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31 Abstract
32 Understanding the genetic basis of traits of economic importance under drought stress (DS) 

33 and well-watered (NS) conditions is important in enhancing genetic gains in dry beans 

34 (Phaseolus vulgaris L.). This research aims to: (i) identify markers associated with agronomic 

35 and physiological traits for drought tolerance and (ii) identify drought-related putative 

36 candidate genes within the mapped genomic regions. An Andean and Mesoamerican diversity 

37 panel (AMDP) comprising of 185 genotypes was screened in the field under drought stress 

38 (DS) and well-watered (NS) conditions for two successive seasons. Agronomic and 

39 physiological traits, viz., days to 50% flowering (DFW), plant height (PH), days to 

40 physiological maturity (DPM), grain yield (GYD), 100-seed weight (SW), leaf temperature 

41 (LT), leaf chlorophyll content (LCC) and stomatal conductance (SC) were phenotyped. 

42 Principal component and association analysis were conducted using filtered 9370 Diversity 

43 Arrays Technology sequencing (DArTseq) markers. The mean PH, GYD, SW, DPM, LCC and 

44 SC of the AMDP was reduced by 12.1, 29.6, 10.3, 12.6, 28.5 and 62.0%, respectively under 

45 DS. Population structure analysis revealed two sub-populations, which correspond to the 

46 Andean and Mesoamerican gene pools. Markers explained 0.08 – 0.10, 0.22 – 0.23, 0.29 – 

47 0.32, 0.43 – 0.44, 0.65 – 0.66 and 0.69 – 0.70 of the total phenotypic variability (R2) for SC, 

48 LT, PH, GYD, SW and DFW, respectively under DS conditions. For NS, R2 varied from 0.08 

49 (LT) to 0.70 (DPM). Overall, 68 significant (p < 10-03) marker-trait associations (MTAs) and 

50 22 putative candidate genes were identified across DS and NS conditions. Most of the identified 

51 genes had known biological functions related to regulating the response to moisture stress. The 

52 findings provide new insights into the genetic architecture of moisture stress tolerance in 

53 common bean. The findings also provide potential candidate SNPs and putative genes that can 

54 be utilized in gene discovery and marker-assisted breeding for drought tolerance after 

55 validation. 
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62 Introduction
63 Common bean (Phaseolus vulgaris L., 2n = 2x = 22) is one of the major pulse crops consumed 

64 worldwide with a relatively small diploid genome size of approximately 473 Mb [1]. It is a 

65 cheap source of proteins and important micronutrients such as iron (Fe) and zinc (Zn) for 

66 millions in many African and Latin American countries [2, 3]. Beebe et al. [4] reported that 

67 Sub-Saharan Africa (SSA) and Latin America produce the largest volume of common beans, 

68 representing more than 60% of the world’s bean production. Common bean was subjected to 

69 two parallel domestication events on the American continent, resulting in two different primary 

70 gene pools namely the Andean and the Mesoamerican [5, 6]. The Andean gene pool originated 

71 from the Andes mountains of South America and consists of medium (25 - 40 g per 100 seeds) 

72 or large (≥ 40 g per 100 seeds) seeded genotypes [7]. On the other hand, the Mesoamerican 

73 gene pool is native to Central America and Mexico, and comprises of small seeded genotypes 

74 (≤ 25 g per 100 seeds). According to Bitocchi et al. [8], there is more genetic variation within 

75 the Mesoamerican gene pool compared to the Andean gene pool.

76 Common beans are notably sensitive to climatic and environmental variations. This is 

77 aggravated by the fact that most bean growing regions in the world experience different 

78 production constraints including intermittent and terminal drought stress which adversely 

79 affect grain yield [9–12]. As reported by Katungi et al. [13], 73% of common bean production 

80 in SSA occurs in environments which experience moderate to severe drought stress. Beebe et 

81 al. [4], Hoyos-Villegas et al. [14] and Valdisser et al. [15] reiterated that drought stress is the 

82 most important grain yield-limiting abiotic factor of dry bean worldwide. It is predicted from 

83 various climate models that the duration and frequency of droughts are expected to increase in 

84 SSA [16]. Drought stress reduces stomatal conductance, total chlorophyll content, leaf 

85 expansion, number of days to physiological maturity, seed yield and biomass, number of pods 

86 and seeds per plant, seed size and harvest index [17–22]. According to Asfaw et al. [23], severe 

87 drought stress can result in grain yield losses of up to 80%. In Zimbabwe, grain yield reductions 

88 of more than 50% were reported by Mutari et al. [24] under terminal drought stress.

89 As reported by Mutari et al. [25], bean farmers in Zimbabwe have been using different 

90 mitigation strategies to minimize grain yield losses due to terminal drought stress. These 

91 strategies include soil mulching, ridging, cultivating the soil to retain more moisture and 

92 reducing the area under the bean crop. However, host plant resistance is a more sustainable, 

93 environmentally friendly and labour saving technology for managing drought stress in common 

94 beans compared to the multiple cultural practices. For this reason, most dry bean breeding 
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95 programmes aim to introduce drought tolerance into new cultivars to address the needs and 

96 preferences of smallholder farmers in the face of climate change [26]. 

97 Several researchers have successfully used different types of deoxyribonucleic acid 

98 (DNA)-based marker systems in association mapping of complex traits in common beans. The 

99 most widely used marker systems include simple sequence repeats (SSRs; [27–29]), amplified 

100 fragment length polymorphisms (AFLPs; [28, 30]), single nucleotide polymorphisms (SNPs; 

101 [3, 14, 31–34]) and microarray based Diversity Arrays Technology (DArT; [15, 35]) markers. 

102 However, SNP markers are widely preferred in marker assisted selection (MAS), genetic 

103 diversity analyses, genomic selection, haplotype mapping, genome wide association studies 

104 (GWAS), linkage map construction and population genetics [36]. They are widely preferred 

105 because they exhibit high level of polymorphism and occur in abundance (cover the whole 

106 genome) as differences of individual nucleotides between individuals. 

107 Understanding the underlying genetic architecture of agronomic and physiological 

108 traits under drought stress (DS) and well-watered (NS) conditions is a fundamental prerequisite 

109 for the genetic improvement of these traits in common beans using MAS. Thus, dissecting the 

110 genetic basis of multiple polygenic traits of economic importance such as drought tolerance 

111 with respect to the genomic regions and/or genes involved and their effects is important to 

112 improve genetic gains in breeding for superior grain yield in dry beans under DS and NS 

113 environments. This can be accomplished through complementary approaches such as GWAS 

114 and genomic prediction models [6]. Genome wide association study is a powerful tool for 

115 characterizing the genetic basis of quantitative traits, and identifying multiple candidate genes 

116 (marker alleles) associated with variation in quantitative traits (marker-trait associations; 

117 MTA) of interest in crop species using high density DNA markers at high level of genetic 

118 resolution [34, 37–41].

119 Genome wide association study is also known as association mapping (AM) or linkage 

120 disequilibrium (LD) mapping [42]. It is based on linkage LD and historical recombination 

121 events of alleles of detected quantitative trait loci (QTL) at relatively high level of genetic 

122 resolution due to high genetic variability in the diverse population such as landraces, elite 

123 breeding lines and improved cultivars [43, 44]. The historical recombination events would have 

124 naturally occurred during the evolution and domestication of the crop, and crop improvement 

125 (several generations) [33]. With GWAS, the mapping resolution is increased as a result of the 

126 high number of recombination events in the genetically diverse genotypes within the natural 

127 population [45]. Therefore, it is inexpensive and reduces research time (no need to develop a 

128 mapping population) with greater allele numbers. The identification of genomic regions and 
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129 diagnostic genetic markers associated with grain yield and yield-attributing traits under DS and 

130 NS conditions will facilitate trait introgression and marker assisted selection (MAS). 

131 Genome wide association study has been successfully used to detect MTAs and QTLs 

132 in common bean. Several QTLs associated with disease and insect pest tolerance have been 

133 identified in dry bean [32, 46–50]. Similarly, MTAs were identified for drought tolerance traits 

134 in dry bean [14, 15, 51–53]. Also, MTAs were identified for nutritional composition-related 

135 traits [6, 33], symbiotic nitrogen fixation [54], cooking time [55] and photosynthetic traits [34, 

136 56] in dry bean. Genomic regions governing agronomic traits in DS and yield potential 

137 environments were also identified in dry bean [1, 6, 14, 34, 57]. Even though several significant 

138 MTAs were identified in previous GWAS studies for agronomic traits in DS environments, the 

139 use of very low thresholds (-log10 p-value ≥ 3.0) in most of the studies in determining 

140 significant MTAs might have resulted in many false positives. In addition, despite the fact that 

141 several QTLs/MTAs associated with agronomic traits have been identified in dry bean, further 

142 genetic studies are required using different genetic backgrounds to reach a saturation point. 

143 Moreover, most of the reported putative genes for agronomic and physiological traits were 

144 detected under yield potential environments. 

145 Additionally, some of the previous mapping studies [14, 17, 51, 58–61] conducted on 

146 agronomic and physiological traits used a small population size and a limited number of 

147 molecular markers. This resulted in QTL with low resolution or poor estimation of marker 

148 effects, making it difficult to make inferences on putative candidate genes correlated with the 

149 identified QTL. Moreover, some of the previously identified QTLs explained low total genetic 

150 variance [23], and were sometimes not stable across environments due to genotype by 

151 environment interaction (GEI) [52]. Thus their potential for MAS in developing genotypes that 

152 are tolerant to drought stress was inconclusive. Therefore, additional studies are required to 

153 dissect the genetic basis of agronomic and physiological traits in dry bean under DS and 

154 optimal environments for increased genetic gains. The objectives of this study were: (i) to 

155 identify single nucleotide polymorphism (SNP) markers significantly associated with 

156 agronomic and physiological traits for drought tolerance and; (ii) to identify drought-related 

157 putative candidate genes associated with traits within the mapped genomic regions.

158
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159 Materials and Methods

160 Description of the study location
161 The field experiments (drought stress; DS and well-watered; NS) were conducted at the 

162 screening site for moisture stress tolerance located at Save Valley Experiment Station (SVES), 

163 Zimbabwe. The experiments were carried out during the 2019 and 2020 dry winter seasons 

164 (April – July). Save Valley Experiment Station is characterised by clay soils and is located in 

165 the drier lowveld region of Zimbabwe where dry beans are commercially produced during the 

166 dry winter season (Table 1). The research station receives an average annual rainfall of 450 

167 mm that is usually distributed between the months of December and April. In both seasons, no 

168 precipitation was received during the trial evaluation period. Historically, SVES presents few 

169 rainfall occurrences during the dry winter season [24]. Daily temperatures (℃) and relative 

170 humidity (%) were recorded with a digital weather station (Table 1) during the growing 

171 seasons. More details on the agro-ecological characteristics of SVES are outlined in Table 1.

172

173 Germplasm
174 A total of 185 dry bean genotypes constituted the Andean and Mesoamerican diversity panel 

175 (AMDP). The AMDP comprised of landrace collections (25), released cultivars (18) and elite 

176 breeding lines (142) of different market classes such as sugars, calimas, small whites, large 

177 whites and large red kidneys (S1 Table). The genotypes were sourced from public and private 

178 breeding institutions located in different geographic regions. These included the Alliance of 

179 Bioversity International and International Center for Tropical Agriculture (ABC) in Colombia 

180 (87), ABC in Malawi (67), ABC in Uganda (18), Ethiopian Institute of Agricultural Research 

181 (EIAR) in Ethiopia (3), Crop Breeding Institute in Zimbabwe (6) and Seed-Co, also in 

182 Zimbabwe (4) (S1 Table). 

183
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184 Table 1. Geographic information system, monthly weather conditions and soil characteristics during the growing seasons at Save 
185 Valley Experiment Station, Zimbabwe (April to July, 2019 and 2020). 

Parameter 2019 dry season 2020 dry season

April May June July April May June July

Temperature (oC) Max 33.00 29.00 28.00 30.00 31.00 28.50 27.00 32.00

Min 9.00 9.50 10.00 12.00 11.50 8.00 8.5.00 12.50

Relative Humidity (%) Max 82.00 95.00 69.00 91.00 74.00 85.00 69.00 71.00

Min 42.00 56.00 44.00 25.00 46.00 59.00 50.00 30.00

Total Rainfall (mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Soil type Clay Clay

Latitude 20032’S 20043’S

Longitude 33009’E 33003’E

Altitude (m.a.s.l) 452 449

186
187 masl = meters above sea level, mm = millimetres, ppm = parts per million, Max = maximum and Min = minimum.
188

189

190

191

192
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193 Field phenotyping of the diversity panel

194 Experimental design, irrigation scheduling and trial management
195 The AMDP was evaluated side by side under DS and NS treatment conditions during the 2019 

196 and 2020 dry winter seasons. In both seasons, the genotypes in both DS and NS treatments 

197 were established in a 5 x 37 alpha lattice design with two replications. The seepage of water 

198 from the NS treatment to the DS treatment was minimized by maintaining a 30 m buffer zone 

199 between the two treatments. Each genotype was hand planted in four-row plots of 3 m in length, 

200 and an inter-row spacing of 0.45 m. Compound D (N = 7%, P = 14%, K = 7%) was applied at 

201 planting at a rate of 300 kg/ha. Ammonium nitrate (34.5% N) was applied in both DS and NS 

202 treatments as a top-dressing fertilizer thirty days after emergence at a rate of 100 kg/ha. An 

203 overhead sprinkler irrigation system was used to irrigate both DS and NS treatments during 

204 both seasons of evaluation. The irrigation cycles in both DS and NS treatments were as 

205 described by Mutari et al. [24]. In both seasons, recommended agronomic practices were 

206 followed for the management and control of pests such as diseases, insects and weeds.

207  

208 Collection of data on agronomic and physiological traits
209 At the flowering stage of growth, the number of days from planting to 50% flowering (DFW) 

210 were recorded in both treatments. The DFW was recorded when 50% of the plants in a plot had 

211 at least one or more open flowers. At mid-pod filling, leaf temperature (LT; ℃), stomatal 

212 conductance (SC; mmol m-2 s-1) and leaf chlorophyll (LCC) content were collected on all 

213 genotypes in both DS and NS treatments. The LT and SC data were recorded from the surface 

214 of the uppermost fully expanded young leaf between 11:00 am to 14:00 pm using a FLUKE 

215 precision infrared thermometer (Everest Interscience, Tucson, AZ, USA) and a hand-held leaf 

216 porometer (Decagon Devices®, Pullman, WA, USA), respectively. Three readings were 

217 collected on three different randomly chosen plants from each plot per replicate in both the DS 

218 and NS treatments. The three measurements were averaged to obtain one final reading per plot. 

219 Phenotyping for LT and SC was done for an average of six days on clear, sunny days with 

220 minimal wind. Regarding the LCC, this was measured using a soil and plant analysis 

221 development (SPAD) chlorophyll meter (SPAD-502Plus, Konica-Minolta, Osaka, Japan) on 

222 two fully developed leaves of three plants in each plot. Then, the average value was calculated. 

223 At physiological maturity, the following traits were recorded from the two inner rows from 

224 every plot for every genotype in both treatments and seasons: plant height (PH; cm), days from 

225 planting to physiological maturity (DPM), grain yield (GYD; kg/ha) and 100-seed weight (SW; 
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226 g). Plant height which was measured from the base of the plant (soil surface) to the top node 

227 bearing at least one dry pod with seed was averaged from three plants per plot. The DPM were 

228 recorded as the average number of days from planting to when 95% of pods in a plot lose their 

229 green colour. Grain yield was recorded from the two middle rows in each plot using a weighing 

230 scale, and converted to kilograms per hectare (kg/ha) at 12.5% moisture basis. The SW was 

231 determined using a beam balance weighing scale by measuring the weight of 100 seeds 

232 randomly from each plot harvest. 

233

234 Statistical analysis of phenotypic data
235 Before conducting analysis of variance, normality tests were conducted in Genstat® Discovery 

236 18th Edition [62] using residuals of the agronomic and physiological traits. The agronomic and 

237 physiological traits were analysed in Genstat® Discovery 18th Edition [62] using mixed 

238 models from which the best linear unbiased predictors (BLUPs) were obtained. The BLUPs 

239 were estimated for the studied traits to minimize the environmental and seasonal effects. The 

240 BLUPs for each entry were estimated through individual environment (DS or NS) analysis, 

241 and by combined analysis (across water regimes). In the first step of analysis (single-

242 environment analysis), the phenotypic data of each individual environment were analysed 

243 using a mixed linear model (MLM). In this model, blocks and genotypes were treated as 

244 random effects, and replications were considered as fixed effects. Genotype effects were 

245 declared to be random to enable the calculation of BLUPs and broad-sense heritability (H2). 

246 The MLM presented below was fitted:
247

248 Yijl = μ + gi + rj + blj + eijl                                                                                                                                                                 (1)                                                                                                                                                                                                               

249

250 where Yjkl = is the phenotypic observation of the genotype i in replicate j in block l within 

251 replicate j, μ = grand mean effect, gi = random effect associated with genotype i, rj = fixed 

252 effect associated with replicate j, blj = random effect associated with block l nested within 

253 replicate j, and eijl = residual effect associated with observation ijl. For a combined or multi-

254 environment analysis, a MLM was used. In this model, blocks nested within replications, 

255 replicates nested within environments, genotypes and their interactions with environments 

256 (GEI) were considered as random effects. Environments, defined as year x water regime 

257 combination were considered as fixed effects. The MLM presented below was fitted:
258

259 Yijkl = μ + Gi + Ej + Rk[j] + Bl[jk] + GEij + eijkl                                                                                                 (2)                                                                                                                                                                                    
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260 where Yijkl = effect of genotype i in environment j and kth replication within environment j and 

261 Ith block nested within replicate k and environment j, μ = grand mean, Gi = random effect of 

262 the ith genotype, Ej = fixed effect of the jth environment, Rk[j] = random effect associated with 

263 the replicate k nested within environment j, Bl[jk] = random effect of block l nested within 

264 environment j and replicate k, GEij = random effect of the interaction between genotype i  and 

265 environment j, and eijkl = random error associated with observation ijkl. The analysis was 

266 performed using the Restricted Maximum Likelihood (REML) method implemented in 

267 GenStat 18th edition [62]. Broad-sense heritability estimates for the agronomic and 

268 physiological traits were calculated following the formula proposed by Cullis et al. [63]. 

269 Heritability was classified as low when less than 30 %, moderate when between 30-60 % and 

270 high when more 60 % [64]. Drought intensity index (DII) at the location, percentage GYD 

271 reduction (%GYR) due to DS, drought susceptibility index (DSI), geometric mean productivity 

272 (GMP) and drought tolerance index (DTI) of each entry were calculated as described by Mutari 

273 et al. [24]. A ranking method was used to select superior drought tolerant genotypes by 

274 calculating the mean rank of each genotype across all the studied indices.

275

276 Genotyping of the diversity panel
277 Genomic DNA of the 185 genotypes was extracted from young leaves of 2-week old bean 

278 plants following the plant deoxyribonucleic acid (DNA) extraction protocol for Diversity 

279 Arrays Technology (DArT; [65]). A NanoDrop Spectrophotometer (ND-8000, NanoDrop 

280 Technologies, Inc.) was used to determine the concentration of the DNA. The agarose gel (1% 

281 agarose gel) electrophoresis was used to evaluate the quality of the DNA. The DNA from the 

282 samples used in this study were genotyped using the Diversity Arrays Technology Sequencing 

283 (DArTseq) protocol using a set of 24,450 silico DArT markers. The DArT markers used were 

284 evenly distributed across all 11 chromosomes of common bean. Genotyping by sequencing 

285 (GBS) was done at the Biosciences Eastern and Central Africa (BecA) Hub of the International 

286 Livestock Research Institute (BecA-ILRI) in Kenya. The silico DArTs used had polymorphic 

287 information content (PIC) values ranging from 0.01 to 0.50, reproducibility values of 1.00, and 

288 the proportion of missing data per marker was 7% (mean call rate of 93%, ranging from 81 to 

289 100%). The entire data set of SNP markers was filtered in TASSEL v5.2 [66] to remove SNP 

290 loci with unknown physical positions on the common bean genome, monomorphic SNPs, and 

291 SNP markers with more than 20% missing data and minor allele frequency (MAF) of less than 

292 5% (<0.05) threshold [15, 49, 67]. A final total of 9370 (38%) DArTseq SNPs distributed 
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293 across the 11 chromosomes were retained after filtering for use in association analysis and 

294 population structure analysis via principal component analysis (PCA). 

295

296 Inference of population structure
297 The genotypic data was imputed for missing alleles of SNPs on the KDCompute online sever 

298 (https://kdcompute.igs-africa.org/kdcompute/) using the optimal imputation algorithm to 

299 increase the power of the study. KDCompute was also used to graphically visualize the 

300 distribution of SNPs across the common bean genome. The population genetic structure was 

301 determined based on the Bayesian model-based clustering approach using the Bayesian 

302 inference program in STRUCTURE software version 2.3.4 [68]. A subset of additionally 

303 filtered SNP markers (4095) at or near Hardy-Weinberg equilibrium (r2 < 0.8) and that covered 

304 the entire genome were used in population structure analysis with STRUCTURE [14, 15, 31]. 

305 This was done to reduce the background and admixture linkage disequilibrium (LD) owing to 

306 linked loci [68]. 

307 Settings for the STRUCTURE program were set as follows to derive the population 

308 structure: a burn-in period length of 10,000, and after burn-in, 10,000 Markov Chain-Monte 

309 Carlo (MCMC) repetitions. The number of sub-populations or clusters (K) was set from 1 to 

310 10, with ten independent runs for each K [3, 48, 55]. The best K-value explaining the population 

311 structure was inferred using the Delta K (ΔK) method in Evanno et al. [69] implemented in the 

312 on-line tool structure harvester software [70]. Genotypes with ancestry probability/coefficient 

313 ≥ 0.90 (≥ 90%) (pure genotypes) for the Andean sub-population were allocated to the Andean 

314 gene pool [31, 71] (S1 Table). On the other hand, genotypes with ancestry probability ≥ 0.90 

315 for the Mesoamerican sub-population were allocated to the Mesoamerican gene pool. Those 

316 with ancestry probability < 0.90 were considered as admixed [71]. The clustering of the AMDP 

317 was further assessed and visualized in a 3D scatter plot using PCA in prcomp R 3.0 function 

318 [72].

319

320 Marker-trait association tests and linkage disequilibrium analyses
321 The filtered 9370 SNPs and the adjusted trait means (BLUPs) for each of the environments 

322 (DS and NS) were used as input data in marker-trait association (MTA) analysis. The more 

323 conservative compressed mixed linear model (CMLM) procedure in the genome association 

324 and prediction integrated tool (GAPIT) (v3) program of R software was used to determine the 

325 MTAs following the Q + K model according to Lipka et al. [73]. Phaseolus vulgaris is 
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326 characterised by a strong genetic structure necessitating the need to use the Q + K model [74]. 

327 The CMLM incorporated both the population structure (Q; fixed effect) and kinship (K; random 

328 effect) matrices as covariates to correct the population structure, increase statistical power of 

329 the analysis and minimize false positives (spurious MTAs) [67, 72, 75]. The K matrix was 

330 included in the association analysis to correct for cryptic relatedness within the AMDP [54, 

331 67]. The threshold for significant MTA was set at p < 0.001 to reduce the risk of false MTAs.

332 The Manhattan plots drawn using the CMplot package in R 3.5.3 were used to visualise 

333 the significant MTAs for each environment. The p-values were plotted as –log10(p) to generate 

334 the Quantile-Quantile (Q-Q) and Manhattan plots using the CMplot package in R package [76]. 

335 The Q-Q plots were produced from the observed and expected logarithm of the odds (LOD) 

336 scores for each trait. The LD Heatmap package in R 3.0 was used to generate the LD Heatmaps 

337 for the significant markers of each trait [77, 78]. Alleles with positive additive effects resulting 

338 in higher values of GYD, SZ and LCC were described as “superior alleles” under both DS and 

339 NS conditions, whereas alleles resulting in decreased GYD, SZ, and LCC were “inferior 

340 alleles”. On the other hand, alleles with negative effects resulting in lower values of DFW, 

341 DPM, LT and SC were considered to be “superior alleles” under DS conditions. The Jbrowse 

342 feature on Phytozome v13 was used to browse the P. vulgaris G19833 v2.1 reference genome 

343 sequence [1] to gain insight into potential putative candidate genes associated with significant 

344 SNPs for each trait. The functional annotation of the gene was checked on Phytozome v13 

345 website (http://phytozome.net) to postulate the role of the gene in the control of a target trait. 

346

347 Putative candidate gene prediction
348 Plausible candidate genes were identified based on the window size of 200 kb (maximum ± 

349 100 kb) on either side (upstream and downstream) of the significant marker [74, 79]. The 

350 window size of 200 kb is the average LD [74, 79]. A gene was considered a potential candidate 

351 using the following criteria: (i) if the gene contained a significant SNP or the gene contained a 

352 SNP that was in LD with a significant SNP [3], and (ii) if the gene had a known role related to 

353 regulating moisture stress response and plant growth and development under water deficit 

354 based on gene ontology term descriptions in Phytozome v13. For the positional candidate genes 

355 that did not have adequate functional annotation information on Phytozome v13, the sequence 

356 data of the significant SNP was used against NCBI database using the basic local alignment 

357 search tool for nucleotide (BLASTn; https://blast.ncbi.nlm.nih.gov/smartblast/smartBlast.cgi).

358
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359 Results
360

361 Variations of agronomic and physiological traits under two water 

362 regimes
363 The descriptive statistics and H2 estimates for the agronomic and physiological traits under DS 

364 and NS environments are shown in Table 2. Residual maximum likelihood analysis revealed 

365 highly significant (p < 0.001) genotypic main effects on all the studied traits under both DS 

366 and NS environments supporting the use of the AMDP for GWAS purposes. Overall, 

367 phenotypic variability was observed among the genotypes for DFW, LCC, LT, SC, PH, DPM, 

368 GYD and SW under DS and NS conditions. High H2 estimates (0.83 - 0.97) were observed for 

369 all the studied traits under DS, except for SC (H2 = 0.32), LT (H2 = 0.46), and LCC (H2 = 0.54). 

370 Under NS conditions, high H2 estimates (0.88 – 0.98) were observed for all the traits except 

371 for LCC (H2 = 0.14), SC (H2 = 0.33), and LT (H2 = 0.42).

372 In general, the observed H2 estimates under both environments revealed that much of 

373 the observed phenotypic variation was due to the genetic component, supporting the suitability 

374 of the AMDP for GWAS studies. Grain yield was highest under NS (1016 kg/ha; H2 = 0.88), 

375 and lower under DS (715 kg/ha; H2 = 0.92). The SW also varied among the environments at 

376 34.98 g/100 seeds (H2 = 0.97), and 31.39 g/100 seeds (H2 = 0.97) under NS and DS, 

377 respectively. The AMDP had a shorter duration (lower values) under DS (DPM = 90.97 days), 

378 compared to NS (DPM = 104.10 days). The same trend was observed for PH, LCC, and SC. 

379 On the other hand, LT was lower (19.75 ℃) under NS environments, compared to DS 

380 environments (25.22 ℃). Under DS, GYD ranged from 39.4 kg/ha to 2134 kg/ha, and exhibited 

381 a narrower range than in NS where GYD ranged from 55.0 kg/ha to 2586.0 kg/ha. The 

382 coefficient of variation (CV) ranged from 5.32 to 5.58%, 2.55 to 3.71%, 33.68 to 36.57%, 12.45 

383 to 16.91%, 22.53 to 28.13%, 16.21 to 16.62%, 7.12 to 9.42%, and 18.90 to 35.93% for DF, 

384 DPM, GYD, SW, PH, LCC, LT, and SC, respectively. Low standard deviations (SD) were 

385 observed for LT and LCC under both environments.  

386

387
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388 Table 1. Phenotypic summary statistics, coefficient of variation and broad-sense heritability of the measured traits for all the 185 
389 dry bean genotypes based on the best liner unbiased prediction (BLUP) value grown under drought stressed and non-stressed 
390 conditions.

Treatment

Traits Drought Stress No stress AC

Average SD Range Wald statistic 

(genotype)

CV (%) H2 Average SD Range Wald statistic 

(genotype)

CV 

(%)

H2 H2

DFW 43.32 7.11 32-60 139.64*** 5.58 0.96 41.28 5.69 32.50-60.00 95.66*** 5.32 0.98 0.94

DPM 90.97 8.40 71.50-106 187.89*** 3.71 0.85 104.10 9.31 83.50-120.20 210.74*** 2.55 0.94 0.93

GYD 715.40 457.80 39.4-2134 600772.00*** 36.57 0.92 1016.00 555.00 55.00-2586.00 797047.00*** 33.68 0.88 0.92

SW 31.39 11.61 14.25-60.00 420.66*** 16.91 0.97 34.98 12.27 16.75-65.00 463.60*** 12.45 0.97 0.98

PH 50.05 16.75 25.25-102.2 963.70*** 28.13 0.83 56.97 18.46 28.5-125.00 1145.90*** 22.53 0.92 0.88

LCC 31.12 3.80 18.17-44.15 53.51*** 16.62 0.54 43.55 4.46 33.10-62.43 78.08*** 16.21 0.14 0.35

LT 25.22 2.59 16.85-30.95 29.29*** 9.42 0.46 19.76 1.15 17.23-24.90 4.78*** 7.12 0.42 0.37

SC 96.66 13.97 59.38-141.4 760.10*** 18.90 0.32 254.50 75.69 64.00-465.00 23883.00*** 35.93 0.33 0.24

391 AC = across environments (drought stress and well-watered), SD = standard deviation of the trait means, CV = coefficient of variation, H2 = broad-sense heritability, DFW = 

392 days to flowering, DPM = days to physiological maturity, GYD = grain yield (kg/ha), SW = 100 seed weight (g), PH = plant height (cm), LCC = leaf chlorophyll content, LT 

393 = leaf temperature (℃), SC = stomatal conductance (mmol m−2 s−1), * = p ≤ 0.05; ** = p ≤ 0.01 and *** = p ≤ 0.001.
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394 Combined GYD data over two seasons across environments revealed that the highest yielding 

395 genotype was G184 (DAB91 - 2222,7 kg/ha) followed by G176 (DAB302 – 2097.5 kg/ha) and 

396 G147 (CIM-SUG07-ALS-S1-3 - 2080,1 kg/ha) (Table 3). 

397

398 Table 2. Drought tolerance indices and predicted genotype values for grain yield 
399 (across environments) of top 20 drought tolerant genotypes.

Genotype Gene pool GYD (kg/ha) DSI GMP DTI %GYR Mean rank

G184 Andean 2222.7 0.16 2205.3 4.74 4.69 25.5

G176 Andean 2097.5 0.35 2084.0 4.25 10.60 29.9

G147 Andean 2080.1 1.26 1995.6 4.03 37.83 66.3

G146 Andean 2067.4 1.18 1994.5 4.02 35.49 61.5

G158 Admixed 2017.1 -0.01 1979.5 3.82 -0.26 24.5

G135 Andean 1968.7 -0.37 1956.9 3.75 -11.17 19.8

G101 Andean 1964.8 1.32 1890.6 3.78 39.72 69.3

G138 Andean 1846.8 0.22 1826.1 3.25 6.50 31.0

G180 Andean 1838.9 0.09 1789.6 3.13 2.57 29.5

G162 Andean 1828.7 0.57 1814.3 3.20 16.97 40.5

G124 Andean 1815.0 -0.03 1805.5 3.19 -0.78 26.0

G173 Andean 1792.6 0.68 1780.4 3.07 20.40 46.0

G115 Andean 1788.9 0.40 1765.4 3.04 11.87 35.5

G150 Andean 1758.8 0.40 1750.8 2.98 12.03 36.5

G127 Andean 1750.0 -0.02 1733.0 2.94 -0.73 29.0

G159 Andean 1743.3 1.12 1694.7 2.90 33.67 65.3

G113 Andean 1683.8 1.76 1548.0 2.35 52.77 91.5

G125 Andean 1628.2 -0.25 1590.2 2.49 -7.39 26.8

G181 Andean 1614.1 1.03 1585.2 2.44 31.00 64.5

G104 Andean 1608.8 0.58 1601.1 2.49 17.37 45.3

400 GYD = grain yield, DSI = drought susceptibility index, GMP = geometric mean productivity, DTI = drought 

401 tolerance index and %GYR = percent grain yield reduction. Note: Mean Rank is the mean rank of a genotype 

402 across all the drought tolerance indices. Admixed includes genotypes that are 10 to 90% Andean or Mesoamerican 

403 according to the structure analysis results.

404

405 The drought tolerance indices for the 185 genotypes based on mean GYD are summarised in 

406 Table 3 (top 20 drought tolerant genotypes) and S2 Table (all study genotypes). The severity 

407 of DS at SVES across the 2 seasons of evaluation was moderate (DII of 0.30). Among the 

408 evaluated genotypes, G158 (SWEET WILLIAM/DAB287), G135 (DAB539), G124 

409 (DAB487), G127 (CIM-SUG07-ALS-2), G125 (CIM-RM09-ALS-BSM-12), G138 (CZ104-
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410 72) and G184 are some of the genotypes that were less sensitive to DS based on their low DSI, 

411 %GYR and overall mean ranks across the indices. These genotypes had DSI values ranging 

412 from -0.37 (G135) to 0.16 (G184) and %GYR ranging from -11.17 (G135) to 4.69 (G184). In 

413 summary, all the top 20 drought tolerant genotypes were members of the Andean gene pool, 

414 except for G158 which is an admixture (Table 3). 

415

416 Population structure analysis
417 The STRUCTURE analysis results and Evanno test (ΔK) revealed the presence of two major 

418 sub-populations (highest ΔK value occurred at K = 2) within the AMDP of dry bean (Figs 1A, 

419 1B). The two sub-populations correspond to the Andean and Mesoamerican domesticated gene 

420 pools. The minimum ancestry or membership coefficient to a particular cluster was 0.63 (Fig 

421 1B and S1 Table). Most of the genotypes (90) clustered within the Mesoamerican gene pool 

422 (Fig 1B). Seventy-six genotypes clustered within the Andean gene pool (Fig 1B and S1 Table). 

423 On the other hand, 19 were Andean-Mesoamerican admixed genotypes of the two gene pools 

424 (10 to 90% Andean or Mesoamerican). The admixed genotypes included SMC16, SMC21, 

425 NUA674, NUA59-4, G75, DAB115, DAB63, DAB142, DAB477, CIM-RM02-36-1, CIM-

426 RM09-ALS-BSM-11, CIM-RM02-134-1, Sweet William, ZABRA16575-60F22, 

427 GLP585/MLB49-89A-3, RWR2154, SAB792, NAVY LINE 22, and CIM-SUG07-ALS-S1-3 

428 (S1 Table). 

429

430 Fig 1. Population structure of 185 Andean and Mesoamerican Diversity Panel (AMDP) from different 

431 models. Note: A = The ΔK determined by the Evanno method showing the stratification of the 185 AMDP into 

432 two main sub-populations. The cluster with the largest ΔK (K = 2) was used to determine the number of sub-

433 populations in the AMDP of dry bean and the existence of two-sub-populations was inferred; B = Population 

434 structure of 185 AMDP of dry bean genotypes based on 4095 SNP markers (K = 2 gives the best separation) as 

435 determined from STRUCTURE analysis. Red and green represents Andean and Mesoamerican sub-populations, 

436 respectively; C = Three dimensional principal component analysis (PCA) scatter plot illustrating the population 

437 structure of 185 AMDP of dry bean genotypes based on 9370 SNP markers; D = Screen plot showing the 

438 percentage of variation explained by the different principal components.

439 The genetic structure result of the AMDP was verified with the PCA based on SNP marker 

440 data and is illustrated by a 3D scatter plot (Fig 1C). The first principal component (PC) 

441 accounted for more than 55% of the observed genotypic variability in the AMDP, while the 

442 second and third PCs separately accounted for less than 5% of the overall genetic variance in 

443 the AMDP (Fig 1D). The PCA also divided the genotypes into two distinct clusters (Andean 
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444 and Mesoamerican sub-populations) as were found with STRUCTURE output (Fig 1C). 

445 Further, the Andean-Mesoamerican admixed genotypes (positioned between the two groups) 

446 were isolated from the Andean and Mesoamerican sub-groups by PCA (Fig 1C).
447   

448 Analysis of marker-trait associations under drought stressed 

449 conditions
450 The significant MTAs and their respective statistical parameters for agronomic and 

451 physiological traits are summarised in Table 4. In this study, the threshold for significant MTA 

452 was set at p < 0.001 to reduce the risk of false MTAs. Under DS conditions, 29 significant 

453 MTAs were identified for six traits (excluding DPM and LCC) with p < 10-03. The associations 

454 are shown in Fig 2. The quantile-quantile (QQ) plots for the studied traits revealed that the 

455 expected and observed probability values were normally distributed (S3 Fig). The highest 

456 number of significant MTAs were observed on P. vulgaris (Pv) chromosome Pv11 (28%), 

457 followed by Pv8 (17%), with the least on chromosomes Pv6 and Pv4, both with 3%. No 

458 significant associations for DPM and LCC were identified under DS conditions in this study. 

459 The highest number of significant MTAs were identified for PH (15), and the SNPs were 

460 distributed across six different chromosomes (Pv1, Pv5, Pv7, Pv8, Pv10, and Pv11). 

461 Additionally, the allele effect of these SNPs ranged from -16.03 cm (SNP 8198531) to 17.82 

462 cm (SNP 100101387). 

463

464 Fig 2. Manhattan plots indicating the significant marker-trait associations, their p-values and candidate 

465 genes for agronomic and physiological traits in 185 dry bean genotypes evaluated under drought stressed 

466 conditions. Note: A = Grain yield, B = Seed size, C = Days to 50% flowering, D = Plant height, E = Leaf 

467 temperature, F = Stomatal conductance. *Chr represents Chromosome, x-axis represents the physical map 

468 locations of the SNPs on each chromosome and the y-axis (–log base10 p-values) represents the degree to which a 

469 SNP is associated with a trait. 

470

471 Four SNPs (SNPs 2362591, 2362591, 45231105, and 40802478) that have a significant 

472 association with GYD were also identified, and these were located on chromosomes Pv4 and 

473 Pv11, with allele effect ranging from -174.56 kg/ha (SNP 3381526) to 202.90 kg/ha (SNP 

474 3382688). Notably, 75% of the SNPs that were significantly associated with GYD were located 

475 on chromosome Pv11. The sum of the SNPs with a significant positive effect on GYD was 

476 341,88 kg/ha and -351,23 kg/ha for all the SNPs with a significant negative effect on GYD 

477 (Table 4). For SW, two SNPs that were significantly associated with this trait were identified 
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478 on chromosomes Pv03 and Pv08, with allelic effects ranging from -2.41 g per 100 seeds (SNP 

479 3383047) to 4.46 g per 100 seeds (SNP 16647170). Regarding physiological traits, SNPs were 

480 identified that have a significant association with LT distributed across two chromosomes (Pv6 

481 and Pv8), with allele effect ranging from -1.23℃ (SNP 100065202) to 1.34℃ (SNP 

482 100106140).

483

484 Table 3. Single nucleotide polymorphism (SNP) markers associated with agronomic 
485 and physiological traits in dry bean genotypes under drought stress conditions.

486 CH = chromosome, DFW = days to flowering, GYD = grain yield (kg/ha), SW = 100 seed weight (g), PH = plant 

487 height (cm), LT = leaf temperature (℃), SC = stomatal conductance (mmol m−2 s−1), SNP = single nucleotide 

488 polymorphism, MAF = minor allele frequency, R2 = proportion of the total phenotypic variation explained by the 

489 significant SNP marker after fitting the other model effects and -log10(P) = p value of the association.

Phenotype SNP name CH SNP position 

on genome 

(bp)

MAF Allele Effect of 

allele

-log10 (P) 

value

R2 Candidate gene

LT 100106140 06 14389438 0.25 A/C 1.34 0.000 0.23

100065202 08 52504423 0.12 G/A -1.43 0.000 0.22

DFW 100132383 03 47240686 0.04 A/G 3.76 0.000 0.70

3381050 02 25978891 0.03 C/T 3.85 0.000 0.70 Phvul.002G122100

8204238 10 42089084 0.06 A/G 2.78 0.000 0.70

8212194 10 42105474 0.04 A/T 3.54 0.000 0.69

GYD 3384334 11 2362591 0.1 A/G -176.67 0.000 0.44

3381526 11 2362591 0.09 A/G -174.56 0.000 0.44

3382688 04 45231105 0.09 G/A 202.90 0.000 0.43 Phvul.004G150500

100061855 11 40802478 0.42 T/G 138.98 0.000 0.43

PH 100101387 05 34925013 0.03 G/A 17.82 0.000 0.32

8198531 07 9701750 0.04 G/A -16.03 0.000 0.31

100060987 01 42938094 0.04 G/A 15.57 0.000 0.31 Phvul.001G172300

100181735 08 22152034 0.23 G/A 7.57 0.000 0.30 Phvul.008G133100

3379684 07 5239949 0.22 T/A -5.62 0.000 0.30

16650827 07 51719432 0.09 T/C -8.41 0.000 0.30

3380814 11 11934462 0.11 C/T 7.15 0.000 0.30

100119463 08 6003908 0.03 G/A 15.56 0.000 0.30 Phvul.008G065700

8196298 11 12212674 0.12 T/G -0.67 0.000 0.30

3379078 08 7823952 0.02 C/G 17.75 0.000 0.30 Phvul.008G080600

3377272 11 9410740 0.16 T/C -6.15 0.000 0.29

3379350 11 43494132 0.16 C/T 6.35 0.000 0.29

100063156 10 7307165 0.44 T/C 4.85 0.000 0.29

3379405 05 4782514 0.24 G/A -7.80 0.000 0.29

3377900 11 9691109 0.14 T/A -6.02 0.000 0.29

SW 16647170 08 36620996 0.11 T/C 4.46 0.000 0.66

3383047 03 50229319 0.33 G/A -2.41 0.000 0.65 Phvul.003G263200

SC 3380850 01 50427390 0.08 T/C -10.79 0.000 0.10 Phvul.001G254100

3381030 02 33669423 0.04 G/A -10.33 0.000 0.08

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2022. ; https://doi.org/10.1101/2022.11.18.517065doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517065
http://creativecommons.org/licenses/by/4.0/


19

490 Notably, two SNPs on chromosomes Pv1 and Pv2 were significantly associated with SC, with 

491 allele effect ranging from -10.79 mmol m−2 s−1 (SNP 3380850) to -10.33 mmol m−2 s−1 (SNP 

492 3381030). Common regions associated with multiple traits on chromosomes were not 

493 identified under DS environments in this study. Markers explained 0.08 – 0.10, 0.22 – 0.23, 

494 0.29 – 0.32, 0.43 – 0.44, 0.65 – 0.66 and 0.69 – 0.70 of the total phenotypic variability (R2) for 

495 SC, LT, PH, GYD, SW and DFW, respectively. Overall, the R2 varied from 0.08 (SC: SNP 

496 3381030) to 0.70 (DFW: SNPs 100132383, 3381050 and 8204238). 

497

498 Analysis of marker-trait associations under non-stressed 

499 environments
500 The significant MTAs and their respective statistical parameters for agronomic and 

501 physiological traits are summarised in Table 5. Under NS conditions, 39 significant MTAs 

502 were detected for six traits (excluding SW and SC) with p < 10-03. The associations are shown 

503 in Fig 3. 

504

505 Fig 3. Manhattan plots showing significant marker-trait associations, their p-values and candidate genes 

506 for agronomic and physiological traits under well-watered conditions. Note: A = Days to 50% flowering, B 

507 = Grain Yield, C = Days to physiological maturity, D = Plant height, E = Leaf chlorophyll content, F = Leaf 

508 temperature. *Chr represents Chromosome, x-axis represents the physical map locations of the SNPs and the y-

509 axis (–log base10 p-values) represents the degree to which a SNP is associated with a trait. 

510 The quantile-quantile (QQ) plots for the studied traits revealed that the expected and observed 

511 probability values were normally distributed (S4 Fig). The highest number of significant MTAs 

512 were observed on Pv11 (15%), followed by chromosomes Pv3 and Pv4 (both with 18%), with 

513 the least on Pv2 and Pv10 (both with 3%). No significant markers for SW and SC were detected 

514 under NS conditions in this study. The highest number of significant MTAs were observed on 

515 PH (14), with markers accounting for 0.39 – 0.40 of the total trait variation. Additionally, the 

516 allele effect of these SNPs ranged from -10.46 cm (SNP 13121517) to 9.30 cm (SNP 

517 13121517). Interestingly, 38% of the markers that were significantly associated with PH were 

518 located on chromosome 11. For DFW, a total of 12 significant associations were identified, 

519 with markers explaining 0.45 – 0.46 of the observed trait variation. Additionally, the significant 

520 SNPs for DFW were located on chromosomes Pv1, Pv3, Pv4, Pv5, Pv6, Pv7 and Pv11, with 

521 allele effect ranging from -2.27 days (SNP 100175933) to 2.23 days (SNP 100175934). 

522
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523 Table 4. Single nucleotide polymorphism (SNP) markers associated with agronomic 
524 and physiological traits in dry bean genotypes under non- stressed conditions.

Phenotype SNP name CH SNP position 

on genome (bp)

MAF Allele Effect of 

allele

-log10 (P) 

value

R2 Candidate gene

DFW 3372129 04 43770691 0.20 C/T 1.85 0.000 0.46

3368616 01 48386869 0.29 C/G 2.19 0.000 0.46

8212932 04 43742237 0.35 C/A -1.39 0.000 0.46

3379964 03 48424846 0.37 C/T -1.61 0.000 0.46

100175933 06 31464277 0.27 A/G -2.27 0.000 0.46

100175934 06 31464277 0.27 A/T 2.23 0.000 0.45

16647096 03 19481003 0.28 A/C 1.49 0.000 0.45

3378741 03 1178534 0.38 A/C 1.56 0.000 0.45 Phvul.003G011400

100140152 04 43939513 0.32 A/G 1.67 0.000 0.45 Phvul.004G037700

3374827 11 47036209 0.34 T/G 1.63 0.000 0.45 Phvul.011G166300

3381380 05 1315962 0.27 T/C -2.05 0.000 0.45

100122216 07 23590138 0.39 A/T 1.79 0.000 0.45 Phvul.007G144000

DPM 100117381 02 24161867 0.18 A/T 2.90 0.000 0.70 Phvul.002G112700

GYD 100124606 01 32783904 0.17 T/A 199.11 0.000 0.50

LCC 8198945 06 30370228 0.16 T/C 2.18 0.000 0.12 Phvul.006G209700

100167635 08 44516286 0.32 T/G 1.90 0.000 0.11 Phvul.008G163600

PH 3383709 11 23343020 0.28 A/G 7.30 0.000 0.41

100123206 03 41669536 0.27 G/T 9.02 0.000 0.40 Phvul.003G192800

13121517 11 5699564 0.08 C/T 9.30 0.000 0.40

100164602 03 32040779 0.43 A/C -4.72 0.000 0.40

100065600 11 38863980 0.27 C/G -8.10 0.000 0.40

100181804 07 37529193 0.42 G/T -4.77 0.000 0.40 Phvul.007G253400

100124008 03 36956076 0.38 T/C 5.98 0.000 0.40

100101486 04 38236692 0.37 T/C 4.92 0.000 0.39

100073620 11 42969050 0.35 C/T -7.00 0.000 0.39 Phvul.011G152000

100068647 01 39765027 0.38 T/G 5.76 0.000 0.39

3382850 10 40091053 0.39 A/G 4.52 0.000 0.39

13121517 11 5699564 0.06 T/C -10.46 0.000 0.39

3379157 06 30312046 0.44 T/C -4.39 0.000 0.39 Phvul.006G208800

13121469 01 44975217 0.49 C/A 5.29 0.000 0.39 Phvul.001G190800

LT 100101691 03 18922335 0.28 G/A -0.56 0.000 0.08

100070187 04 12643816 0.21 A/G 0.80 0.000 0.15

100061661 01 19177470 0.16 T/A 0.69 0.000 0.09

100071816 04 33722284 0.45 A/G 0.39 0.000 0.08

100100644 08 26794110 0.21 A/C 0.54 0.000 0.08

100102687 04 7507744 0.14 G/A -0.61 0.000 0.08 Phvul.004G055500

100120897 08 20306142 0.06 C/A -0.71 0.000 0.08

100167520 05 23720983 0.36 C/G 0.46 0.000 0.08

100161682 05 18689401 0.17 G/A -0.58 0.000 0.08 Phvul.005G077500

525 CH = chromosome, DFW = days to flowering, DPM = days to physiological maturity, GYD = grain yield (kg/ha), PH = plant height (cm), 

526 LCC = leaf chlorophyll content, LT = leaf temperature (℃), SNP = single nucleotide polymorphism, MAF = minor allele frequency, R2 = 

527 proportion of the total phenotypic variation explained by the significant SNP marker after fitting the other model effects, -log10(P) = p value 

528 of the association.

529
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530 Notably, one SNP (SNP 100124606) on chromosome Pv01 was significantly associated with 

531 GYD, with a large positive allelic effect of 199.11 kg/ha. In addition, this SNP had a MAF of 

532 0.17 in the population. Regarding physiological traits, SNPs were identified that have a 

533 significant association with LCC distributed across two chromosomes (Pv6 and Pv8), with 

534 positive allele effects ranging from 1.90 (SNP 100167635) to 2.18 (SNP 8198945). For LT, 

535 nine significant associations were detected, with markers accounting for 0.08 – 0.15 of the trait 

536 variation. The significant SNPs for LT were located on chromosomes Pv1, Pv3, Pv4, Pv5 and 

537 Pv8, with allele effect ranging from -0.71℃ (SNP 100102687) to 0.80℃ (SNP 100070187). 

538 Additionally, the sum of the SNPs with a significant positive effect on LT was 2.88℃ and -

539 2.46℃ for all the SNPs with a significant negative effect. A locus (SNP 100117381) on 

540 chromosome Pv02 explained the highest proportion of the phenotypic variation (0.70) among 

541 the studied traits and was associated with DPM. In addition, SNP 100117381 had a MAF of 

542 0.18 in the population and a large positive effect (2.90 days) on DPM. On the other hand, nine 

543 significant SNPs for LT on chromosomes Pv3, Pv4, Pv8 and Pv5 explained the least proportion 

544 of the observed phenotypic variation (0.08) among the studied traits. Common regions 

545 associated with multiple traits on chromosomes were not identified under NS environments. 

546 Overall, R2 varied from 0.08 (LT – SNPs 100101691, 100071816, 100100644, 100102687, 

547 100102687, 100167520 and 100161682) to 0.70 (DPM - SNP 100117381) (Table 5).

548

549 Identification of putative candidate genes associated with 

550 significant single nucleotide polymorphism
551

552 Drought stressed environments
553 A total of eight potential candidate genes (DFW - 1; GYD - 1; PH - 4; SW - 1; SC – 1) were 

554 identified under DS environments (Table 4 and Fig 2). The candidate genes for DFW 

555 (Phvul.002G122100), SC (Phvul.001G254100), SW (Phvul.003G263200) and GYD 

556 (Phvul.004G150500) were identified on chromosomes Pv02, Pv01, Pv03 and Pv04, 

557 respectively (Table 4). These genes had diverse putative functions ranging from RNA 

558 recognition motif or RNP domain functions (DFW), NADPH dehydrogenase/NADPH 

559 diaphosare activity (SW), helicase activity and CCCH zinc finger protein domain functions 

560 (SC) to Phosphoethanolamine N-methyltransferese activity (GYD), respectively. On the other 

561 hand, the candidate genes for PH were identified on chromosomes Pv01 (Phvul.001G172300) 

562 and Pv08 (Phvul.008G133100; Phvul.008G065700; Phvul.008G080600) (Table 4). These 
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563 genes had diverse putative functions ranging from calcium transporting ATPase 1 activity, 

564 peptidyl prolyl cis trans isomerase activity, acyl-coenzyme A thiosterase activity to 

565 centrosomal protein nuf function, respectively.

566

567 Non-stressed environments
568 A total of fourteen potential candidate genes (DFW - 4; DPM - 1; LCC - 2; PH - 5; LT – 2) 

569 were identified under NS environments (Table 5 and Fig 3). The candidate genes for DFW 

570 were identified on chromosomes Pv03 (Phvul.003G011400), Pv04 (Phvul.004G037700), Pv07 

571 (Phvul.007G144000) and Pv11 (Phvul.0011G166300), whereas the candidate gene for DPM 

572 was identified on chromosome Pv02 (Phvul.002G112700) (Table 5). Candidate genes for DFW 

573 had diverse putative functions related to SORTING NEXIN-13, transcription factor TCP 13, 

574 U6 SNRNA-associated SM LIKE PROTEIN LSM4 and NHL domain containing protein. On 

575 the other hand, the candidate gene for DPM had a putative function related to the activity of 

576 thiol disulphide oxidoreductase. Chromosomes Pv4 and Pv5 harboured the two candidate genes 

577 for LT namely Phvul.004G055500 and Phvul.005G077500, respectively (Table 5). These 

578 genes had diverse putative functions related to the mitochondrial transcription termination 

579 factor family protein and leucine rich repeat protein associated with apoptosis in muscle tissue, 

580 respectively. 

581 The genes Phvul.006G209700 and Phvul.008G163600 for LCC were identified on 

582 chromosomes Pv06 and Pv08, respectively. These genes had diverse putative functions, such 

583 as premnaspirodiene oxygenase or hyoscymus muticus premnaspirodiene oxygenase activity 

584 and nucleoside triphosphate hydrolases activity, respectively. On the other hand, the candidate 

585 genes for PH were identified on chromosomes Pv01 (Phvul.001G190800), Pv03 

586 (Phvul.00G192800), Pv06 (Phvul.006G208800), Pv07 (Phvul.007G253400), and Pv11 

587 (Phvul.011G152000) (Table 5). These genes also had diverse putative functions, such as f-box-

588 like domain superfamily functions, protein NRT1 or PTR family related functions, 

589 phosphatidylserine decarboxylase activity, typa-like translation elongation factor svrs-related 

590 functions, and inactive g-type lectin s-receptor like serine or threonine protein kinase activity, 

591 respectively.

592

593 Linkage disequilibrium analysis using significant SNP markers
594 The analysis of LD using SNP markers is shown in Fig 4. A high and extensive LD was 

595 observed for the common bean genome, which is expected in self-pollinated crops such as 
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596 common bean. The results show that the overall LD decay across the genome of 185 common 

597 bean genotypes was 30 bp, at a cut–off of r2 = 0.4. Generally, there was a slow decay of LD 

598 throughout the common bean genome, and the LD extended to several mega-bases as shown 

599 in Fig 4. The population structure usually affects the extent of LD decay.

600

601 Fig 4. Linkage disequilibrium (LD, r2) decay plot in genome of dry beans based on 9370 single nucleotide 

602 polymorphisms (SNPs) in 185 diverse genotypes.

603

604 Discussion
605 Variations in agronomic and physiological traits
606 The low to moderate H2 estimates observed for SC, LT and LCC under DS and NS conditions 

607 imply that these physiological traits might be influenced by a number of genes (polygenic 

608 inheritance) and the production environment. Therefore, direct selection for SC, LT and LCC 

609 under DS and NS conditions could be a challenge to dry bean breeders. On the other hand, the 

610 high H2 estimates (97%) for seed size observed under DS and NS environments reflect the 

611 predominance of additive gene action (genetic control of this trait) across environments. The 

612 current findings are in agreement with Assefa et al. [80] and Hoyos‐Villegas et al. [14] who 

613 reported H2 estimates of 77 and 93.4%, respectively under NS conditions. In this study, drought 

614 stress reduced PH, GYD, SW, DPM, LCC and SC by 12.1, 29.6, 10.3, 12.6, 28.5 and 62.0%, 

615 respectively, highlighting the detrimental effect of moisture stress under field conditions. These 

616 findings corroborate previous reports by Assefa et al. [80], Darkwa et al. [22], Assefa et al. 

617 [81], and Mathobo et al. [82] in common bean. Mathobo et al. [82] reported reductions of 48 

618 and 39% in SC and LCC, respectively under DS conditions. Darkwa et al. [22], using navy 

619 beans, reported reductions of 10.7, 14.8, 12.7 and 26.1% in SW, PH, DPM and LCC under DS 

620 conditions. Assefa et al. [80], using navy beans, also reported reductions of 12% and 17.6% in 

621 SW and DPM, respectively under DS conditions. 

622 Crop plants close their stomata when exposed to drought stress to minimize excessive 

623 water loss and avoid dehydration. However, the closing of stomata reduces stomatal 

624 conductance, and also affects cooling mechanisms resulting in increased leaf or canopy 

625 temperature. Therefore, in this study, drought stress increased LT by 21.6%. Drought stress 

626 also reduced GYD by 30%, close to the GYD reductions reported by Schneider et al. [83] 

627 [26%], Darkwa et al. [22] [30%] and Mutari et al. [24] [28%] in dry bean drought tolerance 

628 screening trials. Breeding for enhanced GYD under both DS and NS environments is one of 
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629 the greatest challenges faced by dry bean breeders [15]. Therefore, one of the most important 

630 contribution of this study was to indicate drought tolerant genotypes (DAB91, DAB302, 

631 AFR703, CIM-SUG07-ALS-51-3, DAB487, DAB287, CIM-RM09-ALS-BSM-12 and 

632 DAB539) with consistent outstanding and stable GYD performance under both DS and NS 

633 environments. Terminal drought stress is an important factor limiting common bean 

634 productivity in the SSA region. Therefore, the identification and subsequent release of drought 

635 tolerant genotypes will positively impact on socio-economic, food and nutrition security in 

636 SSA. These genotypes could also serve as important genetic resources in drought tolerance 

637 breeding programmes to improve released cultivars. Both DAB287 and AFR703 were released 

638 in Zimbabwe as Sweet William and Gloxinia, respectively. Among the drought tolerant 

639 genotypes with superior GYD performance under water deficit conditions, most of the top 20 

640 genotypes were of the Andean gene pool, coded as drought Andean (DAB lines) (Table 3 and 

641 S2 Table). Notably, all the DAB lines evaluated in this study were developed for improved 

642 tolerance to drought by the Alliance of Bioversity International and International Centre for 

643 Tropical Agriculture in Colombia. The current observation suggests that progress in improving 

644 drought tolerance in the Mesoamerican gene pool has been limited compared to the Andean 

645 gene pool. The current findings are in agreement with Assefa et al. [81] who reported that 

646 progress in improving drought tolerance in navy beans (Mesoamerican gene pool) worldwide 

647 has been limited compared to the other commercial classes of small seeded Mesoamerican 

648 beans. 

649

650 Population structure and Linkage disequilibrium analysis
651 The AMDP was delineated into two distinct major sub-populations based on the genotypes’ 

652 genetic ancestry, and this corresponded to the Andean and Mesoamerican gene pools (Figs 1B, 

653 C). This is expected considering that the domestication of dry beans on the American continent 

654 in two main centres of origin (Andean and Mesoamerican regions of America) resulted in two 

655 major and diverse gene pools [59, 84]. Cichy et al. [31, 55], Raggi et al. [74], Tigist et al. [48], 

656 Nkhata et al. [49], Ojwang et al. [71], Keller et al. [6] and Liu et al. [85] also observed two sub-

657 populations (Andean and Mesoamerican gene pools) in their GWAS studies. 

658 A number of the identified Andean-Mesoamerican admixed genotypes carrying 

659 genomic regions from both gene pools are released cultivars in Rwanda (RWR2154), Malawi 

660 (NUA59-4), Zimbabwe (SMC16, NUA674, and Sweet William), Eswatini (NUA674) [86–89]. 

661 Further, most of the admixed genotypes have commercial seed types, are biofortified 
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662 (RWR2154, SMC16, SMC21, NUA674 and NUA59-4) and drought tolerant (Sweet William, 

663 DAB115, DAB63, DAB142 and DAB477). Singh [90], Beebe et al. [4, 20] and Beebe [84] 

664 reported that interracial hybridizations between races or sister species (Phaseolus coccineus, 

665 Phaseolus acutifolius and Phaseolus dumosus) of Phaseolus vulgaris have been widely used 

666 in dry bean improvement programmes when breeding for enhanced grain yield, micronutrient 

667 density and drought tolerance. For example, the biofortified admixed genotype NUA674 is a 

668 product of an inter-gene pool cross between AND277 (Andean gene pool) and G21242 

669 (Andean-Mesoamerican inter-gene pool landrace) made at the Alliance of Bioversity 

670 International and International Centre of Tropical Agriculture (ABC) in Colombia [87]. Islam 

671 et al. [91] and Beebe [84], also reported that one of the parents to NUA674, G21242 (source 

672 of high seed iron in biofortification breeding programmes) is a product of Andean–

673 Mesoamerican inter-gene pool hybridization, validating the current findings. Therefore, the 

674 current observation suggests that most of the admixed genotypes identified in this study 

675 resulted from deliberate breeding efforts (inter-gene pool hybridizations) to introgress genes 

676 for enhanced grain yield, drought tolerance and micronutrient density. Similar findings were 

677 reported by Hoyos-Villegas et al. [14] and Tigist et al. [48] in common bean. 

678 The biofortified and drought tolerant admixed genotypes identified in this study may 

679 be used as a bridge to transfer favourable alleles for micronutrient density and drought 

680 tolerance into either the Andean or Mesoamerican seed types. The extent and structure of LD 

681 decay in the study germplasm usually determines the resolution of GWAS. The slow decay of 

682 LD observed in this study is expected in self-pollinating crop species, such as common bean 

683 because of the loss of recombination, which results in a homozygous genetic background. 

684 According to Vos et al. [92], recombination events in crops with a homozygous genetic 

685 background are ineffective to cause LD decay, resulting in extended (large) and slow decay of 

686 LD. The slow decay of LD, and the large extent of LD observed in this study corroborates 

687 previous reports in dry bean [32, 85].

688

689 Marker-Trait Associations
690 In dry bean, it is important to enhance moisture stress tolerance by identifying genotypes with 

691 high grain yield potential under water deficit conditions, and by introgressing desirable alleles 

692 conferring drought tolerance. The mean call rate (93%) and reproducibility (100%) of the silico 

693 DArTs used in this study were consistent with previous reports [15, 49], thus demonstrating 

694 the reliability and high quality of this set of silico DArTs. A higher number of significant MTAs 
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695 were detected under NS conditions, corroborating previous reports in bread wheat (Triticum 

696 aestivum L.) [93, 94] and dry bean [15]. The observed trend could be due to the fact that drought 

697 tolerance is a complex polygenic trait which is highly influenced by the production 

698 environment, resulting in unpredictable performance of genotypes (genotype-by-environment 

699 interaction [GEI]) under different environments (DS and NS). Even though a smaller number 

700 of significant MTA was observed under DS compared to the NS condition, novel genomic 

701 regions associated with key agronomic and physiological traits were detected under DS 

702 conditions. Notably, no significant SNPs for all the studied agronomic and physiological traits 

703 were consistent across DS and NS treatments. Similar findings were reported in wheat ([93] – 

704 plant height and spike length) and dry bean ([15] – grain yield) under DS and NS treatments. 

705 The observed trend suggests that some markers may influence the expression of phenotypic 

706 traits differently under DS and NS environments. Further, the GEI could have confounded the 

707 identification significant SNPs that are consistent across DS and NS treatments.

708 The highest number of significant SNPs were identified for PH. Similar findings were 

709 reported by Sukumaran et al. [95] who observed 30 significant MTAs for PH in durum wheat 

710 (Triticum turgidum L. ssp. Durum). Some of the SNPs identified in this study were located on 

711 genomic regions that had been previously reported to be harbouring genes and QTLs for the 

712 studied traits. For example, in this study, chromosomes Pv01, Pv03, Pv04, Pv06 and Pv07 

713 harboured 1 SNP, 4 SNPs, 3 SNPs, 2 SNPs and 1 SNP, respectively that were significantly 

714 associated with DFW under optimal conditions. These results are consistent with Dramadri et 

715 al. [34], Nkhata et al. [49] and Keller et al. [6]. Dramadri et al. [34] identified 2 QTLs that were 

716 associated with DFW on Pv03 under DS and NS conditions. Nkhata et al. [49] identified 2 and 

717 5 SNPs that were significantly associated with DFW on Pv03 and Pv06, respectively under NS 

718 conditions. Further, Keller et al. [6] identified 6 SNPs, 1 SNP and 1 SNP that were significantly 

719 associated with DFW on Pv01, Pv04 and Pv07, respectively under optimal conditions. These 

720 findings suggest that the aforementioned QTL regions are stable across different environments 

721 and genetic backgrounds. In addition, these findings also suggest that chromosomes Pv01, 

722 Pv03, Pv04, Pv06 and Pv07 harbour genes for controlling flowering.

723 In this study, only one marker (SN 1667170) was significantly associated with SW on 

724 chromosome Pv08 under DS conditions. These results are in accordance with Moghaddam et 

725 al. [57], and Valdisser et al. [15] who identified significant MTAs for SW on chromosome Pv8 

726 under DS and NS environments, suggesting that this QTL is stable across different 

727 environments and genetic backgrounds. On the contrary, several significant MTAs for SW 

728 were previously identified under DS on chromosome Pv01, [52], chromosome Pv03 [51], 
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729 chromosome Pv09 [14], and chromosomes Pv2 to Pv4 and Pv6 to Pv11 [15]. Thus, the 

730 detection of significant MTAs for SW on different chromosomes and locations indicates high 

731 genetic diversity in common bean with respect to genomic regions associated with SW under 

732 drought stress. In this study, the identified SNPs that were significantly associated with GYD 

733 under DS were located on chromosomes Pv04 (SNP 3382688) and Pv11 (SNP 3384334 and 

734 SNP 3381526). Similarly, Dramadri et al. [34] identified significant QTL signals for GYD and 

735 yield components on chromosomes Pv01, Pv02, Pv03, Pv04, Pv06, and Pv11 under DS 

736 conditions. Oladzad et al. [96] also identified SNPs that were significantly associated with 

737 GYD, placed on chromosomes Pv03, Pv08, and Pv11 under heat stress. Further, Valdisser et 

738 al. [15] found 25 QTLs that were associated with GYD on chromosomes Pv02, Pv03, Pv04, 

739 Pv08, Pv09 and Pv11 under NS conditions, in agreement with the current findings. These 

740 findings suggest that chromosomes Pv04 and Pv11 harbour genes for controlling GYD. 

741 The identification of SNPs associated with GYD, under moisture stress, would 

742 significantly contribute to the development of molecular tools for MAS and identification of 

743 genes of interest for edition. The proportion of the total phenotypic variation (R2) explained by 

744 the significant SNP markers for LCC and LT was generally low (0.11 – 0.12 for LCC under 

745 NS and 8 – 15% for LT under NS). Therefore, to account for the missing variation, it might be 

746 worthwhile to complement the SNP-based GWAS by haplotype-based GWAS [97]. 

747

748 Candidate genes
749

750 Drought stressed
751 The functional annotation revealed that the candidate gene for SC, Phvul.001G254100 on 

752 chromosome Pv01 encodes the CCCH zinc finger family protein which plays an important 

753 function in response of plants to biotic and abiotic stresses [98–101]. This functional gene also 

754 plays an important role in physiological and plant developmental processes [101]. Similar 

755 findings were reported in Brassica rapa [98], common bean [15] and Barley (Hordeum vulgare 

756 L.) [101]. Wang et al. [102], Seong et al. [103] and Selvaraj et al. [104] reported that several 

757 types of CCCH zinc family finger millet genes such as OsC3H10, OsC3H47, and OsTZF5 are 

758 involved in the regulation of tolerance to moisture stress in rice (Oryza Sativa L.). According 

759 to Lin et al. [105], the CCCH zinc finger family gene confers drought tolerance in plants by 

760 regulating the opening and closing of stomata. They further reiterated that genotypes that are 

761 tolerant to drought stress have abnormal and lower stomatal conductance under moisture 
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762 stressed conditions. In this study, the marker SNP 3380850 for the gene Phvul.001G254100 

763 which confers tolerance to drought stress exhibited negative allelic effects (-10.79 mmol m−2 s−1) 

764 on SC. 

765 The functional annotation revealed that the candidate gene for DFW, 

766 Phvul.002G122100 on chromosome Pv02 encodes an RNA-recognition motif protein, which 

767 plays a comprehensive biological function (critical modulators) in abiotic stress (drought, heat 

768 flooding, cold and high salinity) responding processes in plants [106]. Zhou et al. [107] 

769 observed that the RNA-recognition motif gene “OsCBP20” from rice confers abiotic stress 

770 tolerance in escherichia coli. Therefore, the candidate gene Phvul.002G122100 identified in 

771 this study may play a protective role under DS conditions. Candidate genes such as 

772 Phvul.003G263200 (Pv08) for SW which encodes for NADPH dehydrogenase plays an 

773 important role in mechanisms which protect plants against nitro-oxidative stresses generated 

774 by biotic and abiotic stresses such as drought, low temperature, heat, and salinity [108]. Under 

775 DS, the seed is significantly affected by oxidative damages, and oxidative damages are 

776 minimized by the activity of NADPH dehydrogenase [109]. 

777 The candidate gene for GYD, Phvul.004G150500 on chromosome Pv04, encodes the 

778 enzyme, phosphoethanolamine N-methyltransferese in plants. This catalytic enzyme plays an 

779 important role in the response of plants to abiotic stresses such as drought and salt tolerance by 

780 catalysing the methylation of phosphoethanolamine to phosphocholine [110]. Studies 

781 conducted by Wang et al. [110] in transgenic tobacco revealed that phosphoethanolamine N-

782 methyltransferese improved the drought tolerance of transgenic tobacco. Notably, the marker 

783 (SNP 3382688) for this candidate gene Phvul.004G150500 had large positive allelic effects 

784 (202.90 kg/ha) on GYD. The candidate gene for PH, Phvul.001G172300 encodes the calcium 

785 transporting ATPase, which plays an important role in growth and development processes, 

786 opening and closing of stomata, hormonal signalling, and regulation of responses to biotic and 

787 abiotic stresses in plants [111]. In summary, these results further confirmed that the identified 

788 putative potential candidate genes were associated with moisture stress tolerance of dry bean. 

789 Therefore, the putative candidate genes identified in the current AMDP under DS conditions 

790 are important genetic resources. The candidate genes could be utilized in drought tolerance 

791 breeding programmes by creating and introgressing new genetic variability into commercial 

792 cultivars. 

793
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794 Well-watered conditions
795 The functional annotation revealed that the candidate gene for PH “Phvul.011G152000” on 

796 chromosome Pv11 encodes the threonine protein kinase, which is associated with enhanced 

797 tolerance to biotic and abiotic stresses in plants [15]. Similar results were reported in dry beans 

798 by Valdisser et al. [15]. In rice, kinase causes dwarfism by reducing plant height [112]. 

799 Similarly, in this study, the marker SNP 100073620 for the gene “Phvul.001G152000” 

800 exhibited negative allelic effects (-7.00 cm) on PH. According to Zhang et al. [112], kinases 

801 also has an impact on grain yield. The candidate gene Phvul.004G037700 which was found on 

802 chromosome Pv04 in association with DFW encodes transcription factor TCP13. The 

803 transcription factor families are strongly involved in abiotic and biotic stress responses, 

804 including zinc-finger, dehydration-responsive element-binding (DREB), and basic helix-loop-

805 helix (bHLH) families which regulate plant growth in leaves and roots under water deficit 

806 conditions [113]. Studies conducted by Urano et al. [113] in Arabidopsis thaliana revealed that 

807 TCP13 induces changes in leaf (leaf rolling and reduced leaf growth) and root morphology 

808 (enhanced root growth). This results in enhanced tolerance to dehydration stress under osmotic 

809 stress. The candidate gene Phvul.004G055500 which was found in association with LT on 

810 chromosome Pv04 encodes mitochondrial transcription termination factor family protein. 

811 According to Kim et al. [114], the mitochondrial transcription termination factor family protein 

812 enhances thermo-tolerance in Arabidopsis.

813

814 Conclusions
815 This study contributes many significant MTAs in common bean for agronomic and 

816 physiological traits under DS and NS environments. The present study identified a total of 68 

817 SNPs that were significantly (p < 10-03) associated with key agronomic and physiological traits 

818 under DS and NS conditions. The highest number of significant MTAs were observed on 

819 chromosome Pv11 in both environments. For the two environments (DS and NS), no common 

820 SNPs for the studied traits was detected. Overall, twenty-two potential candidate genes were 

821 identified across environments. Most of the identified genes had known biological functions 

822 related to regulating drought stress response, and growth and development under drought 

823 stress. The information generated from this study provides insights into the genetic basis of 

824 agronomic and physiological traits under DS stress and NS conditions, and lays the foundation 

825 for future validation studies of drought tolerance genes in dry bean. Thus, the significant MTAs 
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826 identified in this study should be explored and validated further to estimate their effects using 

827 segregating populations and in different genetic backgrounds before utilization in gene 

828 discovery and marker-assisted breeding for drought tolerance. Further, functional 

829 characterization and the application of gene knockout to the identified putative candidate genes 

830 would further confirm their roles in regulating drought stress response, and growth and 

831 development under DS and NS conditions. More powerful statistical genetics tools such as 

832 genomic prediction models would be needed to identify minor genes that are associated with 

833 agronomic and physiological traits. The admixed genotypes identified in this study offer 

834 potential as genetic resources in drought tolerance and biofortification breeding programmes, 

835 especially within the sugar, red mottled and navy bean market classes. 
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