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Abstract. Multivariate autoregressive (MVAR) model estimation enables assessment
of causal interactions in brain networks. However, accurately estimating MVAR models
for high-dimensional electrophysiological recordings is challenging due to the extensive data
requirements. Hence, the applicability of MVAR models for study of brain behavior over
hundreds of recording sites has been very limited. Prior work has focused on different strate-
gies for selecting a subset of important MVAR coefficients in the model and is motivated
by the potential of MVAR models and the data requirements of conventional least-squares
estimation algorithms. Here we propose incorporating prior information, such as fMRI,
into MVAR model estimation using a weighted group LASSO regularization strategy. The
proposed approach is shown to reduce data requirements by a factor of two relative to the
recently proposed group LASSO method of Endemann et al. (2022) while resulting in mod-
els that are both more parsimonious and have higher fidelity to the ground truth. The
effectiveness of the method is demonstrated using simulation studies of physiologically real-
istic MVAR models derived from iEEG data. The robustness of the approach to deviations
between the conditions under which the prior information and iEEG data is obtained is il-
lustrated using models from data collected in different sleep stages. This approach will allow
accurate effective connectivity analyses over short time scales, facilitating investigations of
causal interactions in the brain underlying perception and cognition during rapid transitions
in behavioral state.
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1. Introduction

Directed connectivity and causality have emerged as key attributes for understanding the
network interactions underlying cognition and perception. Linear multivariable autoregres-
sive (MVAR) models are the simplest causal model for electrophysiological brain dynamics
and have proven remarkably effective at capturing attributes of brain networks. However,
MVAR model estimation for high-dimensional networks is notoriously difficult due to the
large number of parameters that need to be estimated. Large amounts of data are required
to obtain stable parameter estimates for high-dimensional network models, which greatly
limits their application. MVAR models assume the data is stationary, an assumption likely
to be violated over longer time spans. These large data requirements also preclude dynamic
analyses of connectivity critical to understanding cognition and perception in typical envi-
ronments. For example, Schlogl and Supp (2006) have suggested exceeding 10MP samples
in time, where M is the number of channels and P is the model memory, when using or-
dinary least-squares (OLS) to estimate the model parameters. Studies by Antonacci et al.
(2020) and Antonacci et al. (2021) that compare OLS to variations on the Least Absolute
Shrinkage and Selection Operator (LASSO) of Tibshirani (1996) confirm that OLS requires
10MP to 20MP time samples for accurate estimation of model parameters.

Human intracranial electroencephalographic (iEEG) recordings offer a rare opportunity
to investigate brain activity at high temporal and spatial resolution. Simultaneous data
collection from >200 recording sites is not uncommon in iEEG, allowing for sampling from
large areas of the brain involved in sensorimotor processing, memory access and retrieval,
executive function, and other processes fundamental to human conscious experience. Mul-
tivariate autoregressive (MVAR) models fit to resting state (RS) data can yield detailed
estimates of directional connectivity from RS data. However, estimating MVAR models
using OLS for networks involving several hundred recording sites requires excessively long
data records and motivates development of more advanced algorithmic approaches.

The LASSO approach regularizes the least-squares problem with a penalty on the ℓ1 norm
of the MVAR model coefficients to reduce the amount of data required. Other approaches
for reducing the amount of required data include selecting a subset of important MVAR
coefficients for inclusion in the model (Marinazzo et al. (2012)) based on mutual information,
and restricting the number of past values of each variable using a Bayesian Information
Criterion based sequential selection method (Siggiridou and Kugiumtzis (2016)). Endemann
et al. (2022) showed recently that regularization using group LASSO (gLASSO) (Yuan and
Lin (2006)) dramatically improved model estimates, reducing data requirements by as much
as a factor of 10 compared to OLS. The gLASSO regularizes the least-squares problem
with the ℓ1 norm of the ℓ2 norm of the MVAR coefficients relating the signals at each
pair of electrodes. Hence, while the LASSO penalty encourages solutions to the least-
squares problem that are sparse in the number of MVAR coefficients, the gLASSO penalty
encourages solutions that are sparse in the number of connections in the MVAR network
model. Sparsely connected MVAR models are consistent with hypothesized small-world
organization of the brain (Bullmore and Sporns (2009)).

An additional approach for reducing the data requirement of MVAR model estimation is
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to incorporate prior information about the network into the estimation process. Activity and
connectivity profiles from magnetic resonance imaging (MRI) have been used previously to
inform analyses of electrophysiological data, for example in EEG source localization (Henson
et al. (2010), Lei et al. (2015), Glomb et al. (2020)). Structural and functional connectivity
derived from MRI are predictive of connectivity measured electrophysiologically (Hacker
et al. (2017)), and thus could prove informative in iEEG network model estimation. Several
previous studies have used priors derived from structural or functional brain connectivity
measurements to inform functional models in different contexts. For example, Zhu et al.
(2013) use structural priors obtained from diffusion tensor imaging (DTI) to differentially
penalize the weights in a regression model for resting-state networks based on functional
magnetic resonance imaging (fMRI). Similarly, Crimi et al. (2021) construct an MVARmodel
for fMRI networks where connections are turned on or off based on structural information.
Other studies have derived priors from functional connectivity. For example, Yu et al. (2017)
use Pearson correlations from fMRI to penalize connections in a group LASSO multiple-
region regression for fMRI networks. Brown et al. (2019) estimate sub-networks in the brain
that are predictive of outcomes or disease states in a sparse feature selection framework
that incorporates priors derived from DTI or fMRI. Similar ideas have also been applied
in applications beyond brain networks, such as estimation of MVAR gene networks using
prior internal connectivity structure (Charbonnier et al. (2010)). Because the gLASSO
operates at the connection level, the gLASSO penalty can be modified to differentially
penalize connections based on prior information, an approach called weighted group LASSO
(wgLASSO) (Hirose and Konishi (2012)).

In this paper we develop a method for using prior information from fMRI functional
connectivity for the estimation of MVAR networks from high-dimensional electrophysio-
logical recordings in order to further reduce data requirements. Neurosurgical patients
undergo extensive pre-operative evaluation including MRI. Hence, additional information
about the composition of cortical networks in these subjects is readily available and can be
exploited to improve the quality of model estimates and further reduce data requirements.
Our wgLASSO approach extends the gLASSO method of Endemann et al. (2022) by using
this prior information to penalize groups of MVAR coefficients inversely proportional to
the likelihood of a connection between the corresponding nodes. To the best of our knowl-
edge, prior information has not previously been used in estimation of MVAR models from
electrophysiological data. As in Brown et al. (2019), we use Pearson correlations from the
subject’s fMRI BOLD signals to inform the electrophysiological network. The effectiveness
of our approach is demonstrated with using simulated data from physiologically plausible
iEEG networks derived from resting state human recordings (Endemann et al. (2022)). We
also analyze data recorded during overnight sleep to demonstrate that the priors generalize
beyond the specific brain state in which they were obtained. The proposed wgLASSO ap-
proach substantially reduces data requirements for accurate model estimation, enabling high
dimensional network modeling at physiologically meaningful time scales. Furthermore, with
relatively long data records the wgLASSO produces sparser models than the gLASSO for
comparable data fitting accuracy, suggesting the wgLASSO is estimating models that better
fit the small-world organization of the brain. Finally, the proposed wgLASSO approach
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is also less affected by shrinkage than the gLASSO, which reduces the need for additional
debiasing following model selection.

The Methods section describes the iEEG and fMRI data as well as the wgLASSO ap-
proach and the performance metrics used to characterize the quality of the estimated models.
The performance of the wgLASSO method and the gLASSO approach of Endemann et al.
(2022) are reported as a function of simulated model data length in the Results section for
both resting state conditions and in different sleep stages. The Discussion section contains a
thorough analysis of the relative performance benefits of the proposed wgLASSO method.
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2. Methods

2.1. Participants

Ground-truth networks were derived from resting state iEEG data. Daytime wake data
were obtained from 9 neurosurgical patients (4 female, ages 19 - 59 years old; Table 1).
Three of these participants were also recorded during overnight sleep, as described previously
(Banks et al. (2020)). The patients had been diagnosed with medically refractory epilepsy
and were undergoing chronic invasive iEEG monitoring to identify potentially resectable
seizure foci. All human participant studies were carried out in accordance with The Code of
Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving
humans. The research protocols were approved by the University of Iowa Institutional
Review Board and the National Institutes of Health. Written informed consent was obtained
from all participants. Research participation did not interfere with acquisition of clinically
required data. Participants could rescind consent at any time without interrupting their
clinical evaluation.

Participant Age Gender nsites Dataset

R369 30 M 216 R
L372 34 M 178 R
R376 48 F 207 R, S
L400 59 F 149 R
L405 19 M 124 R
L409 31 F 160 R
R418 25 F 83 R, S
L423 51 M 153 R, S
R456 31 M 195 R

Table 1: Participant demographics. Datasets: R = resting state; S = sleep.

2.2. Pre-implantation neuroimaging

All participants underwent whole-brain high-resolution T1-weighted structural MRI scans
before electrode implantation to aid with electrode localization after surgery. In addition,
resting state (RS) fMRI data were collected and used as functional connectivity priors for
MVAR model estimation. The scanner was a 3T GE Discovery MR750W with a 32-channel
head coil. The pre-electrode implantation anatomical T1 scan (3D FSPGR BRAVO se-
quence) was obtained with the following parameters: FOV = 25.6 cm, flip angle = 12 deg.,
TR = 8.50 ms, TE = 3.29 ms, inversion time = 450 ms, voxel size = 1.0 × 1.0 × 0.8 mm.
For RS-fMRI, 5 blocks of 5-minute gradient-echo EPI runs (650 volumes) were collected
with the following parameters: FOV = 22.0 cm, TR = 2260 ms, TE = 30 ms, flip angle
= 80 deg., voxel size = 3.45 × 3.45 × 4.0 mm. For each participant, RS-fMRI runs were
acquired in the same session but non-contiguously (dispersed within an imaging session to
avoid habituation). Participants were asked to keep their eyes open, and a fixation cross
was presented through a projector.
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2.3. iEEG Recordings

Electrophysiological recordings were obtained using subdural electrode arrays (platinum-
iridium discs 2.3 mm diameter, 5-10 mm inter-electrode distance, embedded in a silicon
membrane) and depth arrays (8-12 electrodes, 5 mm inter-electrode distance) (Ad-Tech
Medical, Oak Creek, WI) (Fig. 1, Supplementary Fig. 2). After rejecting electrodes that
were located in seizure foci, white matter, or outside the brain, or for noise reasons (see
below), the median number of recording sites across the 9 subjects was 160 (range 83 – 216;
Table 1), providing extensive coverage of temporal, frontal, and parietal cortex. A subgaleal
electrode, placed over the cranial vertex near midline, was used as a reference in all subjects.
All electrodes were placed solely on the basis of clinical requirements, as determined by the
team of epileptologists and neurosurgeons Nourski and Howard (2015).

For daytime recordings, no-task, RS data were recorded in the dedicated, electrically
shielded suite in The University of Iowa Clinical Research Unit while the participants lay in
the hospital bed. Participants typically had their eyes open during data collection. Rest-
ing state data were collected a median of 4.8 days (range 1.9 – 21 days) after electrode
implantation surgery. Data acquisition was performed using a Neuralynx Atlas System
(Neuralynx Inc., Bozeman, MT). Recorded data were amplified, filtered (0.1–500 Hz band-
pass, 5 dB/octave rolloff for TDT-recorded data; 0.7–800 Hz bandpass, 12 dB/octave rolloff
for Neuralynx-recorded data) and digitized at a sampling rate of 2034.5 Hz (TDT) or 2000
Hz (Neuralynx). The duration of recordings in all participants was at least 6 minutes.

Overnight sleep RS iEEG, scalp EEG, and video data were collected in the dedicated,
electrically shielded suite in The University of Iowa Clinical Research Unit while the par-
ticipants lay in the hospital bed. Sleep data were collected 7 or 8 days after electrode
implantation surgery using the same recording system and parameters as for daytime RS
data. Stages of sleep were defined manually as described previously (Banks et al. (2020).
At least 6 minutes of data were recorded for each sleep stage in each participant.

2.4. fMRI Data Analysis

Standard preprocessing was applied to the RS-fMRI data acquired in the pre-implantation
scan using FSL’s FEAT pipeline, including spatial alignment and nuisance regression. White
matter, cerebrospinal fluid and global ROIs were created using deep white matter, lateral
ventricles and a whole brain mask, respectively. Regression was performed using the time
series of these three nuisance ROIs as well as 6 motion parameters (3 rotations and 3 trans-
lations) and their derivatives, detrended with second order polynomials. Temporal bandpass
filtering was 0.008–0.08 Hz. Spatial smoothing was applied with a Gaussian kernel (6 mm
full-width at half maximum). The first two images from each run were discarded. Frame
censoring was applied when the Euclidean norm of derivatives of motion parameters ex-
ceeded 0.5 mm (Power et al. (2012)). All runs were processed in native EPI space, then the
residual data were transformed to MNI152 and concatenated.

Functional connectivity was calculated as Pearson correlation coefficients between BOLD
signals averaged within voxel groupings. Voxel groupings were based on iEEG electrode
location in participant space, with voxels chosen to represent comparable regions of the
brain recorded by iEEG electrodes. For each electrode, the anatomical coordinates of the
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recording site were mapped to the closest valid MRI voxel, E, and a sphere with volume
25 mm3 centered on E used as the corresponding recording site. A single time series was
computed as the average of the fMRI BOLD signal in these 25 voxels, and a connectivity
matrix computed as the Pearson correlations between pairs of fMRI BOLD signals.

2.5. iEEG Data Analysis

For each participant, iEEG data were downsampled to 250 Hz. Artifact rejection involved
three steps. First, outlier electrodes were identified based on the average log amplitude in
one-minute segments across seven frequency bands computed using the demodulated band
transform (DBT) (Kovach and Gander (2016)): delta (1-4 Hz), theta (4-8 Hz), alpha (8-
14 Hz), beta (14-30 Hz), gamma (30-50 Hz), high gamma (70-110 Hz), and total power.
Analytical amplitude measured in each band was z-scored across electrodes in each segment
and averaged across segments. Electrodes with a mean z-score > 3.5 in any band were
removed, including from further artifact rejection methods.

Second, intervals containing artifacts in the raw voltage traces were rejected on every
electrode. We identified times when any electrode had extreme absolute raw voltage >10 SD
for that electrode and marked as artifact the surrounding time until that electrode returned
to zero voltage, plus an additional 100 ms before and after. Note that because we were
measuring connectivity, any data interval identified on a single electrode was excluded for
all electrodes. For each participant, if this procedure identified >1% of recording time as
artifact, we optimized the total data kept for that participant (= electrodes × non-artifact
time) by further excluding electrodes if retaining those electrodes caused more loss of data
on the remaining electrodes via artifact rejection than they themselves contributed.

Third, we applied a specific additional noise criterion to eliminate brief power spikes
in the high gamma band, a band that in some participants was particularly sensitive to
noise in our recording environment. We excluded all intervals containing segments in which
high gamma power averaged across electrodes exceeded the mean by >5 SD after excluding
electrodes and times already removed in steps 1 and 2.

2.6. Multivariate Autoregressive Models

Multivariate autoregressive (MVAR) models of memory p describe the data in each of
M channels as a weighted sum of p past values of data in all other channels and an error
term. Let ym(n) be the value in channel m,m = 1, 2, . . . ,M at time n, n = 1, 2, . . . , N so
we write

ym(n) =
M∑
j=1

p∑
k=1

am,j(k)y
j(n− k) + um(n),m = 1, 2, . . . ,M, n = 1, 2, . . . , N (1)

Here am,j(k) is the weight applied to lag k of electrode j when modeling electrode m and
um(n) is the model error or innovations process, which is typically assumed to be temporally
white and uncorrelated across electrodes. The number of data samples available is denoted
by N .
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The ordinary least squares problem for finding the model weights may be written

âm = argmin
am

∥∥ym −Yam
∥∥2

2
, m = 1, 2, . . . ,M (2)

where

am =
[
am,1(1) · · · am,1(p) am,2(1) · · · am,M(1) · · · am,M(p)

]T
ym =

[
ym(N) ym(N − 1) · · · ym(p+ 1)

]T
and

Y =


y1(N − 1) · · · y1(N − p) y2(N − 1) · · · yM(N − 1) · · · yM(N − p)

y1(N − 2) · · · y1(N − p− 1) y2(N − 2) · · · yM(N − 2) · · · yM(N − p− 1)
...

y1(p) · · · y1(1) y2(p) · · · yM(p) · · · yM(1)


The solution to Eq. (2) is of the form

âm =
(
YTY

)−1
YTym, m = 1, 2, . . . ,M (3)

The prediction error variances are obtained from the MVAR weights as

σ̂2
m =

1

N − p

∥∥ym −Yâm
∥∥2

2
, m = 1, 2, . . . ,M (4)

2.7. Ground Truth Networks and Data Simulation

The true underlying networks associated with the human iEEG data are not known.
Hence, we use the data to estimate physiologically realistic ground truth MVAR models
which are used to simulate data for assessing estimation performance as a function of data
length. The ordinary least squares method produces poor quality models even with relatively
long segments of human data, so we use ridge regression to regularize our ground truth
models. That is, we solve

âm
GT = argmin

am

∥∥ym −Yam
∥∥2

2
+ γ

∥∥am
∥∥2

2
, m = 1, 2, . . . ,M (5)

with
γ = 10−4tr(YTY).

Define the prediction error signal

em = ym −Yâm
GT, m = 1, 2, . . . ,M (6)

Thus, compute the error variance as

σ2
m =

1

N − p

∥∥em − µm1
∥∥2

2
, m = 1, 2, . . . ,M (7)
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where the mean error in the channel is

µm =
1

N − p
1Tem, m = 1, 2, . . . ,M (8)

and 1 denotes an (N−p)-by-1 vector of ones. µm is expected to be very small as preprocessing
ensures the data is zero mean.

Nine resting state ground truth networks were fit in total, one network for each partici-
pant. Furthermore, in three subjects we fit ground truth networks to five sleep states (Wake,
N1, N2, N3, REM), resulting in 15 additional ground truth networks. All 24 ground truth
networks were estimated from 6 minutes of iEEG data. The simulated data for each ground
truth network is obtained by computing Eq. (1) with an um(n) a white noise process having
variance σ2

m as defined in Eq. (7).

2.8. gLASSO and Weighted gLASSO Regularized Network Estimates

We used self-connected group LASSO regularization of Bolstad et al. (2011) as in Ende-
mann et al. (2022). Define the weights connecting channel j to channel m

am,j =
[
am,j(1) am,j(2) · · · am,j(p)

]T
so that am is given by

am =
[
am,1T am,2T · · · am,MT

]T
(9)

The gLASSO problem is then written as

âm
g = argmin

am

∥∥ym −Yam
∥∥2

2
+ λm

M∑
j=1,j ̸=m

∥∥am,j
∥∥
2
m = 1, 2, . . . ,M (10)

The gLASSO formulation in Eq. (10) penalizes all connections equally.
Prior information concerning the network model is incorporated by weighting the con-

nection norms
∥∥am,j

∥∥
2
inversely proportional to the expectation the connection is present

in the model with a nonnegative scalar wm,j. This gives the weighted gLASSO (wgLASSO)
problem

âm
wg = argmin

am

∥∥ym −Yam
∥∥2

2
+ λm

M∑
j=1,j ̸=m

wm,j

∥∥am,j
∥∥
2
m = 1, 2, . . . ,M (11)

The MVAR model prediction error variances for either the gLASSO or wgLASSO models
are obtained by substituting âm

g or âm
wg, respectively, for âm in Eq. (4). In the wgLASSO

problem connections that have a high prior likelihood are assigned small or zero weights
wm,j while connections that are unlikely are penalized more heavily with a relatively large
weight.
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In this work we used the fMRI Pearson correlation (PC) to determine the penalty weights
wm,j. Intuitively, large values of PC between two regions indicate high likelihood of con-
nection and thus those connections should be assigned small or zero weight in the penalty
term. Let cm,j denote the Pearson correlation coefficient between electrode m and j where
cm,j = cj,m as a non directed connectivity metric. The exact mapping between cm,j and
the penalty weights is a design choice. We observed a log-linear relationship between the
largest connection norms

∥∥am,j
∥∥
2
of the ground truth networks and the corresponding |cm,j|

in the resting state networks as illustrated in Figure 1. Motivated by this observation we
adopted a conservative strategy whereby the connection norms are penalized based on ten
raised to the power −|cm,j|. This strategy is conservative as it avoids possible over penal-
ization of the stronger connections - the upper decile shown in Figure 1B - at the expense
of underpenalizing the weaker connections. Define

w′
m,j = 10−|cm,j | (12)

and then normalize w′
m,j to the interval [0,1]

wm,j =
w′

m,j −minq,r w
′
q,r

1−minq,r w′
q,r

(13)

The normalization ensures that the connections with maximum PC in a particular partic-
ipant are not penalized (wm,j = 0) while those with zero PC have a maximum penalty of
unity.

Figure 1: Logarithmic relationship between coefficient norms and fMRI connectivity. (A) Norms of ground
truth coefficients as a function of corresponding fMRI Pearson Correlation (PC) values. (B) The data in A
were binned according to the magnitude of the fMRI PC values, and the mean upper decile of coefficient
norms plotted versus the mean abs(fMRI PC) in each bin. The regression line has slope = 1.20 and r2 =
0.922. (C, D) Regression lines for all participants were fit as in B. (C) r2 values for all nine participants.
(D) Slopes for all nine participants.

Problems (10) and (11) are solved using the Expectation-Maximization algorithm of
Bolstad et al. (2009). The hyperparameter λm is written in the form λm = βmλm

max where
λm
max is the smallest value that results in the trivial solution of all zeros for the MVAR model

weights. In particular,

λm
max = 2 max

i=1,...,M

∥∥∥YT
i y

m
∥∥∥ (14)
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where Yi is the (N − p)× p matrix block of Y that multiplies am,i, for i = 1, 2, . . . ,M . (See
Eqs. (9) and (11).) The value βm is chosen using the following cross-validation procedure:

1. The entire training set is partitioned into five folds.

2. Select the k-th fold as the holdout set and train a model on the remaining folds for
each candidate βi for every channel. All channels have the same candidate βi values
to choose from, which consists of 10 logarithmically spaced values from 0.0001 to 1.

3. Use k-th fold holdout set to compute the mean square prediction error of each model.

4. Repeat steps two and three for all remaining k ∈ {1, 2, 3, 4, 5} cases.

5. For each channel, set βm = βi for the βi value which corresponds to the lowest average
mean square prediction error.

2.9. Performance Characterization

The MVAR model characterizes connection m, j in the network with the p parameters in
the vector am,j. Many different scalar parameterizations of connectivity strength have been
proposed. In the body of this paper we use the broadband gPDC as described in Endemann
et al. (2022), which is based on integrating the gPDC of Baccala et al. (2007) over frequency.
The supplemental material demonstrates comparable results using the state-space Granger
causality metric of Barnett and Seth (2015) to represent connectivity between electrodes.

We characterize the performance of each connectivity estimate via the cosine similarity
between the recovered and ground truth connectivity matrices. The cosine similarity mea-
sures the angle, that is, the “alignment”, between two vectors a and b, and is defined to
be

cos(θ) =
aTb

∥a∥2∥b∥2
. (15)

This similarity metric is applied to connectivity matrices A and B by stacking the columns
of the matrices to form vectors and applying Eq. (15), which is equivalent to computing

ρ(A,B) := cos(θ) =

∑N
i,j=1Ai,jBi,j

∥A∥F∥B∥F
. (16)

Note that the normalization in the denominator of both Eq. 15 and 16 means that the
cosine similarity does not capture the effects of shrinkage associated with regularization.

We also use cross-validation to evaluate the normalized mean-square prediction error
(NMSPE) on a subset of the data that was not used to estimate the MVAR model pa-
rameters. The NMSPE is computed for a given MVAR model (âm, σ̂2

m)m = 1, 2, . . . ,M
as

ê2 =
1

T − p

M∑
m=1

∥∥∥ym −Yâm
∥∥∥2

σ2
m

(17)

where ym and Y have T − p rows and are constructed from the T samples of data held out
from the model estimation process. Since we are simulating data, we choose T = 200, 000
to obtain a large data estimate of the NMSPE. Normalization by the ground-truth model
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error variance and use of a relatively large value for T ensures that ê2 has a minimum value
of unity. The degree to which it exceeds unity reflects the excess prediction error associated
with the estimated model.
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3. Results

3.1. Comparison of estimation methods

We compared the performance of the gLASSO and wgLASSO estimators using MVAR
model fits to data of varying lengths simulated from ground-truth models (see Methods).
This is illustrated in Figure 2 for an exemplar participant with network size = 195 (Figure
2A), which shows the fMRI functional connectivity matrix that was used as the prior (Figure
2B), the matrix of penalty weights derived from this prior (Figure 2C), and the effective
connectivity matrix of the ground truth model for this participant, measured as gPDC
(Figure 2D). The corresponding SSGC ground truth connectivity is shown in Figure 3A.
At each data length and for each estimator, performance was measured by calculating the
cosine similarity (ρ) between the estimated and the ground truth connectivity matrices,
and by measuring the MSE (ê2) between a holdout dataset and the model based on the
estimated coefficients (note that the lowest possible MSE is 1). Performance of the wgLASSO
estimator (Figure 2d) exceeded that of gLASSO (Figure 2e) for all but the longest data
lengths investigated. For example, at a data length of T = 500 samples, the similarity of the
recovered gPDC connectivity matrix to the ground truth for wgLASSO far exceeds that of
gLASSO, and the MSE is much smaller. Similar results are obtained at T = 1000 samples (4
sec), but the performance difference is smaller. At T = 8000 samples (32 sec), performance is
comparable for the two estimators. Comparable results were obtained for SSGC connectivity
(Figure 3). Data for gPDC in all participants are shown in Supplementary Figure 4.

14

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2022. ; https://doi.org/10.1101/2022.11.18.516669doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.516669
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2: Comparison of model estimation using wgLASSO versus gLASSO for participant 456R. (A)
Electrode coverage in subject 456R. (B) fMRI functional connectivity (Pearson correlation, c) matrix used as
priors for wgLASSO. (C) Penalty matrix derived from the connectivity matrix in A. (D) gPDC connectivity
matrix computed from ground truth model. (E) gPDC connectivity matrices from models estimated using
wgLASSO (top row) or gLASSO (bottom row) fits to 5 different segment lengths ranging from T = 500 to
8000 samples. Each estimated connectivity matrix is averaged across five trials. (F) Estimator performance
as a function of segment length for the data in E. Top: cosine similarity values (ρ) between estimated and
ground truth gPDC matrices, averaged across the five trials; bottom: MSE (ê2) between the data and the
model based on the estimated coefficients, also averaged across the five trials. For matrix plots in B - D,
the darkest shading represents the 95th percentile of amplitude values.

Improved estimates of the strongest (and presumably most important) connections in the
model using wgLASSO is illustrated most clearly in Figure 3, which shows 2-D histograms of
recovered versus ground truth gPDC connectivity for three data lengths (same participant
as Figure 2). For all three of the data lengths illustrated and for both estimators, the bulk
of the recovered and ground truth gPDC values are small. However, more of the strongest
connections are recovered using wgLASSO, and the estimates of these connections are more
accurate, i.e., closer to the diagonal line. Note that the second row of each panel shows the
histogram of the same data zoomed in to the strongest connections. The difference between
wgLASSO and gLASSO in estimation accuracy for the strongest connections is diminished at
T = 4000 samples, but the wgLASSO retains fewer of the weakest connections, as evidenced
by the histograms of the full data range (Figure 3c, top row). Data for SSGC connectivity
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are shown in Supplementary Figure 5. Data from a second exemplar participant for gPDC
are shown in Supplementary Figure 6.

Figure 3: Comparison of recovered versus ground truth gPDC connectivity for participant 456R RS. Results
for data lengths of (A) 500, (B) 1000, and (C) 4000 samples are shown; each data length consists of
averaged gPDC across five trials.

Summaries of model performance across participants are shown in Figure 4. Here, we
illustrate recovered gPDC connectivity measured as cosine similarity to the ground truth con-
nectivity matrix (Figure 4A) as well as MSE (Figure 4B). Both assessments favor wgLASSO
compared to gLASSO for all but the longest data length tested. Comparable results were
obtained with SSGC connectivity (Supplementary Figure 7).

As indicated by the 2-D histograms in Figure 3 and Supplementary Figures 5 and 6,
although gLASSO and wgLASSO have increasingly similar performance as the data length
increases, the wgLASSO estimator uses a more parsimonious model. This is illustrated
in Figure 5, which shows the percent of connections pruned for wgLASSO compared to
gLASSO. Especially at the longest data lengths, wgLASSO estimates were consistently
sparser compared to gLASSO.
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Figure 4: Summary of estimator performance across participants. (A) Cosine similarity computed between
the estimated and ground truth gPDC connectivity matrices for wGLASSO plotted versus gLASSO estima-
tors. (B) Similar to A, but for MSE. For both performance measures, the results for each participant and
each data length are averaged across five trials.
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Figure 5: Summary assessment of the the percentage of pruned connections in the gPDC recovery matrices
using gLASSO and wgLASSO methods for all nine RS participants. The (i, j)− th connection is considered
pruned if the (i, j)− th element of a method’s gPDC recovery matrix is zero and the (i, j)− th element of
the ground truth gPDC matrix is non-zero. The results for each participant are averaged across five trials.

3.2. Robustness of estimators across brain and behavioral states

The priors for wgLASSO are derived from resting state fMRI data collected during the
day when participants were awake. We have shown that wgLASSO improves model estimates
when applied to iEEG data collected under similar conditions, i.e., daytime wake. It is often
the case, however, that iEEG data is collected under very different conditions than the fMRI
priors, and the question arises as to whether these priors would be useful when applied to
such data. We addressed this question by applying wgLASSO to data recorded during sleep
and staged using polysomnography (Banks et al. (2020)). We chose 3 of the 9 participants
included in the resting state dataset presented above (376R, 418R, 423L). We used the same
fMRI priors as for the resting state dataset. We evaluated the performance of the wgLASSO
estimator when applied to data simulated from ground truth models that were derived from
data recorded during five identified sleep stages (wake, REM, N1, N2, N3).

Figure 6 depicts 2-D histograms of estimated versus ground truth connectivity for both
gLASSO and wgLASSO in wake, N3, and REM based on T = 1000 samples. Figure 8 depicts
the fMRI connectivity (A), penalty weights (B), and compares ground truth, wgLASSO,
and gLASSO connectivity estimates for the same three states. The fidelity of estimates
obtained with gLASSO varied across sleep stages, likely because T=1000 samples is on the
threshold of failure for gLASSO and the signal to noise ratio varies across states. As with
the resting state data, wgLASSO yielded improved recovery of the strongest connections
while producing sparser models, and these results were more consistent across sleep stages
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compared to gLASSO. For example, compare Figure 6B showing data from N3 sleep to 6A
and 6C showing data from wake and REM sleep, respectively.

Figure 6: Comparison of recovered gPDC connectivity against ground truth gPDC connectivity for data
recorded during sleep for participant 376R. Same data as in Figure 8. Three of the five sleep states are
shown. (A). Awake. (B). N3. (C). REM. Each estimated gPDC matrix is averaged across five trials for
each method; 1000 training samples were used to fit the estimated models.

The summary of results across all three participants are shown in Figure 7. For all
participants, recovery of ground truth connectivity and model performance are superior for
wgLASSO compared to gLASSO. Improvement in recovery and performance was greater for
stages showing poorest results with gLASSO. The fMRI prior resulted in improved recovery
even though obtained from a different behavioral state.
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Figure 7: Summary assessment of gPDC recovery (left) and model performance (right) using the gLASSO
and proposed wgLASSO methods for all three sleep participants. Cosine similarity was computed between
the estimated gPDC and ground truth gPDC connectivity matrices. One-step MSE on a holdout set was
used to determine model performance for each method, and the ratio is computed between them. The results
for each participant are averaged across five trials assuming T = 1000 samples.

3.3. Connectivity estimates from model fits to recorded data

The results presented so far are based on model fits to simulated data, which enabled
comparison to a ground truth condition. A real-world test of model performance involves
model fits to recorded data, which are not guaranteed to conform to the assumptions of
MVAR models, likely contain nonlinearities, and may contain noise that is not eliminated
in preprocessing. In this case, there is no ground truth to serve as comparator, but as
in Endemann et al. (2022) we compared connectivity for two brain regions, posterior and
anterior subdivisions of the insula (InsP, InsA). These neocortical regions are anatomically
adjacent and strongly interconnected, but have divergent connectivity profiles with the rest
of the brain and are functionally distinct (Augustine (1996) Cauda et al. (2011), Cloutman
et al. (2012), Zhang et al. (2019), Endemann et al. (2022) ). InsP is a sensory area, receiving
both interoceptive and exteroceptive input from the periphery and other cortical regions. By
contrast, InsA is a higher order cortical region, with strong connectivity to prefrontal cortex
and limbic structures. Our expectation, then, is that InsP will be more strongly connected
with primary sensory regions such as core auditory cortex (posteromedial Heschl’s gyrus,
HGPM), and InsA will be more strongly connected with higher order areas such as the
prefrontal cortical region orbitofrontal gyrus (OG). Connectivity estimated from MVAR
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model fits aligned with this expectation.
Seven of the nine participants in the RS dataset had electrodes in both InsP and InsA.

Using wgLASSO, models were fit in these seven participants to data from all recording sites
(see Table 1) using two different data lengths, 2000 and 8000 samples, and connectivity
(gPDC) calculated. Results for one participant are shown in Figure 8 A,B (T = 8000 and
T = 2000 samples, respectively). The vertical axis in each connectivity matrix shows the
four classes of connections, i.e. gPDC from and to InsP and InsA. The subset of source and
target regions with electrode coverage in all 7 participants are indicated on the horizontal
axis, and are ordered roughly hierarchically as in our previous work, with HGPM on the left
and higher order cortical regions on the right. Heavier connectivity between InsP and lower
order regions is illustrated by the denser grey scale values on the left side of the connectivity
matrix. Heavier connectivity between InsA and higher order regions is illustrated by the
denser grey scale values on the right side of the connectivity matrix. Note that although
the model fits for T = 2000 samples are sparser, the same pattern is recapitulated.

Connectivity data are summarized across participants for four representative regions
of interest in Fig. 8 CD (T = 8000 and T = 2000 samples, respectively), which shows
cumulative distribution functions (cdfs) of gPDC values for InsP (blue) and InsA (red)
across recording sites and participants. As in the single participant example above, regions
of interest are ordered roughly hierarchically, with lower order areas on the left. Stronger
connectivity is indicated by a rightward shift of the cdf curve along the horizontal axis in
each panel. For HGPM, the cdfs for InsP are shifted to the right relative to InsA, indicating
stronger connectivity with core auditory cortex. By contrast, for OG the opposite pattern is
apparent. Intermediate regions such as superior temporal gyrus, posterior portion (STGP)
and supramarginal gyrus (SMG) show intermediate patterns. Again, even though the model
fits for T = 2000 samples are sparser, the same pattern is recapitulated. Overall, these
results strongly suggest that the wgLASSO approach reliably captures essential effective
connectivity information in the short data length regime.
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Figure 8: Connectivity of the anterior and posterior insula. (A). Matrix showing gPDC connectivity between
single (and only) recording sites in InsP and InsA, and recording sites in 9 regions of interest in 423L. The
selected regions of interest were those with electrode coverage in all 7 participants and that had non-zero
gPDC values in this participant. T = 8000 samples. (B). As in A, for T = 2000 samples. Note that because
of the shorter data length, the estimated model is sparser and fewer connections had non-zero gPDC values.
(C). Cumulative distribution functions of gPDC connectivity across recording sites and participants for
InsP (blue lines) and InsA (red lines), for projections to the indicated target region (solid lines) and from
the indicated source region (dashed lines). T = 8000 samples. (D). As in C, for T = 2000 samples.
(Abbreviations. HGPM: postero-medial portion of Heschl’s gyrus; STGM: medial portion of the superior
temporal gyrus; InsP: insular cortex, posterior portion; IFGop: inferior frontal gyrus, pars opercularis; OG:
orbitofrontal gyrus; vPreCG: precentral gyrus, ventral portion; ITGA: inferior temporal gyrus, anterior
portion; TP: temporal pole; InsA: insular cortex, anterior portion)
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4. Discussion

Previously, we demonstrated that gLASSO is an effective method relative to ordinary
least squares for significantly reducing the data required to estimate MVAR models of brain
networks with large numbers of recording sites (Endemann et al. (2022)). The gLASSO
encourages sparse connectivity by penalizing the two-norms of the weight vectors associated
with all connections. Hence, the gLASSO treats the connections between all brain regions
equally. The wgLASSO offers a straightforward mechanism for differential penalization of
connections based on prior expectations, such as provided by participant-specific structural
or functional connectivity measures. Connections that are weak in these prior measures are
less likely to be significant and may be assigned a relatively large penalty weight, while those
that are likely may be assigned a small or zero penalty weight. Importantly, incorporation
of prior information via the wgLASSO further reduces the data required to estimate MVAR
models for large numbers of recording sites. Our simulation studies using neurophysiologi-
cally realistic ground-truth models show that the fMRI-based wgLASSO method proposed
in this work reduces the data requirements by an additional factor of approximately two
relative to that of the gLASSO. The results in Figs. 2, 3, 4 and 7 imply our fMRI-based
wgLASSO approach is able to reconstruct important connectivity features in networks of
200 channels with 4-8 seconds of data.

The degree to which prior information can reduce data requirements depends on the
nature and quality of the prior information and the manner in which it is incorporated
into the estimation algorithm. fMRI and iEEG measure neural activity on different time
scales, and although functional connectivity measures derived from the two modalities are
related, the correlations are modest (Hacker et al. (2017)). In the current study, the spe-
cific circumstances of the recording sessions for fMRI and iEEG data were distinct: fMRI
data were collected before the electrode implantation surgery, while the iEEG data were
recorded post-operatively. Furthermore, the PC values used as priors are not directed, while
the iEEG MVAR model represents directed connections. Indeed, as shown in Figure 1A,
the relationship between the ground-truth model connection norms and PC values is not
specific - there is a wide range of MVAR model connection norms associated with each PC
value. Hence, incorporation of prior fMRI information must be done in a flexible manner to
accommodate differences between iEEG and fMRI connectivity.

The fMRI-based wgLASSO approach proposed here readily accommodates the differences
between fMRI and iEEG via differential penalization of connection norms. First, the prior
information is not applied at the level of the MVAR model coefficient values, mitigating
the differences in time scale between fMRI and iEEG measures. Further, the wgLASSO in
Eq. (11) is a soft approach in that it trades the reduction in squared error associated with
a particular connection against the penalty associated with that connection. Connections
that are strongly penalized can still be present in the MVAR model if they contribute to
a proportionally large reduction in squared error. On the other hand, if two connections
contribute equally to the squared error, the connection that is least penalized will be favored.
Finally, the wgLASSO approach presented here is flexible, and can easily accommodate other
types of prior information, as as from diffusion tensor imaging (Zhu et al. (2013), Belaoucha
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and Papadopoulo (2020)) or electrical stimulation tract tracing (Rocchi et al. (2021)).
The conservative strategy proposed here for choosing the penalty weights applied to each

connection is motivated by the nonspecific relationship between the MVAR model connec-
tion norms and PC values illustrated in Fig. 1A. A logarithmic relationship between PC
values and the largest connection norms in the ground truth models was observed across
all participants (Fig. 1C, D) so we chose the penalty for all connections associated with a
particular PC value c based on 10−|c| normalized to the interval [0, 1]. Connections with PC
values of 1 are not penalized, while those with PC value zero receive maximum penalty of 1.
Hence, connections with similar PC values are penalized comparably and the wgLASSO cost
function will favor connections that give the largest squared error reduction for a given con-
nection norm. Deriving the penalty based on the relationship between PC and connections
with the largest norms minimizes the risk of over penalization. Note that more aggressive
penalization strategies are possible and would likely further reduce data requirements at the
expense of forcing the estimate to match the prior. That is, over penalization could lead to
important connections being discouraged by the wgLASSO.

The relative benefits of the proposed wgLASSO approach over gLASSO is evident in all
participants for multiple performance metrics. The cosine similarity metric for the wgLASSO
gPDC (Fig. 4A) and state-space Granger causality measure (Supplementary Fig. 7) is
consistently higher than that for the gLASSO estimates except at the very longest data
lengths considered (8000 samples or 32 seconds). The wgLASSO models have lower one-
step prediction errors than the gLASSO models (Fig. 4A) over the same range of data
lengths. Even at these long data lengths, however, we note that the wgLASSO models are
sparser, i.e., use fewer connections, than the gLASSO models (see Fig. 5) while achieving
comparable model performance. Thus, the wgLASSO method results in a more parsimonious
model for the measured data.

Furthermore, we show that the improved model performance holds even for data recorded
under very different conditions than the fMRI priors. We already noted the time separation
with fMRI recorded pre-operatively and iEEG recorded post-operatively. We also evalu-
ated model performance when iEEG data were recorded during different stages of overnight
sleep, when cortical networks can exhibit substantially different connectivity profiles com-
pared to the daytime wake conditions of the fMRI scans (Banks et al. (2020)). Even so,
the proposed penalization strategy using wgLASSO still outperforms gLASSO across these
distinct behavioral states as shown in Figures 6 and 7, and Supplementary Figure 8. This
robustness is likely due in part to the soft way the wgLASSO incorporates prior information
and conservative manner in which we chose the penalty weights.

The gLASSO consistently shows evidence of shrinkage in the largest coefficients, i.e., the
estimated connection strength is less than the ground truth value (see Fig. 3 and Supple-
mentary Figs. 5 and 6), particularly with relatively short data lengths. This shrinkage is
a well-known effect associated with penalized least-squares formulations and is sometimes
addressed by a debiasing step as noted in Endemann et al. (2022). Shrinkage is much less
evident in the largest coefficients with the wgLASSO method because these larger connec-
tivity values are associated with the largest PC values, which are mapped to penalty weights
at or near zero. Hence, the wgLASSO approach proposed here tends to be less affected by
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shrinkage and subsequent debiasing steps are likely unnecessary.
We note the limitations of the ground truth models employed here. Ground truth mod-

els are necessary to quantitatively evaluate estimation methods and compare performance.
However, the strength of our conclusions is limited by degree to which our ground truth
models, which are linear and stationary, create representative data. We note that the fMRI
prior employed here is independent of the ground truth models, and its success provides in-
dependent evidence that these models are reasonable. The wgLASSO approach also yielded
results consistent with known brain connectivity profiles when applied to recorded data
rather than data simulated from GT models (Figure 8). In the example shown comparing
connectivity to posterior and anterior insula, lower order sensory areas had stronger con-
nectivity to posterior insula, consistent with its role in sensory processsing. By contrast,
higher order areas had stronger connectivity to anterior insula, consistent with its role as
a gateway to limbic cortex (Augustine (1996) Cauda et al. (2011), Cloutman et al. (2012),
Zhang et al. (2019), Endemann et al. (2022)).

The wgLASSO approach is motivated by concerns over stationarity, which diminish with
decreasing data length. Over sufficiently short time scales a stationary approximation to
brain data is expected to be effective at providing insight into how brain network organi-
zation evolves over time. In addition to enabling investigation of brain dynamics per se,
the approach presented here can be leveraged for analysing connectivity changes during
an experiment with distinct epochs, such as a behavioral task. For example, 0.1 sec time
windows could be concatenated over many trials to investigate connectivity changes that
evolve over a delay period during a working memory task. Thus, the wgLASSO approach
has the potential to inform investigations of brain network reorganization underlying rapid
behavioral adaptations.
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Supplementary Figures
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Supplementary Figure 1: Summary of electrode coverage in 9 participants recorded during daytime waking
periods. Locations of recording sites are plotted in Montreal Neurological Institute (MNI) coordinate space
and projected onto the Freesurfer average template brain for spatial reference. Projections are shown on
the lateral, top-down (superior temporal plane), ventral and mesial views (top to bottom). Recording
sites over orbital, transverse frontopolar, inferior temporal gyrus and temporal pole are shown in both
the lateral and the ventral view. Some recording locations in regions inaccessible to these views (e.g.,
hippocampus, amygdala) are not shown. Recording locations in participants with electrodes implanted into
the left hemisphere have been reflected onto the right hemisphere for visualization purposes.
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Supplementary Figure 2: Summary of electrode coverage in 3 participants recorded during overnight sleep.
See Supplementary Figure 1 for details.
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Supplementary Figure 3: Comparison based on SSGC of model estimation using wgLASSO versus gLASSO
for participant 456R. (A) SSGC connectivity matrix computed from ground truth model fit using ridge
regression to 6 minutes of resting state data. (B) SSGC connectivity matrices from models estimated using
wgLASSO (top row) or gLASSO (bottom row) fits to 5 different segment lengths ranging from T = 500
to 8000 samples. Each estimated connectivity matrix is averaged across five trials. (C) Cosine similarity
values between estimated and ground truth SSGC matrices shown in B, averaged across the five trials (ρ),
plotted versus segment length. See Figure 2B & C for fMRI functional connectivity and penalty matrices
used for wgLASSO.
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Supplementary Figure 4: Recovery of gPDC connectivity using gLASSO and wgLASSO methods for all RS
participants. Each column is a different participant. (A) fMRI Pearson correlation matrices. (B) Penalty
matrices used for wgLASSO. (C) gPDC connectivity matrices of ground truth models. (D) - (H) gPDC
matrices from models estimated using wgLASSO (top row) or gLASSO (bottom row) fits to segment lengths
ranging from T = 500 to 8000 samples. Each estimated connectivity matrix is averaged across five trials.
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Supplementary Figure 5: Comparison of recovered versus ground truth SSGC connectivity for participant
456R RS. Results for data lengths of (A) 500, (B) 1000, and (C) 4000 samples are shown; each data length
consists of averaged SSGC across five trials.

Supplementary Figure 6: Comparison of recovered versus ground truth gPDC connectivity for participant
376R RS. Results for data lengths of (A) 500, (B) 1000, and (C) 4000 samples are shown; each data length
consists of averaged gPDC across five trials.
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Supplementary Figure 7: Summary of estimator performance across participants for SSGC. Cosine similarity
computed between the estimated and ground truth SSGC connectivity matrices for wGLASSO plotted versus
gLASSO estimators.
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Supplementary Figure 8: Single subject (376R) example of gLASSO and wgLASSO estimation methods
applied to data recorded during sleep. (A). fMRI Pearson correlation matrix for this subject, obtained
during a daytime scan. (B). Penalty matrix derived from the matrix in A, applied to wgLASSO estimates
for all sleep stages. (C). gPDC matrices derived from ground truth models (top row), wgLASSO estimates
(middle row), and gLASSO estimates (bottom row) for data recorded during three stages of overnight sleep:
Awake (left column), N3 (middle column), and REM (right column). Each estimated gPDC matrix is
averaged across five trials for each method; 1000 training samples were used to fit the estimated models.
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