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ABSTRACT 1 

Vestibular schwannomas (VS) are benign tumors that lead to significant neurologic and otologic 2 

morbidity. How VS heterogeneity and the tumor microenvironment (TME) contribute to the 3 

pathogenesis of these tumors remains poorly understood. We performed scRNA-seq on 15 VS 4 

samples, with paired scATAC-seq in six samples. We identified diverse Schwann cell (SC), 5 

stromal, and immune populations in the VS TME and found that repair-like and MHC-II antigen 6 

presenting subtype SCs are associated with increased myeloid cell infiltrate, implicating a nerve 7 

injury-like process. Deconvolution analysis of RNA-expression data from 175 tumors revealed 8 

Injury-like tumors are associated with larger tumor size, and scATAC-seq identified transcription 9 

factors associated with nerve repair among SCs from Injury-like tumors. Ligand-receptor analysis 10 

and functional in vitro experiments suggested that SCs recruit monocytes. Our study indicates that 11 

Injury-like SCs may cause tumor growth via myeloid cell recruitment and identifies molecular 12 

pathways that may be targeted to prevent tumor progression.  13 
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INTRODUCTION 14 

Vestibular schwannomas (VS) are benign tumors that arise from the Schwann cells (SCs) lining 15 

the vestibulocochlear nerve and account for 8% of all primary intracranial tumors1. These tumors 16 

most frequently arise sporadically (> 90%) but are also associated with the autosomal dominant 17 

syndrome neurofibromatosis type 2 (NF2) and the related, but rare syndrome, schwannomatosis. 18 

Due to their anatomic location adjacent to the brainstem, both tumor growth and current treatment 19 

strategies (i.e., microsurgery and/or radiation therapy) can be associated with substantial, lifelong 20 

neurologic and otologic morbidity, including hearing loss, facial palsy, disequilibrium, brainstem 21 

compression, hydrocephalus, and, in extreme cases, death2–5. Recent epidemiologic evidence 22 

suggests that the lifetime prevalence of VS is as high as 1 in 500 adults, largely due to incidental 23 

detection of asymptomatic tumors, which has increased with increased clinical utilization of 24 

computed tomography (CT) and magnetic resonance imaging (MRI)6. However, our knowledge 25 

of the molecular drivers of VS pathogenesis remains limited. 26 

 27 

Loss-of-function mutations in the NF2 gene are believed to be the central oncogenic event in the 28 

development of VS, but it is unknown how this genetic aberration affects downstream pathways, 29 

intercellular interactions, and expression heterogeneity in vivo7–9. First identified in patients with 30 

NF2 in the early 1990s, many studies have since sought out the pathways altered by loss of the 31 

NF2 gene product Merlin and have demonstrated its role in a number of known oncogenic 32 

pathways in vitro, including Ras/Raf/MEK/ERK10, mTORC1/211, Rac/p21-PAK/c-Jun Kinase12, 33 

PI3K/AKT13, and Wnt/β-catenin14. However, pre-clinical and early clinical studies of targeted 34 

inhibitors of these pathways have shown negative or, at best, modest results in limiting tumor 35 

growth15–17. Only bevacizumab, an anti-angiogenic agent, has been shown to limit growth in a 36 
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subset of NF2 patients, but not without the risk of significant side effects18. Given the low burden 37 

of genomic alterations in VS, a deeper understanding of the molecular pathogenesis of VS may be 38 

advanced through detailed investigation of the transcriptional and epigenetic alterations in these 39 

tumors. 40 

 41 

Single-cell RNA sequencing (scRNA-seq) enables characterization of the cellular compartments 42 

of tumors (e.g., malignant, stromal, immune, etc.), as well as identification of the expression 43 

heterogeneity that exists within each of these compartments, both within and across patients19. 44 

More recently, single cell assay of transposase accessible chromatin sequencing (scATAC-seq) 45 

has emerged as a means for epigenetically profiling distinct cellular subpopulations, providing 46 

insights into gene regulation and determination of cell fate that complements expression data20. 47 

However, no study to date has described both the transcriptional and epigenomic profile of the VS 48 

TME at single cell resolution, or more broadly, utilized a multi-omic approach to study VS. 49 

 50 

In this study, we performed scRNA-seq and scATAC-seq to characterize the expression 51 

heterogeneity and epigenetic states of cells comprising the VS TME. Within the SC compartment, 52 

we uncovered unexpected heterogeneity of SC phenotypes and found that VS-associated tumor 53 

Schwann cells (VS-SC) resemble repair-type SCs found in the setting of peripheral nerve injury. 54 

We found that a subset of tumors was enriched for repair-like cells and antigen presenting SC 55 

(“Injury-like VS”), while other tumors were characterized by low expression of these 56 

transcriptional profiles and higher expression of core markers of non-myelinating SC (“nmSC 57 

Core VS”). We also found monocytes/macrophages (herein referred to as myeloid cells) to be the 58 

most abundant immune cells in the VS TME, with their enrichment being correlated with higher 59 
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fractions of repair-like and MHC II antigen presenting VS-SCs. Through deconvolution of bulk 60 

RNA-seq and expression microarray datasets, we characterized tumors with high and low myeloid 61 

cell infiltrate as Injury-like and nmSC Core and found that Injury-like tumors were associated with 62 

larger tumor size. Epigenetic analysis of VS-SCs in these distinct tumor states identified regulatory 63 

transcription factors (TFs; e.g., RUNX2, FOSL1, FOSL2) that are also expressed in the setting of 64 

peripheral nerve injury. Lastly, we explored the interactions between VS-SC and myeloid cells to 65 

identify candidate targets that might disrupt these interactions. 66 

 67 

RESULTS 68 

Single cell transcriptional and epigenetic profiling identifies cellular diversity across the 69 

vestibular schwannoma tumor ecosystem 70 

We performed scRNA-seq transcriptional profiling of 15 sporadic VS with paired scATAC-seq 71 

profiling of six tumors to capture a detailed portrait of the human VS tumor ecosystem (Figure 72 

1A-B). After correcting for ambient RNA and removing doublets, low quality cells, and lowly 73 

expressed genes, we retained 112,728 high quality cells and 9,524 genes for downstream 74 

transcriptional analysis, and 31,578 cells with a median of 5,957 fragments per cell for downstream 75 

epigenetic analysis (Figure 1C-D, S1A). 76 

 77 

We first assigned cell-type labels to cells within the scRNA-seq dataset using a cluster-based 78 

approach. We annotated clusters using differentially expressed genes and visualized them with 79 

Uniform Manifold Approximation and Projection (UMAP) (Figure 1C). This analysis revealed 80 

five overarching classes of cells: Schwann cells, fibroblasts, vascular (e.g., pericytes and 81 

endothelial cells), immune (e.g., monocytes/macrophages, T cells, NK cells, and small populations 82 
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of mast cells and B cells) and cycling cells. One additional cluster was characterized by expression 83 

of epithelial markers (KRT1, SLPI) and was almost exclusively derived from one tumor (SCH4). 84 

These cells were likely derived from temporal bone mucosa in the surgical field that were 85 

incidentally captured during specimen collection and were therefore excluded from further 86 

analysis. Among tumor SCs, there were two distinct clusters: One characterized by typical markers 87 

of myelinating SCs (myeSC), including PRX and MPZ 21, and another, larger SC cluster expressing 88 

genes associated with VS and a non-myelinating SC identity (nmSC), including S100B, SOX10, 89 

NRXN1, SCN7A with lack of PRX expression (Figure 1E)22. To confirm our cell type 90 

classifications, we scored all cells in our data with gene signatures derived from published scRNA-91 

seq peripheral nerve transcriptomic atlases21,23–26. We found strong concordance between our cell-92 

type labels and both the individual prior study labels (Figure S1B) as well as the aggregated meta-93 

signature scores for these cell-type signatures (Figure 1F). 94 

 95 

Next, we analyzed the six samples with paired scATAC-seq data. After filtering for low quality 96 

cells and doublets (Figure S2A-C), we performed dimensionality reduction (Figure 1D) and an 97 

initial cluster-based analysis using marker genes derived from gene accessibility, as was performed 98 

with scRNA-seq data (Figure S2D). Unconstrained pairing of scRNA-seq cells with cells in the 99 

scATAC-seq atlas based on shared transcriptional and gene score profiles showed excellent 100 

overlap with the a priori scATAC cluster-based assignments (Figure S2E-H), suggesting that we 101 

retained all major VS TME cell-type classes in the scATAC-seq data and allowing us to reliably 102 

perform integrative downstream analysis combining transcriptional and epigenetic data on an 103 

individual cell basis. 104 

 105 
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VS-SC adopt diverse functional states 106 

VS typically carry a low tumor mutational burden, with the most common genetic aberrations 107 

being NF2 loss of function mutations and loss of chromosomal arm 22q27. We inferred copy 108 

number alterations (CNA) of single cells using CONICSmat28. As expected, we observed 109 

enrichment for CNA within the SC clusters relative to other cell types (Figure 2A) consistent with 110 

these being the tumorigenic cells of VS. Notably, 22q loss was observed in 4 of our 15 samples 111 

and was almost exclusive to the nmSC cluster. Based on our clustering analysis, SCs harboring 112 

22q loss did not significantly differ transcriptionally from cells without 22q loss, suggesting that 113 

VS-SC functional states may converge downstream of initial mutagenic events. 114 

 115 

Next, we obtained publicly available RNA microarray expression datasets that compared gene 116 

expression in VS samples relative to control nerves (n = 125 tumor samples; GSE14180129, 117 

GSE3964530, and GSE10852431) and compared expression of the top 50 differentially expressed 118 

genes (DEGs) defining the nmSC and myeSC clusters between tumors and normal nerves in the 119 

microarray data (Figure 2B, Figure S3A). The gene signature defining VS-nmSC was markedly 120 

enriched in tumors relative to normal nerves across all 3 datasets, consistent with prior work 121 

suggesting VS-SC lose their differentiated, myelinating phenotype in favor of a less differentiated, 122 

non-myelinating phenotype32. Interestingly, there was mixed upregulation and downregulation of 123 

VS-myeSC associated genes in tumors relative to normal nerve controls, with a notable decrease 124 

in expression of canonical myelination markers (e.g., PRX, MLIP, NFASC, NCMAP, FGFBP2). 125 

The mixed expression pattern of myeSC markers in tumors relative to normal nerve may represent 126 

the capture of normal bystander myeSCs or may suggest that VSs harbor a subpopulation of SCs 127 

that exist in an intermediate state before losing their myelination phenotype. Overall, this analysis 128 
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served as further evidence that the VS-SC in the scRNA-seq data were indeed the tumorigenic 129 

cells of interest. 130 

 131 

We next sought to characterize the functional states of the VS tumor SCs both within and across 132 

tumors. We selected the myeSC and nmSC clusters from the full scRNA-seq dataset and 133 

reanalyzed them by performing dimensionality reduction and batch correction, revealing ten SC 134 

subclusters, which we narrowed down to eight meta-clusters based on transcriptional similarities 135 

identified using hierarchical clustering (Figure 2C, Figure S3B), differential expression analysis 136 

(Figure 2D), and gene ontology enrichment analysis for biologic processes (GOBP, Figure S3C). 137 

A similar approach was taken to classify the other cell types comprising the VS TME (Figure S4). 138 

 139 

We identified clusters associated with myelination (e.g., PRX, NCMAP), hypoxia (e.g., VEGFA, 140 

HILDPA), cell stress (e.g., JUNB, FOSB), and interferon-response (e.g., ISG15, IFIT1). Two 141 

clusters of cells expressed core markers of nmSC identity, including NRXN1, SCN7A, and NCAM1, 142 

and largely lacked expression of the other VS-SC clusters (“core”). Interestingly, we noted cells 143 

enriched for genes associated with MHC class II antigen presentation (e.g., CD74, HLA-DRB1), 144 

consistent with SCs in the post-nerve injury setting, which are known to upregulate the antigen-145 

presenting machinery to recruit circulating immune cells and promote their proliferation33. 146 

Furthermore, two clusters had increased expression of NGFR, RUNX2, SPP1, and GAP43, all of 147 

which are upregulated in the setting of peripheral nerve injury (“repair-like”)34–37. 148 

 149 

Prior studies of VS have suggested that tumorigenic SCs adopt a de-differentiated, immature SC 150 

phenotype, while others have suggested that VS-SCs resemble “repair Schwann cells” in the 151 
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setting of an acute nerve injury38. To better understand the phenotypes of VS-SC, we used 152 

transcriptional signatures from murine Schwann cells reported in scRNA-seq analyses of 153 

peripheral nerves in multiple contexts, including steady-state adult, early development, and post-154 

injury23,24,26. Scoring the VS-SCs for each of these signatures indicated that VS-SCs most closely 155 

resemble SCs after peripheral nerve injury (Figure 2E). Interestingly, VS-SCs scored low for 156 

cycling SC markers seen in these settings. Together, these findings suggest that VS-SC 157 

downregulate myelination-associated genes, upregulate gene expression programs that promote 158 

nerve repair and immune cell recruitment, and largely remain in a non-proliferative state. 159 

 160 

VS TME immune cells are disproportionately cycling 161 

The observation that VS-SCs do not strongly express markers of proliferation motivated us to 162 

return to our analysis of the broader cell type composition of the VS TME, in which we observed 163 

a distinct cluster of cells that was driven by cell cycle marker expression (Figure 1C). After 164 

assigning these cells to the VS cell type they most closely resembled, we found that VS-SC and 165 

stromal cells were underrepresented whereas immune cells were overrepresented in the cycling 166 

cell cluster (Chi-squared test, p < 0.001; Figure 3A). Next, we turned our attention to all cells 167 

across the entire dataset, excluding the cycling cell cluster. We scored each cell type for cell cycle 168 

markers and found that immune cells collectively scored higher for both S-Phase and G2M-Phase 169 

markers (ANOVA p < 0.001; Figure 3B). To validate these observations, we performed 170 

immunohistochemical staining of the same tumors used for scRNA-seq. We used CD45 to identify 171 

immune cells and Ki67 to identify cycling cells (Figure 3C). Consistent with our scRNA-seq 172 

analyses, we found that a higher proportion of CD45 positive cells were Ki67 positive than CD45 173 
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negative cells (Figure 3D). Together, these findings suggested that immune cells in the VS TME 174 

are disproportionately proliferative and therefore may play a vital role in tumor progression. 175 

 176 

VS tumors enriched for nerve injury-related subtypes are associated with increased myeloid cell 177 

infiltrate 178 

We next sought to characterize the degree to which VS-SC subtypes varied across samples (i.e., 179 

inter-tumoral heterogeneity). We assigned subtype scores to each sample by first scoring all VS-180 

SCs for each meta-cluster signature and then taking the mean for each signature. Unsupervised 181 

hierarchical clustering of these sample scores revealed two groups of tumors, one enriched for 182 

repair-like and MHC II signatures (“Injury-like”) and the other enriched for the core signature 183 

(“nmSC Core”) (Figure 4A). These groups differed most by their expression of the repair-like, 184 

MHC II, and core programs (Figure 4B; multiple comparisons corrected for with BH method, FDR 185 

< 0.2). Interestingly, we found that both the repair-like (R = 0.77, p < 0.05) and MHC II (R = 0.61, 186 

p < 0.05) scores were associated with an increased fraction of myeloid cells (Figures 4C). The core 187 

meta-signature scores did not correlate with degree of myeloid infiltrate. These findings suggest 188 

that the VS can be broadly divided into two groups – Injury-like VS and nmSC Core VS – based 189 

on the composition of their TME. 190 

 191 

VS-associated myeloid cells have properties of tumor-associated macrophages and acute 192 

inflammatory cells 193 

Since myeloid cells were the most abundant immune cell type in our dataset and therefore might 194 

play a role in the pathogenesis of VS, we sought to better characterize the diversity of their 195 

functional phenotypes. Given their lack of discrete states, as has been observed in other scRNA-196 
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seq studies of human tumors39, we utilized a previously described implementation of non-negative 197 

matrix factorization (NMF) to identify gene expression programs that recurred across samples (i.e., 198 

“meta-programs” (MP))40. Using this approach, we identified 69 distinct gene expression programs 199 

across patients, of which eight MPs exhibited similar expression across patient samples (Figure 200 

S4E-F). Each MP was then annotated according to its functional enrichment. We used gene 201 

signatures from recently published pan-cancer and pan-tissue scRNA-seq atlases of myeloid cell 202 

phenotypes to evaluate the VS myeloid MP signatures in the context of these integrative 203 

resources39,41. As expected, we saw marked overlap between the VS myeloid inflammatory MP 204 

and pan-cancer M1 signature, the VS angiogenic MP and pan-cancer signatures, and the VS 205 

phagocytic MP and pan-cancer signatures (Figure S4G). The pan-cancer M2 signature was less 206 

specific, with M2-associated genes expressed across several VS myeloid MPs (e.g., phagocytic, 207 

angiogenic, migratory, and granulocytic). This is consistent with more recent observations that 208 

macrophages take on a variety of transcriptional states in vivo beyond the traditional M1/M2 209 

states42. Interestingly, when looking at pan-tissue signatures comparing cancer and inflammatory 210 

associated monocytes and macrophages, some VS myeloid cells (e.g., granulocytic, angiogenic, 211 

and inflammatory) expressed markers associated with the inflammatory monocytic signature while 212 

others (e.g., phagocytic, migratory, and oxidative phosphorylation) expressed cancer 213 

monocyte/macrophage signature genes (Figure S4H). Our analysis suggests that many VS myeloid 214 

cells are monocytic in origin with pro-inflammatory, M1-like signatures, while other subsets 215 

appear to adopt a spectrum of phenotypes resembling M2-like macrophages. 216 

 217 

Myeloid cell infiltration varies across tumors and is associated with tumor size 218 
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To assess the cellular composition of the TME in a larger cohort of patients, we used previously 219 

described deconvolution methods on VS tumors characterized with bulk transcriptomic 220 

approaches (i.e., RNA-seq and expression microarray)43. Using our scRNA-seq gene expression 221 

data to define a cell-type signature matrix, we performed digital cytometry using CIBERSORTx 222 

on a cohort of 22 newly sequenced tumors combined with bulk transcriptomic data (153 tumors) 223 

from previously published reports27,29–31,44. Interestingly, we noticed a marked variability in the 224 

proportion of immune cells across tumors (Figure 4D). Furthermore, increasing immune cell 225 

infiltrate was strongly correlated with the imputed fraction of myeloid cells (R = 0.93, p < 2.2e-16) 226 

and only weakly correlated with the fraction of T cells (R = 0.26, p = 0.00021; Figure S5A), 227 

suggesting that variability in immune cell composition is primarily driven by the fraction of 228 

myeloid cells. Inversely, the fraction of nmSC was anti-correlated with the fraction of immune 229 

cells (R = -0.8, p < 2.2e-16; Figure S5A). 230 

 231 

Next, we performed unsupervised hierarchical clustering of the imputed cell fractions from each 232 

cohort of bulk expression samples. We found that each dataset could be classified into two distinct 233 

cohorts of tumors. One group was characterized by a lower proportion of nmSCs and high myeloid 234 

cell infiltrate, reminiscent of the Injury-like VSs in the scRNA-seq analysis, which we labeled 235 

“Injury-like”. The other group was characterized by a predominance of nmSCs and low imputed 236 

fractions for all other cell types including macrophages, which we labeled “nmSC Core” (Figure 237 

4E, Figure S5B-F). We then assessed whether the Injury-like and nmSC Core cohorts were 238 

associated with any clinical parameters of interest. Notably, the nmSC Core tumor group was 239 

overrepresented in NF2 syndrome-associated tumors (Figure 4F, Fisher’s exact test, p = 0.01149). 240 

Furthermore, large tumors (≥ 2 cm in greatest axial dimension or Hannover Scale ≥ 3a) were 241 
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disproportionately associated with the Injury-like cohort, while small tumors were 242 

disproportionately classified as nmSC Core (Figure 4F, Fisher’s exact test, p = 0.01361). 243 

Comparison of other clinical parameters of interest (prior radiation, hearing loss, tinnitus, vertigo, 244 

and tumor consistency) did not reveal any significant associations (data not shown). Thus, across 245 

a large cohort of patients, the Injury-like tumor composition is associated with larger tumor size. 246 

 247 

Analysis of chromatin accessibility in Injury-like VS-SC identifies TFs enriched in peripheral 248 

nerve injury 249 

Given that Injury-like and nmSC Core VS-SCs differ transcriptionally, we wanted to characterize 250 

how these cells might differ epigenetically. We therefore turned our attention to the VS-SCs in the 251 

scATAC-seq dataset, which was comprised of three Injury-like and three nmSC Core tumors based 252 

on scRNA-seq analysis (Figure 4A). Indeed, after selecting scATAC-seq VS-SCs, and assigning 253 

them to either Injury-like or nmSC Core groups based on the tumor from which they were derived, 254 

we observed that the Injury-like and nmSC Core cells were distributed differently across UMAP 255 

space (Figure 4G). Accordingly, analysis of differentially accessible peaks (DAPs) identified 5616 256 

statistically significant marker peaks with Log2FC ≥ 2 differentiating the two groups of VS-SCs 257 

(Figure S6A-B), further suggesting that these two groups of VS-SCs differ from each other 258 

significantly at the epigenetic level. Next, we performed TF motif enrichment analysis on a per-259 

cell level based on accessibility of TF binding sites from CIS-BP. We then identified relevant TFs, 260 

defined as TFs with gene expression (either inferred from scATAC-seq data or measured from 261 

scRNA-seq data) that is positively correlated with increased accessibility of their motif, for Injury-262 

like and nmSC Core SCs (examples of relevant TFs are shown in Figure S6B). Because of the 263 

correlation between motif accessibility and associated TF expression, these TFs may be most 264 
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critical to defining cell state. Indeed, we identified several enriched TF motifs with corresponding 265 

increased TF expression among Injury-like (e.g., BACH1, SMARCC1, FOSL1, FOSL2, RUNX2) 266 

and nmSC Core (e.g., CTCF, NFYC, KLF7) SCs (Figure 4H). Interestingly, many Injury-like TFs 267 

have been strongly implicated in the normal SC response to nerve injury45–48. For example, an 268 

increase in both FOSL2 binding motifs and FOSL2 gene expression have been found in repair 269 

SCs45, reminiscent of the repair-like expression profile found in Injury-like VS. In contrast, CTCF 270 

was found to be critical for SC differentiation into myelinating SCs, the most mature SC state, 271 

consistent with the decreased repair-like expression profile in nmSC Core VSs47. 272 

 273 

Injury-like VS-SCs secrete ligands known to promote myeloid cell migration and proliferation 274 

We next sought to characterize the signaling pathways by which VS tumor cells might 275 

communicate with other cell populations in the VS TME in Injury-like and nmSC Core tumors. 276 

We first focused on tumor-wide patterns of intercellular communication. We inferred network-277 

wide ligand-receptor interactions using CellChat49 and found that Injury-like tumors had a higher 278 

total number of inferred intercellular interactions and overall higher imputed interaction strength, 279 

largely driven by stromal and SC interactions (Figure S6C). 280 

 281 

Next, we sought to better understand the specific signaling pathways upregulated and 282 

downregulated in Injury-like VSs. Notably, CCL, LIGHT, NECTIN, PERIOSTIN, HGF, PTN¸ and 283 

CSF signaling pathways had stronger and more abundant interactions in Injury-like tumors (Figure 284 

5A). A relative increase in outgoing CCL signals was observed across all cell types in Injury-like 285 

tumors except for mast cells and B cells (Figure 5B), with endothelial cells being the primary 286 

receiver of these signals via ACKR1 expression. ACKR1 encodes the Duffy antigen receptor, which 287 
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mediates chemokine transcytosis and enhances leukocyte migration and may therefore promote 288 

immune cell recruitment in Injury-like VSs50. Interestingly, Injury-like fibroblasts and SCs had 289 

increased expression of HGF and its receptor, MET, respectively. Prior work has established HGF 290 

as a crucial activator of repair Schwann cells in peripheral nerve injury models, suggesting that 291 

this signaling may induce the VS-SC states seen in Injury-likeVSs51. Lastly, CSF signaling 292 

distinctly arose from both myeSC and nmSC in Injury-like tumors, with myeloid cells and cycling 293 

cells receiving these signals. Both IL-34 and CSF1 are known chemotactic factors for circulating 294 

monocytes secreted by SCs, and previous work has shown that both IL-34 and CSF1 are expressed 295 

in VSs, with a weak correlation between tumor growth and CSF1 levels described52,53. Our results 296 

suggest that this signaling is increased in Injury-like tumors. 297 

 298 

Given the abundance of myeloid cells in Injury-like VS, we sought to further characterize VS-SC 299 

to myeloid signaling at the cell subtype level. We sought to identify secreted ligands that were 1) 300 

strongly expressed by VS-SC in the scRNA-seq data, 2) differentially expressed in tumors relative 301 

to healthy nerve controls in the bulk expression data, 3) and had cognate receptors expressed in 302 

the VS myeloid cells. Our search identified seven candidate ligands with 10 predicted receptors 303 

(Figure 5C). Of note, IL34 was expressed by repair-like SCs and MHC II SCs, which also highly 304 

expressed CSF1, with the cognate receptor CSF1R most strongly expressed in migratory myeloid 305 

cells. We therefore hypothesized that VS-SCs promote myeloid cell migration and proliferation. 306 

To test this hypothesis, we applied conditioned media from a previously utilized cell line model 307 

of schwannoma (immortalized human Schwann cells; HSC) to human CD14+ peripheral blood 308 

monocytes27. We found that conditioned media from the schwannoma line promoted the migration 309 

and proliferation of monocytes in vitro, suggesting that secreted VS-SC factors may influence both 310 
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processes (Figure 5D). Together these findings suggest that VS-SCs secrete ligands that recruit 311 

monocytes and drive their proliferation, potentially contributing to the progression of VS (see 312 

model in Figure 5E). 313 

 314 

DISCUSSION 315 

The fundamental factors driving VS tumor progression and unfavorable clinical outcomes remain 316 

poorly understood, and consequently, effective medical therapies to limit VS growth remain 317 

elusive. Our single-cell multi-omic analysis of sporadic VS represents an important step in 318 

understanding the intra- and inter-tumoral heterogeneity underlying their pathogenesis and 319 

progression. Among our key findings is an unexpected diversity within the SC compartment of 320 

these tumors. Consistent with prior reports, the majority of VS-SCs are characterized by loss of 321 

the myelinating phenotype38. Furthermore, using transcriptional signatures derived from the 322 

peripheral nerves of mice under steady state, post-injury, and developmental conditions, we found 323 

that VS-SCs most resemble SCs in the setting of peripheral nerve injury, with subpopulations of 324 

VS-SC adopting transcriptional states similar to repair-type SCs. Interestingly, we noted that, in 325 

select tumors, enrichment of repair-like VS-SCs correlated with VS-SCs that express the MHC 326 

class II antigen presentation machinery. Furthermore, this group of tumors also had 327 

disproportionately higher fractions of cells of myeloid lineage (e.g., monocytes and macrophages) 328 

comprising the TME. In the setting of peripheral nerve injury, SCs are believed to be the initial 329 

recruiters of monocytes and macrophages, which then contribute to breakdown of myelin and 330 

recruitment of additional leukocytes54. Accordingly, our findings reveal that the TME of Injury-331 

like VSs resembles the cellular microenvironment of a peripheral nerve in the initial days after 332 

injury. 333 
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 334 

In contrast to damaged peripheral nerves, where SCs proliferate along the trajectory of 335 

regenerating axons, we observed low proliferative capacity among VS-SCs in our data, which is 336 

consistent with the typical slow growth of these lesions55. Interestingly, we found that infiltrating 337 

immune cells expressed markers of cell cycle progression at a higher rate than VS-SC or VS 338 

stromal cells, which suggests that cues within the VS TME promote this immune cell turnover and 339 

renewal. Our findings are consistent with a prior immunohistochemical study of VS tumors with 340 

sudden growth, which found that tumor-associated macrophages (TAM) comprised 50-70% of all 341 

proliferating cells in situ56. Thus, our analysis extends on these findings and converges on the 342 

overarching principle that myeloid cell proliferation and infiltration may be key cell biological 343 

processes that underlie tumor growth. 344 

 345 

In our deconvolution analysis of 175 tumors characterized by bulk expression sequencing, we 346 

found that Injury-like tumors were associated with larger tumor size. The variable presence of 347 

TAMs in the VS TME has been previously described, but their role in VS pathogenesis and their 348 

functional phenotypes have been poorly characterized52,56,57. For example, increased presence of 349 

macrophage markers on histology has been associated with tumor growth, poor post-operative 350 

facial nerve outcomes, and poor pre-operative hearing56,58,59. Other reports have suggested that an 351 

inflammatory dimension of VSs may contribute to adverse outcomes in these patients and have 352 

served as the basis for ongoing trials evaluating the potential of aspirin to mitigate sudden tumor 353 

growth60. Interestingly, among this broad cohort of patients, NF2-associated VS tumors were 354 

almost exclusively low in macrophage infiltrate. Why these lesions harbor fewer infiltrating 355 

immune cells remains an important question, as our cohort of patient samples characterized by 356 
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scRNA-seq did not include any syndromic NF2 patient tumors. Future work characterizing both 357 

sporadic and syndromic VS will help elucidate the differences in microenvironmental cues that 358 

promote myeloid cell recruitment in specific tumors. 359 

 360 

Given that Injury-like VSs may be associated with worse patient outcomes, we sought to 361 

characterize the transcriptional regulation and cell-to-cell signaling of these tumors relative to 362 

nmSC Core VSs to identify potentially novel therapeutic targets. We found that nmSCs from 363 

Injury-like and nmSC Core tumors bear different epigenetic profiles. Furthermore, we identified 364 

several relevant TFs that not only have accessible motifs in both Injury-like and nmSC Core cells 365 

but also demonstrated increased gene expression of the relevant TF in the respective VS-SC groups 366 

(e.g., RUNX1, FOSL1, FOSL2, etc.). Regarding cell-to-cell signaling, while there were pathways 367 

more highly expressed in Injury-like tumors (e.g., CCL, MIF, etc.), CSF signaling appeared to be 368 

specific between VS-SC and myeloid cells. This signaling axis is seen in inflammatory 369 

neuropathies, and our results suggest its role may extend to VS tumor progression 53,61. 370 

Experiments using an in vitro VS model and healthy donor CD14+ monocytes further support the 371 

hypothesis that VS-SCs promote monocyte migration and proliferation. Taken together, our 372 

findings uncover potential pathophysiological mechanisms that may drive tumor growth and 373 

require major investigation, including future pre-clinical work to screen regulatory transcription 374 

factors and/or receptor-ligand pathways for their effects on tumor behavior. 375 

 376 

There are several limitations of this study. Patients in our scRNA-seq cohort were limited to 377 

sporadic VS, and our findings pertaining to the TME composition and SC states may not be 378 

generalizable to patients with schwannoma of other sites or patients with syndromic NF2-379 
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associated tumors. In addition, our patient cohort was restricted to patients who underwent surgery, 380 

and thus we were unable to characterize small, asymptomatic tumors since such lesions are 381 

routinely observed radiographically or treated with stereotactic radiosurgery. 382 

 383 

In summary, our work provides important insights into VS biology as well as a detailed 384 

transcriptomic and epigenetic single cell atlas of the Schwann, stromal, and immune cells that 385 

comprise the VS TME. Our analysis suggests that VSs can be categorized based on nerve Injury-386 

like VS-SC gene expression programs and associated myeloid cell infiltrate. Furthermore, Injury-387 

like tumors appear to be associated with larger tumor size, and chemokines secreted by VS-SCs 388 

may recruit circulating monocytes. These findings uncover previously undescribed mechanisms 389 

of pathogenesis and tumor progression in VS and suggest novel biomarkers and therapeutic targets 390 

to be explored in future studies.  391 
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MATERIALS AND METHODS 392 

Human tumor specimens 393 

Patient samples used for scRNA-seq and scATAC-seq were all derived from patients treated at 394 

Barnes-Jewish Hospital (St. Louis, MO, USA). All patients provided written informed consent to 395 

participate in the study following Institutional Review Board Approval (Protocol #201111001 , 396 

#201103136, and #201409046). Patient characteristics are summarized in Figure 1B and Table S1. 397 

Tumor samples used for bulk RNA-seq analysis consisted of paraffin-embedded tissue from 22 398 

VS patients treated at Baylor College of Medicine (BCM; Houston, TX, USA) (Table S2). All 399 

patients provided written informed consent, and tumor tissues were collected under an institutional 400 

review board (IRB)-approved protocol at BCM by the Human Tissue Acquisition and Pathology 401 

Core (Protocol H-14435). All schwannomas were reviewed by a board-certified neuropathologist 402 

according the 2016 WHO guidelines. Raw data from previously published studies were obtained 403 

as follows: RNA-seq and expression microarray data that were publicly available were 404 

downloaded (GSE3964530, GSE14180129, GSE10852431, EGA0000100188627); data from Aaron 405 

et al44 were kindly shared upon request. Clinical annotations accompanying the sample data from 406 

Torres-Marin et al30 were also kindly shared upon request. 407 

 408 

Fresh tumor dissociation 409 

Samples processed for scRNA-seq and scATAC-seq were collected at the time of surgical 410 

resection and immediately processed. Tumor samples were minced and dissociated using the 411 

Human Tumor Dissociation Kit (Miltenyi Biotech, Bergisch Gladbach, Germany) per 412 

manufacturer guidelines. The dissociated cell suspensions were then passed through 40µm filter, 413 

pelleted through centrifugation, and resuspended in AutoMACS Rinsing Solution with 0.5% 414 
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bovine serum albumin (BSA; Miltenyi Biotech). Red blood cell lysis was performed on all samples 415 

with Gibco ACK Lysing Buffer (ThermoFisher Scientific, Waltham Massachusetts, US) and was 416 

followed by debris removal via density gradient when necessary (Debris Removal Solution, 417 

Miltenyi Biotech, Bergisch Gladbach, Germany). Cell viability was confirmed to be > 80% using 418 

0.4% Trypan Blue staining (Invitrogen, catalog #T10282) and manual counting with a 419 

hemocytometer. For samples in which scATAC-seq was additionally performed, nuclei isolation 420 

was performed according to the 10X Demonstrated Protocol “Nuclei Isolation for Single Cell 421 

ATAC Sequencing” (Rev D). 422 

 423 

Tumor nuclei isolation for scRNA-seq 424 

Fresh frozen samples used for scRNA-seq were collected at the time of surgical resection and 425 

frozen in OCT compound embedding media (Tissue-Tek, Torrance, California) on a pre-chilled 426 

aluminum block resting on dry ice, and stored at -80 oC. Tissue scrolls were cut at 30 µm using a 427 

Cryostat (50-100 scrolls were cut per sample, depending on the tissue size) and maintained at -428 

80°C until the time of nuclei isolation. Lysis buffer (consisting of Tris-HCl, NaCl, MgCl2, Nonidet 429 

P40 Substitute, 0.1M DTT, RNase inhibitor, and nuclease free water) was added to the tissue 430 

scrolls, which were homogenized using a Pellet Pestle while on ice. Additional lysis buffer was 431 

then added, and the mixture was incubated on ice for 5 minutes. The suspension was passed 432 

through a 70 µm strainer and centrifuged before being washed with a solution of PBS with 1% 433 

BSA and 1U/µl Rnase inhibitor, incubated on ice for 5 minutes, centrifuged, and resuspended in 434 

1ml PBS with 1% BSA and 1 U/µl Rnase inhibitor. The nuclei were then labeled with DRAQ5 435 

(Thermo Scientific, catalog #62251) and selected using FACS sorting performed by the Siteman 436 

Flow Cytometry Core before being carried forward for single nuclei library creation. 437 
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 438 

scRNA-seq library preparation and sequencing 439 

Single cell and single nuclei suspensions were processed using 10X Chromium Next GEM Single 440 

Cell 3’ Reagent Kits v3.1 (10X Genomics, Pleasanton, CA) per manufacturer protocols. Briefly, 441 

cells were added onto the 10X Next GEM Chip G to form Gel Bead-in-Emulsions (GEMs) in the 442 

Chromium instrument followed by cell lysis, barcoding, cDNA amplification, fragmentation, 443 

adaptor ligation, and sample indexed library amplification. Completed gene expression libraries 444 

were sequenced on Illumina NovaSeq S4 flow cells at a target depth of 50,000 read pairs per cell. 445 

Single cell RNA and single nucleus RNA sequencing reads were aligned to human reference 446 

GRCh38 v2020-A from 10x Genomics using the 10x Genomics Cellranger-4.0.0 and Cellranger-447 

6.0.0 (include-introns flag set to true) pipelines, respectively. Sequencing quality control metrics 448 

are listed in Table S3. 449 

 450 

snATAC-seq library preparation and sequencing 451 

snATAC-seq libraries were prepared using the 10X Chromium Next GEM Single Cell ATAC 452 

Reagent Kits v1.1 (10X Genomics) according to the manufacturer’s protocols. In brief, nuclei were 453 

incubated in a transposition mixture including a transposase to fragment open chromatin regions. 454 

Transposed nuclei were then loaded onto the 10X Next GEM Chip H to generate GEMs, followed 455 

by sample indexed library amplification. snATAC-seq libraries were sequenced in Illumina 456 

NovaSeq S1 flow cells at a target depth of 250M total read pairs per sample. The resulting FASTQ 457 

files were aligned to GRCh38 v2020-A using the 10x Genomics Cellranger ATAC-1.2.0 count 458 

function. 459 

 460 
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scRNA-seq/snRNA-seq data preprocessing 461 

Ambient RNA removal and empty droplet calling was performed using CellBender62. Samples 462 

were processed individually and iteratively with adjustment of the parameters to achieve optimal 463 

learning curves and barcode rank plots for each sample. Final parameters used are listed in Table 464 

S4. CellBender outputs consisting of counts matrices adjusted for ambient RNA and excluding 465 

empty droplets were then preprocessed for doublet calling using Scrublet63 and ScanPy64 as 466 

follows: a) Cells with < 500 genes were excluded; b) Genes not expressed in at least 0.1% of cells 467 

were excluded; c) Percent mitochondrial counts was computed for each cell, Leiden clustering 468 

performed, and cells with percent mitochondrial counts greater than 2 standard deviations from 469 

their respective cluster mean percent mitochondrial counts were removed. Samples were then 470 

processed individually and iteratively, varying the n-neighbors and expected_doublet_rate and 471 

choosing the values for each that resulted in a bimodal simulated doublet histogram with a bimodal 472 

curve fit R > 0.85 and the fraction of the second Gaussian less than or equal to the 99th percentile 473 

of the first. 474 

 475 

The filtered gene expression matrix was then processed and analyzed by using Seurat v4.0.065. To 476 

filter low-quality cells, we first removed cells for which less than 1000 genes were detected or 477 

cells that contained greater than 20% of genes from the mitochondrial genome. We included genes 478 

with ≥5 UMI in at least 10 cells for downstream analysis. 479 

 480 

scATAC-seq data preprocessing and clustering analysis 481 

scATAC-seq preprocessing and analysis was performed using ArchR 1.0.1 as detailed in the 482 

ArchR manual66. Briefly, nuclei with a TSS < 10 and with < 1000 fragments were excluded. 483 
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Doublets were identified and removed using the ArchR addDoubletScores and filterDoublets 484 

functions with filterRatio = 1.5, DoubletScore ≤ 50. Dimensional reduction was performed using 485 

the addIterativeLSI function and default ArchR values of sampleCells = 10000, n.start = 10 and 486 

varFeatures = 15000. Next, the addClusters function was used for cell clustering and the 487 

addGeneIntegrationMatrix function was used to perform unconstrained cross-platform linkage of 488 

scATAC-seq cells with snATAC-seq cells from the scRNA-seq atlas without single nucleus 489 

samples. scATAC-seq clusters were then labeled with a cell identity by creating a confusion matrix 490 

between scATAC-seq clusters and cell identities from linked scRNA-seq cells and assigning each 491 

cluster the identity of the greatest proportion of linked scRNA-seq cells in that cluster (Figure 492 

S2E). 493 

 494 

Multiple sample integration with reciprocal principal component analysis 495 

To overcome batch effects related to freshly dissociated samples and nuclei isolated from fresh 496 

frozen samples, Seurat’s reciprocal principal component analysis (RPCA) was used to integrate 497 

the scRNA-seq datasets67. In brief, a SeuratObject was generated for each sample. Each sample 498 

was then normalized using Seurat’s ‘NormalizeData’ function. ‘FindVariableFeatures’ was used 499 

to identify 3000 variable features in each sample. Integration features were selected using 500 

‘SelectIntegrationFeatures’ (nfeatures = 3000). ‘FindIntegrationAnchors’ was used to perform 501 

RPCA integration (by sample) in Seurat. The data was integrated using ‘IntegrateData’ with k-502 

nearest neighbors (k.weight) set to 50; integrated values were returned for all genes in the 503 

SeuratObject. The integrated RPCA object was further scaled using ‘ScaleData’ function and was 504 

projected on the UMAP with 30 principal components. Graph-based clustering was performed 505 

(resolution = 0.5) on the integrated object. Differentially expressed genes were calculated for the 506 
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clusters of “integrated Assay” on the “RNA Assay” using the ‘FindAllMarkers’ function with 507 

only.pos = T (i.e., only for upregulated genes). Only significant (p.adj ≤ 0.05) DEGs were used in 508 

further analysis. 509 

 510 

Gene signature scoring and cell type assignments 511 

To corroborate our cell type labels, we used the top 30 differentially expressed genes (DEGs) from 512 

each peripheral nerve cell-type cluster as defined by the original authors from each study to score 513 

each cell in our VS dataset. The mean score of each signature was calculated for each VS TME 514 

cluster using the Seurat AddModuleScore function (Figure S1B). To assess the consistency of 515 

peripheral nerve cell-type scores across studies, we assigned meta-signatures for similarly labeled 516 

cell clusters within and across the mouse nerve studies (e.g., “Schwann cells” from Carr et al and 517 

“Nm-SCs” from Yim et al were assigned the meta-label “Schwann”) and computed the mean score 518 

of all cluster scores per meta-signatures (Figure 1F). 519 

 520 

Inferred copy number alteration analysis 521 

CONICSmat (0.0.0.1) was used for single cell CNV analysis28. Putative normal and tumor cells 522 

were selected based on initial cell type assignment. All the Schwann cells (nmSC and myeSC) 523 

were assumed to be tumor cells and the rest of the cells in the immune and stromal component 524 

were assumed to be normal cells for input in CONICSmat. Relative count normalization was 525 

performed in Seurat (4.0.0) with scale factor of 105 and log2(CPM/10+1) transformation was 526 

performed on the resulting matrix. A normalization factor was calculated for each column in the 527 

expression matrix using ‘calcNormFactors’ function in CONICSmat. A two-component Gaussian 528 

Mixture Model was estimated for the log2(CPM/10+1) expression matrix. Fit-data plots and z-529 
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score heatmaps were generated using ‘plotAll’ function in CONICSmat. The fit-data plots were 530 

assessed manually for each sample and CNV alteration for its validity. Only the CNVs which 531 

showed clear amplification/deletion were chosen for each sample based on the fit-data plots, BIC 532 

score (≥ 50) and z-score heatmaps. For each significant CNV alteration, specific clusters that 533 

showed the alteration were selected from the z-score heatmaps. For each CNV alteration, a Fisher 534 

exact test was used to confirm enrichment of that CNV alteration in the Schwann cells in 535 

comparison to other cells. 536 

 537 

Comparison of nmSC and myeSC gene signatures of VS tumor samples to normal nerve 538 

Microarray datasets (GSE141801, GSE108524 and GSE39645) were downloaded using 539 

GEOquery’s (v2.58.0) ‘getGEO’ function. Biobase’s (v2.50.0) ‘exprs’ function was used to extract 540 

the microarray eSets (expression data from sets) object and log2 normalization was performed. 541 

The design matrix for a particular microarray dataset was constructed to compare the type of tissue 542 

(i.e., ‘Normal-nerve’ vs. ‘schwannoma’) using the ‘model.matrix’ function from stats package 543 

(v4.0.3). The eSet object was weighted based on the design matrix and a linear model was fit to 544 

the data using limma’s (v3.46.0) ‘arrayWeights’ and ‘lmFit’ functions respectively. 545 

‘makeContrasts’ function from limma was used to extract contrasts between ‘control/normal-546 

nerve’ and ‘tumor/schwannoma’ samples. Empirical Bayes statistics were used for differential 547 

expression analysis between normal and tumor samples using limma’s ebayes function. The 548 

resulting moderated t-statistics were classified into ‘up’, ‘down’ or ‘no change’ using limma’s 549 

‘decideTests’ function. The scaled eSet matrix was further visualized for top 50 differentially 550 

expressed single cell markers from both ‘nmSC’ and ‘myeSC’ cells. ComplexHeatmap (v2.11.1) 551 

was used to annotate differential expression and normal-tumor groupings. 552 
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 553 

VS-SC, stromal, and NK/T cell analysis 554 

Clusters were extracted from the full scRNA-seq dataset and were renormalized and reclustered 555 

using Seurat. The subclusters were corrected/integrated using RPCA, as described above. Samples 556 

with fewer than 40 cells for a given cell type were excluded. Clusters that were presumed residual 557 

doublets (e.g., cells expressing PTPRC in the Schwann cell subcluster) or low quality cells (i.e., 558 

high ribosomal RNA content) were manually removed and the remaining data were reprocessed, 559 

as above. Due to batch effects that were apparent at the subcluster level between the freshly 560 

dissociated cells and isolated nuclei from frozen tissue, we performed the primary subtype analysis 561 

on the freshly dissociated samples, with the fresh frozen samples serving as a validation dataset 562 

(Figure S3D). Gene Ontology Biologic Process Enrichment analysis was performed using the 563 

‘compareCluster’ function from ClusterProfiler (v3.18.1), with the top 25 DEGs of each celltype 564 

subclassification, ranked by average Log2FC. VS-SC were scored using the mouse peripheral 565 

nerve Schwann cell-specific DEGs as defined by the original study authors’ labels with Seurat’s 566 

‘AddModuleScore’ function. 567 

 568 

Cycling cell analysis 569 

Cells from the scRNA-seq data that clustered by expression of cell cycle markers (“Cycling Cells”, 570 

Figure 1C) were subset from the overall dataset and scored by top 30 DEGs of all other broad cell 571 

types comprising the VS TME with Seurat’s AddModuleScore function. Cell-type frequencies 572 

were scaled to reflect cell numbers of the overall dataset. Chi-square testing was used to compare 573 

scaled expected cell-type frequencies with observed cell type frequencies across the entire dataset. 574 
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Cell cycle phase assignments were made using Seurat’s CellCycleScoring function with Seurat’s 575 

included S-phase and G2M phase markers. 576 

 577 

FFPE VS specimens from included patients in scRNA-seq analysis were obtained and used to 578 

generate a tissue microarray (TMA). The TMA was designed to include four separate 2mm cores 579 

from each FFPE block used for pathologic diagnosis at the time of surgery. Tissue arrays were cut 580 

into sections (5μm) on positively charged slides. For immunohistochemistry, sections were stained 581 

using a Bond RXm autostainer (Leica). Briefly, slides were baked at 65oC for 4hrs and automated 582 

software performed dewaxing, rehydration, antigen retrieval, blocking, primary antibody 583 

incubation, post primary antibody incubation, detection (DAB) and (RED), and counterstaining 584 

using Bond reagents (Leica). Samples were then removed from the machine, dehydrated through 585 

ethanols and xylenes, mounted and cover-slipped. Antibodies for Ki67 (Abcam ab16667) and 586 

CD45 (Agilent M0701) were diluted 1:200 in Antibody diluent (Leica). Brightfield images of 3-4 587 

high-power field regions (40x) per patient were obtained using a Nikon ECLIPSE Ti2 inverted 588 

microscope. Quantification of cell type marker scoring was performed in a semi-quantitative 589 

fashion using QuPath-0.3.1. The ‘Positive Cell Detection’ function was used to identify Ki67+ and 590 

Ki67- cells using the following parameters: Nucleus Parameters (Requested pixel size 0.5 µm, 591 

Background radius 8 µm, Median filter radius 0 µm, Sigma 1.5 µm, Minimum area 10 µm2, 592 

Maximum area 40 µm2), Intensity Parameters (Threshold 0.001, Max background intensity 2), 593 

Cell parameters (Cell expansion 0 µm), Intensity threshold parameters (Score compartment 594 

“Nucleus: DAB OD Mean”, Single Threshold 1.4976). CD45+ cells were manually annotated. 595 

Statistical analysis was performed using a two-sided student’s t-test to compare the means of 596 

individual sample means with a significance threshold of p < 0.05. 597 
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 598 

Classification of scRNA-seq VS-SC as Injury-like and Core 599 

VS-SC obtained via scRNA-seq were subset and, using the top 50 DEGs of each VS-SC subtype 600 

based on average log2FC, scored for each of the identified VS-SC subtypes with Seurat’s 601 

‘AddModuleScore’ function. Individual cell scores were averaged across all cells of a given VS-602 

SC subtype across all samples. Sample scores were scaled and samples were hierarchically 603 

clustered based on their scaled scores in an unsupervised manner based on Euclidean distance. The 604 

highest branchpoint of the dendrogram was used to divide the cohort into two groups, which we 605 

ultimately labeled Injury-like and nmSC Core. Mean scores for each VS-SC subtype were 606 

compared between Injury-like and Core using a student’s t-test with correction for multiple 607 

hypothesis testing using the BH method with an FDR or 20%. 608 

 609 

Myeloid cell analysis 610 

To identify cell states in Myeloid subcluster, non-negative matrix factorization was applied to each 611 

sample to identify meta-programs, as previously described40. The data was first normalized using 612 

CPM normalization and was transformed with log2(CPM+1) transformation. The CPM expression 613 

was then centered across each gene by subtracting the average expression of each gene across all 614 

cells. All negative values were then transformed to zero. The NMF was computed on the relative 615 

expression values with number of factors (K) ranging from 2-9. For each value of K, the top 100 616 

genes (with respect to NMF score) were used to define an expression program. For each sample, 617 

we selected “robust” expression programs, which were defined as having an overlap of at least 618 

70% (intra_min = 70) with a program obtained from the same sample using a different value of K. 619 

We removed “redundant” programs, which were defined as overlapping another program from the 620 
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same sample by more than 10% (intra_max = 10). The programs were filtered based on their 621 

similarity to programs of other samples (inter_filter = True). Only those programs which had an 622 

overlap of at least 20% between programs of two samples were considered (inter_min = 20). To 623 

identify MPs across samples, we compared expression programs by hierarchical clustering, using 624 

100 minus the number of overlapping genes as a distance metric. Eight clusters (i.e., MPs) were 625 

defined by manual inspection of the hierarchical clustering results. Final MP signatures only 626 

included those genes that occurred in 50% of the constitutive programs per cluster. Individual 627 

myeloid cells were scored according to these MP signatures using Seurat’s AddModuleScore 628 

function, and the cells were assigned to the metaprogram for which they scored most highly. The 629 

functional annotation of these metaprograms was done using (1) GO term enrichment (data not 630 

shown) and (2) overlap of these metaprogram genes in existing myeloid subtype markers. 631 

 632 

Bulk RNA sequencing, alignment, and preprocessing 633 

Bulk RNA-sequencing of VS was performed by Tempus, Inc. (Chicago, IL, USA), which entailed 634 

sending tumor samples along with saliva for processing according to their protocol68. RNA-seq 635 

reads were then aligned to the GRCh38 assembly with STAR version 2.7.2b (Parameters:--636 

genomeDir Ensembl_GRCh38.fa --genomeLoad NoSharedMemory --outSAMmapqUnique 60 --637 

outSAMunmapped Within KeepPairs --outFilterIntronMotifs RemoveNoncanonicalUnannotated 638 

--outSAMstrandField intronMotif --runThreadN 8 --outStd BAM_Unsorted --outSAMtype BAM 639 

Unsorted --alignTranscriptsPerReadNmax 100000 --outFilterMismatchNoverLmax 0.1 --640 

sjdbGTFfile Ensembl_GRCh38_genes.gtf > genome_accepted_hits.bam). Gene counts were 641 

derived from the number of uniquely aligned unambiguous reads by Picard version 2.6.0. 642 

Sequencing performance was assessed for the total number of aligned reads, total number of 643 
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uniquely aligned reads, and features detected. All gene counts were then imported into the R 644 

(3.2.3). Bioconductor (3.2) package EdgeR and TMM normalization size factors were calculated 645 

to adjust for samples for differences in library size. The previously published RNA-seq datasets 646 

were aligned and processed in an identical manner. 647 

 648 

Deconvolution analysis of bulk expression data 649 

CIBERSORTx was used to build a custom signature reference from the scRNA-seq dataset and 650 

impute cell fractions from each of the RNA-seq and microarray expression datasets on a one-by-651 

one basis to avoid confounding batch effects43. Default CIBERSORTx parameters for generation 652 

of a scRNA-seq reference matrix were used, except for fraction of cells expressing a given gene, 653 

which was set to 0 to avoid overly aggressive filtration of genes for generation of the signature 654 

matrix given the sparse nature of 10X Chromium derived data. S-mode was used for batch 655 

correction during imputation of cell fractions from mixture (e.g., bulk sequencing) data. 656 

Unsupervised hierarchical clustering based on Euclidean distance was performed across all 657 

samples for each individual bulk expression dataset, and cohorts were grouped into “Injury-like” 658 

and “nmSC Core” Cohorts based on the first dendrogram branchpoint. Samples with available 659 

clinical data were split by Injury-like/nmSC Core groups and outcomes of interest were compared 660 

across these two groups using a Fisher’s exact test. 661 

 662 

scATAC-seq VS-SC analysis 663 

All VS-SC from the scATAC-seq dataset were subset and assigned an identity of Injury-like or 664 

nmSC Core based on the classification of the tumor from which they arose by scRNA-seq analysis. 665 

Myelinating SC arose predominantly (> 90%) from a single nmSC Core sample and were therefore 666 
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excluded from further analysis. To reduce biasing by outlier cells when comparing the two groups, 667 

cells in the top and bottom 5th percentile for number of fragments, TSS enrichment, and reads in 668 

TSS were excluded from further analysis. Approximately 750 cells remained in each of the Injury-669 

like and nmSC Core groups after filtration and were analyzed further. Pseudo-bulk replicates were 670 

created using the ArchR addGroupCoverages function with minReplicates = 3, minCells = 100, 671 

maxCells = 500, and sampleRatio = 0, and peak calling was performed using MACS2 (2.2.7.1) 672 

(https://pypi.org/project/MACS2/) as detailed in the ArchR manual. Per-cell transcription factor 673 

motif deviations were added using the addDeviationsMatrix function and motifs annotated using 674 

the CIS-BP annotations built in to ArchR. Positive transcription factor regulators were identified 675 

using the correlateMatrices function and pairing either the gene score matrix (containing 676 

chromosomal accessibility data) or the gene integration matrix (containing gene expression data 677 

from linked scRNA-seq cells) with the transcription factor deviations matrix (see ArchR manual 678 

for details). Relevant TFs were defined based on default ArchR parameters (correlation > 0.5, 679 

adjusted p < 0.01 and max delta > 75th percentile of all max deltas). 680 

 681 

Ligand-receptor analysis 682 

Cell-cell communication networks were inferred using the standard CellChat inference and 683 

analysis of cell-cell communication workflow CellChat (1.5.0)49. In brief, the scRNA-seq was 684 

divided into two cohorts (Injury-like and Core), each individual dataset then underwent library 685 

size normalization followed by log transformation using Seurat’s ‘NormalizeData’ function. The 686 

CellChatDB curated database of ligand-receptor interactions was used, over-expressed 687 

ligand/receptor genes were identified within each broad cell group (e.g., nmSC, fibroblasts, etc.) 688 

using the ‘identifyOverExpressedGenes’ function, and then each ligand-receptor interaction were 689 
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identified using the ‘identifyOverExpressedInteractions’ function. Communication probabilities 690 

were calculated for both ligand-receptor pairs and pathway level interactions using the 691 

‘computeCommunProb’ and ‘computeCommunProbPathway’ functions, respectively. The cell-692 

cell communication networks were then summarized using the ‘aggregateNet’ function to 693 

determine the number of unique links and overall communication probability. The two 694 

communication networks (i.e., Injury-like VS and nmSC Core VS) were compared following the 695 

CellChat manual for comparison analysis of multiple datasets. Functions were performed with 696 

default parameters unless otherwise stated. Total interactions and interaction strength were 697 

determined using the ‘compareInteractions’ function and visualized on a cell-type level as a 698 

heatmap using the newVisual_heatmap’ function. Joint manifold learning and classification of the 699 

inferred communication networks based on their functional similarity was performed using the 700 

‘computeNetSimilarityPairwise’, ‘netEmbedding’, and ‘netClustering’ functions. Conserved and 701 

context-specific signaling pathways for each communication network were compared using the 702 

‘rankNet’ function and a Wilcoxon rank-sum testing was performed with p cutoff of 0.05. Cell-703 

type population level signaling was visualized in a heatmap using the 704 

‘netAnalysis_signalingRole_heatmap’ function for those pathways that were most specific to 705 

Injury-like tumors (Figure 5A). 706 

 707 

Specific interactions between VS-SC and myeloid cells were determined in the following manner. 708 

First, we used an extensive, previously described ligand-receptor database to identify potential 709 

signaling pairs (NicheNet)69. We identified ligands expressed in the VS-SC populations with an 710 

average Log2FC of 0.5 and expression in at least 5% of VS-SC and with similarly expressed 711 

cognate receptors in the myeloid cells. This list was further refined by only including ligand and 712 
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associated receptor genes that were differentially expressed by tumors relative to normal nerve 713 

controls in the expression microarray datasets, as described above. Lastly, the resulting list was 714 

filtered to only include those ligands that were known to be secreted molecules by review of the 715 

existing literature. 716 

 717 

Cell lines 718 

HSC cells were generously provided by Dr. Gelareh Zadeh and colleagues. They were cultured in 719 

DMEM (ThermoFisher Scientific) supplemented with 10% fetal bovine serum (FBS) (Peak 720 

Serum, Fort Collins, CO) 1X penicillin-streptomycin (PSG) (ThermoFisher Scientific), and 721 

supplemented with 2 µL forskolin (Sigma-Aldrich). 722 

 723 

CD14+ monocyte isolation 724 

Peripheral blood mononuclear cells (PBMC) were obtained from leukocyte reduction system cones 725 

that are classified as non-human research under the Washington University Human Research 726 

Protection Office. PBMC were isolated using SepMate tubes (StemCell Technologies) and Ficoll-727 

Paque density gradient medium (Fisher Scientific). CD14+ cells were positively selected using 728 

anti-CD14-conjugated magnetic microbeads (Miltenyi Biotec). 729 

 730 

Migration assay with conditioned media 731 

Conditioned media (CM) was obtained as follows: HSC cells were plated at a density of 500,000 732 

cells/10cm tissue culture plate in their growth media containing 2.5% FBS. CM was collected at 733 

72 hours after plating, passed through 0.45 µM PES syringe filter (MidSci), and used fresh. Base 734 

media (BM) served as a negative control and consisted of growth media for each respective line 735 
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with 2.5% FBS that was placed in an empty tissue culture plate in parallel to the CM plates, 736 

collected and filtered at 72 hours, identically as the CM. 500 µL of CM or BM were placed into 737 

wells of a 24-well tissue culture plate. Cell culture inserts (8 µm; Corning) were placed into each 738 

well and CD14+ cells were plated above the inserts at a density of 1x106 cells in 250 µL serum-739 

free RPMI 1640 media. Plates were incubated at 37o C for 24 hours. Quantification was performed 740 

by manual cell counting of the media in the bottom wells using a hemocytometer. Each condition 741 

was performed in triplicate, and the experiment was repeated three times to ensure biologic 742 

validity. 743 

 744 

Cell proliferation with conditioned media 745 

CellTitre-Glo (CTG) proliferation assays (Promega) were completed according to manufacturer 746 

protocols. Briefly, 1000 CD14+ monocytes were seeded per well in a 96 well plate in 100μL of 747 

HSC CM or HSC BM in technical replicates of 5. Cells were lysed on day 0 (one hour after seeding 748 

of cells) and day 2 by addition of the CTG reagent followed by measurement of luminescence 749 

using the Biotek Cytation 5 (BioTek, Winooski, VT). Luminescence values were adjusted based 750 

on 2µM Adenosine triphosphate (ATP) luminescence measured on the same plate for each day 751 

and background luminescence was removed. CM and BM were prepared, as above, except that 752 

media contained 10% FBS. The experiment was repeated three times to ensure biologic validity. 753 
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Figure 1. scRNA-seq and scATAC-seq atlas of vestibular schwannoma (VS). 

(A) Schematic of study design. 
(B) Clinical and demographic characteristics of tumors included in scRNA-seq and scATAC-seq datasets. AAO-HNS 

Hearing, American Association of Otolaryngology Head and Neck hearing score; EOR, extent of resection; FN, 
facial nerve. Size, greatest axial dimension in cm. 

(C) UMAP plot of cell types identified in the VS TME via scRNA-seq analysis. NK, natural killer cells; VSMC, vascular 
smooth muscle cells; nmSC, non-myelinating Schwann cells; myeSC, myelinating Schwann cells. 

(D) UMAP plot of cell types identified in the VS TME via scATAC-seq. 
(E) Dot plot of expression levels of selected marker genes (x-axis) for each VS cell subpopulation depicted in (C, y-

axis). 
(F) Heatmap of meta-signature scores from gene signatures of previously published mouse peripheral nerve studies (see 

also Figure S1B). 
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Figure 2
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Figure 2. VS Schwann cells have heterogeneous transcriptional profiles. 

(A) UMAP plot of scRNA-seq VS data highlighting cells harboring inferred chromosome 22q (Chr 22q) loss showing 
enrichment in the nmSC and myeSC clusters. nmSC, nonmyelinating Schwann cells; myeSC myelinating Schwann 
cells. 

(B) Heatmaps comparing expression of top 50 differentially expressed genes (DEGs) in nmSC (top) and myeSC 
(bottom) to expression observed in microarray data of normal nerve and VS tumors from Gugel et al. (GSE141801).  

(C) UMAP representation of VS Schwann cells subset from the scRNA-seq data with meta-clusters labeled.  
(D) Heatmap of expression of DEGs from each SC meta-cluster. Two-hundred randomly sampled cells from each meta-

cluster are displayed. 
(E) Heatmap depicting scoring of each VS Schwann cell cluster using signatures from murine adult normal nerve, adult 

injured nerve and developing nerve scRNA-seq atlases. 
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Figure 3
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Figure 3. Immune cells are disproportionately cycling in the VS TME. 

(A) Cycling cells (Figure 1C) were scored based on gene signatures of all other cell types in the VS TME (e.g., nmSC, 
T cells, etc.) and assigned to the cell type for which they scored highest. Frequencies of each cell type observed in 
this cluster were compared to expected rates. 

(B) Violin plots of G2M and S-phase scores for Schwann, stromal, and immune cells. 
(C) Double-stain IHC of representative high-power field (HPF) from VS tumor FFPE samples. Cycling cells are labeled 

Ki67 and immune cells are labeled with CD45. Arrowhead indicates a representative CD45-Ki67+ cell. Arrows 
indicate representative CD45+Ki67+ cells. 

(D) Barplot showing the fraction of CD45+ (red) and CD45- (green) cells that are Ki67+ within available samples (left) 
and averaged across all samples (right). Error bars on left show standard error for quantification of each group across 
4 HPF. Error bars on the right represent standard error of mean measurements across samples. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 19, 2022. ; https://doi.org/10.1101/2022.11.18.517051doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517051


Figure 4
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Figure 4. Injury-like VS tumors are associated with increased myeloid cell infiltrate. 

(A) Heatmap displaying results of hierarchical clustering of VS-SC subtype mean signature scores shows two distinct 
groups of tumors (“Injury-like” and “nmSC Core”). 

(B) Box-and-whisker plot comparing mean scores of repair-like, MHC II, and Core signatures in Injury-like and nmSC 
Core tumors. Two-sided t-testing was performed with correction for multiple comparisons via BH method with 
FDR of 0.2. 

(C) Scatterplots demonstrate strong correlation of mean repair-like (left) and MHC II (right) scores with fraction of 
myeloid cells across samples. 

(D) Barplot of imputed cell-type fractions from 175 VS tumors shows high variability in degree of myeloid cell 
composition. Mac, Myeloid; TC, T cell; NK, NK cell; BC, B cell; Mast, Mast cell. 

(E) Representative heatmap demonstrating classification of our cohort of 22 VS tumors into Injury-like and nmSC Core 
categories based on hierarchical clustering of imputed cell fractions. Remaining results shown in Figure S5B-F. 

(F) Barplots showing number of tumor samples classified as Injury-like or nmSC Core and clinically classified by size 
(n = 122) and NF2-syndrome status (n = 89). 

(G) UMAP of all VS-SC from the scATAC-seq dataset with cells colored based on the type of VS, Injury-like (red) and 
nmSC Core (blue), from which they arose as determined by clustering in (A). 

(H) Scatter plot depicting transcription factor (TF) motif deviation delta between Injury-like and nmSC Core VS-SC 
and correlation to gene expression (left) and gene score based on accessibility (right). Relevant TFs (correlation > 
0.5, adjusted p < 0.01 and max delta > 75th percentile of all max deltas) are labeled and colored. 
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Figure 5
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Figure 5. Ligand-receptor interactions in the VS-TME distinguish Injury-like from nmSC Core tumors, and 
promote myeloid cell proliferation and migration. 

(A) Bar plot showing the relative information flow of select signaling pathways. Pathway names in red are enriched in 
Injury-like VS and those in blue are enriched in Core VS. Information flow is defined as the sum of communication 
probability among all pairs of cell groups in each inferred network. 

(B) Heatmap displaying the relative interaction strength of signaling pathways enriched in Injury-like VS. Top barplots 
show summative contribution of individual cell types. Side barplots show summative contribution of a given 
pathway to the inferred communication network. 

(C) Heatmap showing relative expression of VS-SC ligands (left) with receptors expressed on myeloid cells (right).  
(D) Barplots showing relative transwell migration (left) and proliferation at 48 hours (right) of CD14+ monocytes from 

healthy donors in conditioned media (CM) and base media (BM) from immortalized human Schwann cells (HSC). 
Each bar represents the normalized mean of all technical replicates (n = 3 per migration assay, n = 5 per proliferation 
assay) across biological replicates (n = 3). 

(E) Model of Injury-like VS. VS-SC undergo a critical stressor that triggers subpopulations to adopt repair-like and 
antigen presenting states. Myeloid cells are recruited to the VS TME and proliferate locally, leading to tumor 
progression. 
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Figure S1
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Figure S1. scRNA-seq data integration and VS TME classification by peripheral nerve signatures 

(A) UMAP plot of VS scRNA-seq dataset of embeddings pre-RPCA integration (top), post-integration (middle), and 
colored by individual sample. Batch effects associated with fresh tissue dissociation and nuclei isolation are 
overcome. 

(B) Heatmap showing average mouse peripheral nerve cell-type signature score (rows) for each VS cell-type cluster 
(columns). 
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Figure S2
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Figure S2. scATAC-seq quality control and cell type assignment. 

(A) Ridgeplot showing distribution of TSS Enrichment for each tumor after preprocessing (removal of cells TSS 
Enrichment < 10, number of fragments < 1000, and doublet removal as detailed in text). 

(B) Ridgeplot showing distribution of number of fragments per cell for each tumor after preprocessing. 
(C) TSS enrichment profile for each sample shows clear peak in center with smaller shoulder peak to the right, consistent 

with a well-positioned +1 nucleosome and good quality ATAC-seq data. 
(D) “Over-clustering” of scATAC-seq data at high resolution identifies 25 cell clusters which were initially labeled 

using inferred expression from gene accessibility of marker genes of various cell types. NK, natural killer cells; 
VSMC, vascular smooth muscle cells; nmSC, non-myelinating Schwann cells; myeSC, myelinating Schwann cells. 

(E) Confusion matrix generated after unconstrained linkage of cells from the scRNA-seq dataset with cells in the 
scATAC-seq dataset. scATAC-seq cells in most clusters where overwhelmingly linked with just one type of scRNA-
seq cell. scATAC-seq clusters were ultimately labeled with the identity of the scRNA-seq cell type that most cells 
in the cluster were linked to. 

(F) Ridgeplot displaying distribution of score assigned to each scATAC-seq to scRNA-seq cell linkage by ArchR. 
(G) Heatmap of marker genes for each cell cluster identified from inferred gene expression based on chromatin 

accessibility. 
(H) Dot plot of expression levels of characteristic genes described in the literature for each VS cell subpopulation 

derived from expression data of scRNA-seq cells linked to scATAC-seq cells in each cluster. 
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Figure S3
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Figure S3. Supplementary VS-SC analysis  

(A) Heatmaps comparing expression of top 50 differentially expressed genes (DEGs) in VS-nmSC and VS-myeSC to 
expression observed in microarray data of normal nerve and VS tumors (top, Zhao et al. (GSE108524); bottom, 
Torres-Martin et al. (GSE39645); see also Figure 2B). 

(B) Heatmap showing RPCA-based clustering results for VS SC subcluster (top) with hierarchical clustering of top 30 
DEGs. Bottom heatmap shows final cluster-type labels and expression of cluster-defining genes. 

(C) Dot plot displaying results from GO BP enrichment analysis for top 25 DEGs from each VS-SC subtype. 
(D) Heatmaps showing RPCA-based clustering results for VS-SC from the snRNA-seq data, performed identically as 

in Figure S3B. There is strong correlation with gene expression and cluster assignment with samples from scRNA-
seq analysis. 
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Figure S4
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Figure S4. Classification of cell states in stromal and immune cell populations. 

(A) UMAP plot displaying stroma cell meta-cluster labels. 
(B) Heatmap showing representative gene expression for each stromal cell meta-cluster. 
(C) UMAP displaying NK and T cell meta-cluster labels. 
(D) Heatmap showing average expression across meta-clusters of known marker genes for NK and T cell phenotypes.  
(E) Heatmap displaying pairwise similarities between myeloid-cell programs, identified via NMF. Annotations on right 

designate meta-program (MP) labels. 
(F) Myeloid cells were scored for each MP identified in Figure S4A and assigned to the MP for which they scored 

highest. 
(G) Heatmap showing expression of cancer associated macrophage markers, as defined in a pan-cancer scRNA-seq 

analysis of tumor infiltrating macrophages39. 
(H) Heatmap showing expression of monocyte/macrophage markers expressed in the setting of inflammation and 

cancer, as defined in pan-tissue scRNA-seq analysis of myeloid cells41. 
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Figure S5
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Figure S5. Classification of deconvolved bulk RNA expression data. 

(A) Correlation of imputed fractions of myeloid (top), T cell (middle), and nmSC (cells) with percentage of all immune 
cells in each deconvolved tumor sample. 

(B-F)  Heatmaps displaying imputed cell fractions from CIBERSORTx deconvolution. VS tumors are classified into 
Injury-like and nmSC Core categories using hierarchical clustering of imputed cell fractions. BC, B cells; TC, T 
cells; NKC, Natural Killer Cells; PC/VSMC, pericyte/vascular smooth muscle cells; myeSC, myelinating Schwann 
cell; nmSC, non-myelinating Schwann cell. 
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Figure S6
Injury-like nmSC Core
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Figure S6. Supplemental scATAC-seq and ligand-receptor analyses. 

(A) Heatmap showing differentially accessible peaks (DAPs) identified 5616 statistically significant marker peaks with 
Log2FC ≥ 2 differentiating VS-SC in Injury-like and nmSC Core tumors. 

(B) UMAP of Motif Deviation and Gene Expression of select genes specific to nmSC Core and Injury-like VS SC. 
(C) Heatmap show differential number of interactions (left) and interaction strength (right), displayed as Injury-like VS 

relative to nmSC Core VS. The top colored bar plot represents the sum of column of values displayed (i.e., incoming 
signals). The right colored bar plot represents the sum of row of values (i.e., outgoing signals). Red and blue colors 
in the color scale represent increased and decreased signaling, respectively, in Injury-like VS nmSC Core tumors. 
BC, B cells; TC, T cells; NKC, Natural Killer Cells; PC/VSMC, pericyte/vascular smooth muscle cells; myeSC, 
myelinating Schwann cell; nmSC, non-myelinating Schwann cell. 
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