network file based on the genomics and proteomics
dataset of the Parkinson disease, imported as a local file into Cytoscape and visualized as a
disease network containing 205 nodes corresponding to the filtered SNPs of the Parkinson
Disease and 273 edges between them as protein-protein interactions.

Network Annotation

The build Parkinson disease network containing integrated genomics and proteomics dataset
was then subjected to the Girvan-Newman Algorithm to cluster the network into 14 modules,
each containing several numbers of nodes corresponding to the genes having similar functional
attributes referenced from the reactome database. The disintegrated network with 06 modules
was then further subjected to the gene set enrichment analysis of each module through
Reactome FIVEz and a total of 420 pathways were screened against the top six major modules
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of the network. Table 1 enlist the genomic content of six modules and their Gene set enrichment
results.

Module Nodes
in
Module

Node
%

Node List GSEA (Top 5 Pathways)

0 23 0.187 ADAM10, CAB39L, CACNA1B,
CAMK2D, CARD14, CRHR1,
DLG2, DNAH17, IGSF9B, ITPKB,
KCNIP3, KCNIP4, KCNS3,
LRRK2, MAPT, MBNL2, MYLK2,
RAB29, RIMS1, RPS12, SCN2A,
TBC1D5, UNC13B

1. Effects of Botulinum toxin(N)
2. Synaptic_vesicle_trafficking(P)
3. Calcium signaling pathway(K)
4. Synaptic vesicle cycle(K)
5. Cardiac conduction(R)

1 22 0.1789 AAK1, ATF6, BAG3, BICD1,
BIN3, CRLS1, DNM1L,ELOVL7,
GAK, GCH1, HIP1R, IP6K2,
MAP4K4, MX2, PPM1B, RFX4,
SLC39A8, SMAD4, SP1, THSD4,
TRPS1, UBTF

1. TGF-beta signaling pathway(K)
2. nfkb activation by nontypeable

hemophilus influenzae(B)
3. Clathrin-mediated endocytosis(R)
4. Validated targets of C-MYC

transcriptional repression(N)
5. HIF-1-alpha transcription factor

network(N)

2 17 0.1382 AGAP1, CA8, CHRNB1, ,CNOT6,
CNTN1 ,DSG3, FYN, GBF1,
KLHDC1, LTK, NGEF, PARD3
,PAX7, PTPRD, RIT2, SIPA1L2

1. EPHA forward signaling(N)
2. Axon guidance(K)
3. Endocytosis(K)
4. Adherens junction(K)
5. Ephrin A  reverse signaling(N)

3 14 0.1138 AQP10, DYRK1A, GBA,
KRTCAP2, PARK2, SCARB2,
SH3GL2, SNCA, ST5, STX1B,
SYT10, SYT17, VAMP4, WISP3

1. Clathrin-mediated endocytosis(R)
2. SNARE interactions in vesicular

transport(K)
3. Lysosome(K)
4. Metabotropic glutamate receptor

group III pathway(P)
5. role of parkin in

ubiquitin-proteasomal pathway(B)

4 13 0.1057 ASXL3, HIST1H3D, KLHL29,
NOD2, NSF, PAM, PARP9,
RABEP2, SETD1A, TMPRSS9,
TPST1, UBBP4, WNT3

1. Vasopressin synthesis(P)
2. Canonical NF-kappaB pathway(N)
3. WNT ligand biogenesis and

trafficking®
4. Wnt signaling network(N)
5. Vasopressin-regulated water

reabsorption(K)

5 10 0.0813 BRIP1, FDFT1, KPNA1, LMNA,
MED13, PCBD2, RNF141,
SLC2A13, SREBF1, TCEANC2

1. Regulation of lipid metabolism by
PPARalpha(R)

2. Apoptotic execution phase(R)
3. Regulation of cholesterol

biosynthesis by SREBP
(SREBF)(R)

4. Caspase cascade in apoptosis(N)
5. Transcriptional regulation of white

adipocyte differentiation(R)

Table 1. Parkinson disease network modules and their respective nodes and pathways.
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Target Identification

Centrality analysis was performed over the build network to screen the most impactful genes, or
the nodes of the network based on their connectivity and communication. Table 2 enlist the top
seven candidates of each centrality measure. SLC2A13, UBBP4, LRRK2, KCNIPA were
predicted as most impact genes in Parkinson disease.

No Betweenness Degree Closeness Stress

Gene Value Gene Value Gene Value Gene Value

1 FAM134C 1 LRRK2 33 SNX29 1 LRRK2 14682

2 LRRK2 0.34 UBBP4 21 RPS6KL1 1 SLC2A13 6966

3 SLC2A13 0.17 SLC2A13 18 ZNF608 1 KCNIP4 6180

4 UBBP4 0.14 DNM1L 16 RERE 1 UBBP4 6026

5 KCNIPA 0.11 RIT2 15 FAM134C 0.8 GAK 4210

6 HIST1H3D 0.09 KCNIPA 14 SV2C 1 RIT2 3802

7 HLA-DRA 0.07 GAK 14 LRRK2 0.509 HIST1H3
D

3738

Table 2. Centrality analysis of Parkinson disease network.

Network Robustness analysis was performed by manually perturbating a node and seeing an
effect it has over the disintegration of the network. Table 3 enlist the values of four robustness
measures for selected central nodes. It was found that LRRK2 is dominating in terms of
disintegration measures, it has the maximal effect over other nodes as well as modules of the
network, have maximal connectivity and communication with highest probability of disintegrating
a system.

No Measure Normal LRRK2 SLC2A13 UBBP4 KCNIP4

1 Network Centralization 0.238 0.135 0.234 0.234 0.233

2 Characteristic path
length

3.280 3.487 3.380 3.340 3.176

3 Avg. Number of
Neighbors.

4.439 3.934 4.180 4.131 4.246

4 Network Density 0.036 0.033 0.035 0.034 0.035

Table 3. Robustness analysis of Parkinson disease network.

Data Engineering and Feature Extractions

ChEMBL database searched on 13th of March 2022, against the LRRK2 gene, to extract the
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1999 inhibitors of the LRRK2 based on IC50 value. Decoy Database was searched on 15th of
March 2022, to extract the General Kinase inhibitors as non-inhibitors. Three groups were made
based on these dataset as follows:

● Strong Inhibitors: 510 compounds with IC50 value <18nm.
● Week Inhibitors: 510 Compounds with IC50 value >200 nm
● Decoy: 510 randomly selected compounds from decoy dataset.

A total of 1530 compounds were selected with 510 in each group, to lead forward and generate
1614 2D/3D Molecular descriptors from CUI based Mordred tool: making an array containing
~2.4 Million entries. Further data preprocessing led us with an array containing 530 entries and
1376 molecular descriptors to be used by ML models. The dataset was split into training and
testing groups with each having 70% and 30% of the data, respectively. Standard Scaler was
used to standardize the dataset by subtracting the mean and then scaling to unit variance.

Deep Learning: Model Building

Dataset was randomly selected for training and testing purposes, 10 times for each algorithm. It
was found that the accuracy score of SVM, Random Forest and Decision tree was ~77%, 75%,
~74% respectively. The accuracy score of the deep learning based MLP was ~80%; which is
almost 3-4% more accurate than the traditional ML algorithms. Table 4 enlist the accuracy score
of the algorithms.

Accuracy Test No. MLP SVM Random Forest Decision Tree

1 79 74 68 73

2 77 78 74 77

3 81 74 73 73

4 79 77 78 69

5 82 79 75 75

6 79 82 77 74

7 78 72 76 76

8 80 80 76 76

9 79 73 74 73

10 82 80 75 75

Avg 79.6 76.9 74.6 74.1

Table 4. Accuracy results of random experimentations across build models.

Model evaluation parameters including Precision, Recall, F1 and Support, showed the
performance of MLP and SVM were equivalent and better against the predictions of multi labels
compared to Decision Tree and Random Forest. Table 5 enlist results of four evaluation
parameters.
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Evaluation / Class MLP SVM Decision Tree Random Forest

Precision / Strong 0.64 0.64 0.66 0.65

Precision / Week 0.67 0.67 0.65 0.68

Precision / Non 0.99 0.99 0.95 0.90

Recall / Strong 0.74 0.74 0.70 0.67

Recall / Week 0.57 0.57 0.61 0.60

Recall / Non 0.99 0.99 0.94 0.99

F1 / Strong 0.69 0.69 0.68 0.66

F1 / Week 0.62 0.62 0.63 0.64

F1 / Non 0.99 0.99 0.94 0.95

Support / Strong 161 161 161 161

Support / Week 148 148 148 148

Support / Non 149 149 149 149

Table 5. Evaluation analysis across the prediction classes for major algorithms.

Drug Repositioning

The CHEMBL database was utilized to extract 512 ATC Level 1 bio-active compounds of the
Nervous system on 20th Oct 2022. These compounds were subjected to our build LRRK2 Virtual
screening system. A total of 62 bio-active compounds were screened as strong inhibitors of
LRRK2 with 19 compounds being the approved/withdrawn FDA approved drugs. Table 6 enlist
the 19 repurposed FDA drugs and their details.

No Drug Name CAS Registry
Number

Prior Indication Structure

1 tolcapone 134308-13-7 PD

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2022. ; https://doi.org/10.1101/2022.11.18.515243doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.515243
http://creativecommons.org/licenses/by/4.0/


2 escitalopram 128196-01-0 Depressive disorder, Anxiety
disorder.

3 flurazepam 17617-23-1 Insomnia

4 haloperidol 52-86-8 schizophrenia, tics in Tourette
syndrome, mania in bipolar
disorder, delirium, agitation, acute
psychosis, and hallucinations from
alcohol withdrawal

5 alprazolam 28981-97-7 anxiety and panic disorders

6 salsalate 552-94-3 pain, tenderness, swelling, and
stiffness

7 chlordiazepoxide 58-25-3 Anxiety, insomnia and symptoms of
withdrawal from alcohol and other
drugs.
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8 clobazam 22316-47-8 Seizures in Lennox-Gastaut
syndrome

9 clomipramine 303-49-1 obsessive compulsive disorder

10 lamotrigine 84057-84-1 Seizures, epilepsy

11 citalopram 59729-33-8 Depression

12 diflunisal 22494-42-4 Pain and Arthritis

13 diazepam 439-14-5 Anxiety, muscle spasms and
seizures
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14 temazepam 846-50-4 Insomnia

15 triazolam 28911-01-5 Insomnia

16 felbamate 25451-15-4 Seizures, epilepsy.

17 estazolam 29975-16-4 Insomnia

18 trifluoperazine 117-89-5 schizophrenia

19 zolpidem 82626-48-0 Insomnia

Table 6. Repurposed drug leads for Parkinson disease.
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Discussion:

Parkinson Disease Network

Parkinson is a neurodegenerative disorder of the nervous system involved in disrupting the
motor activity of the human body. There is a limitation of conventional drug therapeutic
interventions of Parkinson, majorly due to incomplete molecular pathogenesis of the disease
(Poewe et al., 2017). Omics datasets from the last decade and invention of its integration
strategies provide means to understand folded realities of biological workings (Subramanian et
al., 2020). We integrated the Genomics and Proteomics dataset of Parkinson disease into a
disease Network for further network base drug target identifications but before leading forth, we
disintegrated our network into different identical modules and performed enrichment analysis
over each module to confirm the validity of the build network as a disease network. The
enrichment of Calcium, Cellular signaling, endocytosis, Lysosomal dysfunction, Signal
Transduction, cellular response and Lipid Metabolism related pathways in our result and their
respective association with Parkinson’s incident, progression and development is well
established (Surmeier et al., 2017; Fujita et al., 2013; Vidyadhara et al., 2019; Hoang, 2014;
Baekelandt et al., 2020). The build disease network shows striking similarities with the disease
annotations hence confidently acclaimed as a Parkinson disease network. Figure 2 shows the
complete Parkinson Disease network and its associated modules and their enrich pathways.

Figure 2. The Complete Parkinson Disease Network. The build disease network and its major 6 modules are
enriched with major pathways majorly falling under cell signaling, lipid acid metabolism, degradation systems, calcium
homeostasis and apoptosis.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2022. ; https://doi.org/10.1101/2022.11.18.515243doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.515243
http://creativecommons.org/licenses/by/4.0/


Drug Target Identification

The build disease network is composed of 204 nodes and 273 edges representing the genomics
and proteomics representation of Parkinson disease. Network centrality is a measure of how
central a node is in its network and centrality algorithms applied over the disease network
shows SLC2A13, UBBP4, LRRK2, KCNIPA as the most central and controlling nodes of the
network. Figure 3 summarizes the centrality analysis.

Figure 3. The centrality analysis of the Parkinson disease network. (A) The betweenness centrality analytics
showing the top candidate nodes, conducting most of the network's inter-component communication. (B) The degree
of centrality analytics showing the top candidates for most number of connections. (C) The closeness centrality
analytics showing the top candidates to absorb the shortest paths of the network. (D) The stress centrality analytics
showing the comparative stress absorbing ability of the network communication in top candidates.

In case of disrupting the network, the screening of the most impactful genes of the network in
the previous step does not give clear indications of the most consolidating node of the network
that resists network disintegration. Hence the most central nodes extracted from the previous
step were perturbed from the network and the resulting networks were subjected to four network
robustness indicating algorithms. In case of decreasing network density, average number of
neighboring nodes, network centralization and increasing the average path of any node to the
other, LRRK2 perturbed network shows most deviation compared to the other candidates. It was
evident, the perturbation of LRRK2 from the network yields the most devastating effects over
network integration and leads towards disease network disintegration. We hypothesized an
overexpressed LRRK2 as the most probable drug target candidate from the above analytics, if
inhibited, could cause the most devastating effects over Parkinson disease and its progression.
Figure 4 summarizes the network robustness analysis.
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Figure 4. The robustness analysis of Parkinson disease network. (A) The network density analytics showing the
LRRK2 perturbation network to have the least network density ratio compared to normal, an indicator of decreased
connectivity. (B) The network Average Neighbors analytics showing the LRRK2 perturbation network to have the most
decreased neighbors connectivity compared to normal. (C) The network centralization analysis shows a drastic
decrease in the centralization of the network compared to a normal disease network, an indicator of disruption in
normal disease dynamics (D) The network Characteristic path length analytics showing the LRRK2 perturbation
network to have the most decreased communication compared to normal.

Deep Learning Virtual Screening Estimator

The build virtual screening machine learning model from MLP architecture shows equivalent
performance to SVM and better against Random Forest and Decision Tree, when measured
across evaluation parameters including Precision, Recall, F1 and Support. The evaluation
analysis showed the learning of “non-inhibitor” prediction as most accurate compared to other
labels, majorly because of the variation in non-binders dataset. The performance of “strong
inhibitors” prediction can be accredited to the dataset limitation of LRRK2 inhibitors. Figure 5
summarizes the evaluation analysis.
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Figure 5. Comparative models evaluation for prediction classes. (A) The precision analytics indicating positive
predictions shows the learning of the “non-inhibitor” class as near to best compared to other two classes. The
learning of MLP is slightly low against other ML models in case of “strong inhibitors” prediction. (B) The Recall
analytics shows the learning of “non-inhibitor’ class as best compared to other two classes. The learning of MLP and
SVM is slightly higher against other ML models in case of “strong inhibitors” prediction. (C) The F1 analytics shows
the learning of the “non-inhibitor’ class as best compared to other two classes. The learning of MLP and SVM is
slightly higher against other ML models in case of “strong inhibitors” prediction. (D) The support analytics shows the
learning of all classes as best. The learning of MLP and other ML models in case of “strong inhibitors” prediction is
equivalent.

The same MLP model when trained and tested randomly 10 times shows ~80% accuracy
compared to ~77% of SVM, ~75% of Random Forest and ~74% of Decision Tree. Figure 6
summaries the average accuracy scores of algorithms. The slightly better performance of MLP
architecture can be credited to its ability to capture nonlinear relationships of physicochemical
properties of drug compounds without being feature-reduced.
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Figure 6. Average Accuracy Analysis. The random accuracy measure of the four models when shuffled, trained and
predicted for 10 times shows MLP to perform better at ~80% accuracy compared to SVM, Random Forest and
Decision Tree at 77%, 75% and 74% respectively.

We utilized the simple MLPGS class of SkLearn Library to import a simple neural network
model. The model was given 1376 molecular descriptors as input in the first layer, with each
neuron of the network utilizing the “tanh” activation function to process the neuronal input for
reliable output generation. The second layer of 10 neurons were added to further process the
input and proceed towards the final and third layer containing three neurons falling under three
major choices in our case: non-binders, weak binders and strong binders. The powerful “adam”
optimizer was added to backpropagate the architecture and reset the network weights for output
tuning. The initial learning rate for weights was set at “0.001” with learning rate as “adaptive”.
The maximum number of iteration for re-tuning the output was set up to 2000; to keep the
utilization of computational resources and reliable learning in consideration. Figure 7 shows the
architecture of our build Multilayer Perceptron Model.
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Figure 7. The utilized Neural Network Architecture of Multi Layer Perceptron. The build neural network contained
input and output layers, and a hidden layer containing 10 neurons. Tanh activation function is utilized with alpha and
learning rate set to 0.001. The log loss calculation is followed with Adam optimization for back propagation and
resetting the weights. The architecture is limited to iterating the incoming dataset for no more than 2000 times.

Drug Repositioning

The deep learning based virtual screening system we built yielded 19 FDA drugs as repurposed
candidates that have the potential to inhibit LRRK2 as targeted drug leads. The 25% of the
repurposed leads fall under the insomnia treatment therapeutics. As insomnia is the most
prevalent sleep related diagnosed problem in Parkinson patients, we believe in the utilization of
further trails as safe and better for this 25% of drug groups containing “flurazepam”,
“temazepam”, “triazolam”, “estazolam”, and “zolpidem”. Figure 8 shows the summary of
screened drug leads and their respective indications.
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Figure 8. The summary of indication classes for repurposed drugs. Insomnia and Epilepsy related indications are
prevalent with 55% of the group. Depression, Schizophrenia and pain related indications comprise the remaining 45%
of the screen drugs.

Limitations and Prospects

We want to report few of the limitations and future prospects of this study:

1. We utilize the Genomics and Proteomics dataset for disease network building but that
alone does not represent the whole biological fingerprint of a cell and utilization of other
OMICS datasets can provide more interesting results.

2. We utilize the MLP based deep learning architecture for virtual screening estimator
building but the utilization of other deep architecture like CNN or RNN might give better
accuracy.

3. The current study tries to find the holistic drug target to leadforth with targeted drug
therapeutics but lacks the research work on the potential genomics side effects
associated with targeting LRRK2 based therapy.

4. There is a need for further studies regarding the genomic interrelations of the
prior-indications of proposed drug leads and Parkinson disease.
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Conclusion:

Parkinson is a neurodegenerative disorder of the nervous system with incomplete molecular
pathogenesis; posing a major challenge in targeted drug therapy. We integrated semi-OMICS
disease datasets through network strategies to build the disease network and utilize network
based centrality and robustness analytics to hypothesize LRRK2 as a holistic drug target. Deep
learning based virtual screening estimator was built from physicochemical properties of different
compounds having IC50 based variable affinity to LRRK2 binding. The build virtual screening
system was given with the ATC level 1 compounds of the nervous system to screen 19 FDA
drugs as potential repurposed leads for targeted drug therapy. The current study has dataset
and accuracy based limitations but is a substantial systematic approach towards targeted drug
development for a disease with challenges of incomplete molecular pathogenesis.
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