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Abstract: 1 

Assessment of single-cell gene expression (scRNA-seq) and antigen receptor sequencing 2 
(scVDJ-seq) has been invaluable in studying lymphocyte biology, but current tools are 3 
limited. Here, we introduce Dandelion, a computational pipeline for scVDJ-seq analysis. It 4 
enables the application of standard V(D)J analysis workflows to single-cell datasets, 5 
delivering improved V(D)J contig annotation and the identification of non-productive and 6 
partially spliced contigs. We devised a novel strategy to create an antigen receptor feature 7 
space that can be used for both differential V(D)J usage analysis and pseudotime trajectory 8 
inference. The application of Dandelion improved the alignment of human thymic 9 
development trajectories of double positive T cells to mature single-positive CD4/CD8 T 10 
cells, with important new predictions of factors regulating lineage commitment. Dandelion 11 
analysis of other cell compartments provided novel insights into the origins of human B1 12 
cells and ILC/NK cell development, illustrating the power of our approach. Dandelion is an 13 
open access resource (https://www.github.com/zktuong/dandelion) that will enable future 14 
discoveries.  15 
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Main Text: 1 

Recent developments in single-cell genomics have significantly advanced our understanding 2 
of human immunology1,2. Paired antigen receptor (AgR) sequencing with mRNA expression 3 
in the same cell allows for direct linkage of AgR repertoire with cellular phenotypes, and has 4 
proven to be a powerful tool in understanding lymphocyte development and function in 5 
healthy and disease contexts3–6. 6 
 7 
Multi-omics analysis leverages data from different modalities and has been successfully 8 
applied in recent years to study cellular biology at an unprecedented resolution. Examples 9 
include integration of paired single-cell RNA sequencing (scRNA-seq) and Assay for 10 
Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) data or 11 
Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) data7,8. 12 
However, unlike many other sequencing modalities, which largely consist of continuous data, 13 
AgR repertoire sequencing data are a mixture of categorical and continuous data which pose 14 
additional challenges for integration. AgR data consist of annotations of variable (V), 15 
diversity (D) and joining (J) genes, which are selected and recombined during B/T cell 16 
development9. The Adaptive Immune Receptor Repertoire (AIRR) community was formed in 17 
2015 to help address the issues and challenges related to the curation and analysis of AgR 18 
data generated with high throughput sequencing technologies10–12. This has led to the 19 
standardization of repertoire data representation across various modes of AgR data, including 20 
single-cell V(D)J sequencing data. However, established options and packages that can deal 21 
with single-cell AgR repertoire data are largely restricted to the simple task of matching 22 
contigs to cells. Thus, there is currently a dearth of methods that can realize the full potential 23 
of paired scRNA-seq and scVDJ-seq data. 24 
 25 
To that end, we developed Dandelion, a holistic analysis framework within the context of 26 
single-cell lymphocyte biology. It offers improved BCR/TCR contig annotation, integrative 27 
analysis with single cell RNA-seq data and a novel V(D)J feature space for differential V(D)J 28 
usage and pseudotime trajectory inference. Here, using two immune development datasets, 29 
we showcase how Dandelion can be applied to improve alignment of cells along the double 30 
positive (DP) T cell to mature T cell development trajectory, and provide novel insights into 31 
human B1 cell origin and innate lymphoid cell (ILC) and natural killer (NK) cell 32 
development. 33 
 34 
Results 35 
Dandelion enables holistic scVDJ-seq analysis 36 
As Dandelion operates on the AIRR data format, it has high interoperability with existing 37 
tools in the AIRR community13,14 and can serve as a bridge between these tools and single-38 
cell gene expression analysis software ecosystem e.g. scverse15,16 (Fig. 1a). Dandelion has 39 
also been certified by the AIRR Software Working Group to be compliant with the software 40 
standards that encourage collaboration and reproducibility.  41 
 42 
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Dandelion can be used to analyze single-cell BCR, αβTCR and γδTCR data, allowing for 1 
BCR mutation calling, improved γδTCR mapping, extraction of both productive and non-2 
productive V(D)J contigs and identification of unspliced J gene alignments (‘multi-J 3 
mapping’) (Fig. 1b). Dandelion then performs quality control checks, clonotype calling and 4 
clonotype network generation for downstream analyses. A main novel feature of Dandelion is 5 
the creation of a ‘V(D)J feature space’ that can be used to visualize TCR/BCR usage across 6 
cell pseudo-bulks or neighborhoods, perform differential V(D)J usage analysis and 7 
pseudotime trajectory inference. A summary list of features of Dandelion and other existing 8 
pipelines is shown in Supplementary Fig. 1. A subset of the functionalities of Dandelion 9 
was previously applied to a large COVID-19 study4 which showcased its network-based 10 
repertoire diversity analysis method.  11 
 12 
Dandelion improves contig annotations 13 
Similar to Change-O14, Dandelion re-annotates V(D)J contigs using igblastn17 with reference 14 
sequences contained in the international ImMunoGeneTics information system (IMGT) 15 
database18. The individual contigs are then checked with blastn for the D and J gene 16 
separately, using the same settings as per igblastn17. The additional blastn step allows us to: i) 17 
apply an e-value cut off for D and J calls to ensure only high confidence calls are retained; ii) 18 
identify multi-J mapping contigs (see below); and iii) recover contigs without V gene calls 19 
(removed by igblastn). We packaged this pre-processing workflow into a single-line 20 
command implemented via a singularity container to streamline and improve the user 21 
experience, circumventing the difficulty of setting up the various software environments and 22 
dependencies.  23 
 24 
Non-productive contigs, which are contigs that cannot be translated into a functional protein, 25 
are often filtered out by other scVDJ-seq analysis pipelines e.g. scirpy13. Moreover, igblastn 26 
is a V gene annotation tool17 and would filter contigs without V gene presence. We found that 27 
a significant proportion of contigs were non-productive in αβTCR, γδTCR and BCR data 28 
from fetal human tissues3 and the majority were due to absent V genes, with the exception of 29 
the TRA locus where most non-productive contigs were annotated due to presence of 30 
premature stop codons (Fig. 2a). This pattern was consistent even after excluding thymic 31 
samples to remove the influence of developing T cells (Supplementary Fig. 2a). These non-32 
productive contigs without V genes were captured in scVDJ-seq because the rapid 33 
amplification of 5′ complementary DNA (cDNA) ends (5′ RACE) technology used in the 34 
protocol does not require primers against V genes for targeted enrichment, in contrast to the 35 
previous multiplex PCR approach (Supplementary Fig. 2b). Although these contigs are not 36 
translated into functional proteins, they likely represent products of partial or failed 37 
recombination that we reasoned are still biologically meaningful, reflecting a cell’s history 38 
and origin. Therefore, Dandelion does not automatically filter out non-productive contigs, 39 
and this data has utility, as later discussed, when we used it to track B1 cell origin and 40 
ILC/NK development.  41 
 42 
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We have also discovered that multiple J genes can be sequentially mapped onto different 1 
regions in the same messenger RNA (mRNA) contig, a phenomenon we termed ‘multi-J 2 
mapping’. Looking at the most frequent multi-J mapping contigs in each locus 3 
(Supplementary Table 1), we found that the majority were two to four neighboring J genes 4 
on the genome interspersed with introns. As the process of linking the chosen J to C genes is 5 
achieved through RNA splicing rather than DNA recombination, contigs with multi-J 6 
mapping are likely products of partially spliced transcripts (Fig. 2c). Nevertheless, it is 7 
biologically plausible that the J gene nearest to the 5′ end is the intended exon that would be 8 
expressed in the mature mRNA. 9 
 10 
We next investigated factors that might contribute to multi-J mapping. We first noted that 11 
non-productive contigs without V genes appeared to be more likely to have multi-J mapping 12 
(Fig. 2c). This difference could be due to nonsense-mediated decay (NMD), an RNA 13 
degradation process that is triggered when translation encounters a premature stop codon19. 14 
Multi-J mapping contigs that contain a V gene will initiate translation from the V gene, which 15 
will trigger degradation by NMD due to premature stop codons in J gene introns. Transcripts 16 
of multi-J mapping without a V gene cannot be translated and will therefore evade 17 
degradation by NMD. To test the contribution of NMD to multi-J mapping, we treated 18 
peripheral blood mononuclear cells (PBMCs) with cycloheximide to block NMD and 19 
analyzed treated and untreated cells by scRNA-seq with scVDJ-seq. This resulted in an 20 
increase in the proportion of multi-J mapping in TCR contigs with V genes (Supplementary 21 
Fig. 2c), supporting the conclusion that NMD recognises and degrades V-gene containing 22 
multi-J mapping contigs.  23 
 24 
We used a logistic regression model to look for additional factors associated with multi-J 25 
mapping (Fig. 2d) in both the Suo et al. 20223 dataset (Supplementary Table 2) and the new 26 
control/cycloheximide-treated PBMC dataset that we generated for this study 27 
(Supplementary Table 3). The above finding was further supported by a significant 28 
interaction (Benjamini–Hochberg (BH) adjusted P-value 0.0023) between V gene presence 29 
and cycloheximide treatment, although the significant non-interacting V gene term (BH 30 
adjusted P-value 1.8e-205) in the regression fit suggests that NMD may only partially 31 
account for the effect of V genes on multi-J mapping. Furthermore, we compared the 32 
sequences of 5′ end J genes positively and negatively associated with multi-J mapping and 33 
found the known consensus motif for splicing, ‘GTAAGT’ in +1 to +6 position of adjacent 34 
intron20, was disrupted in J genes associated with more multi-J mapping (Fig. 2e, 35 
Supplementary Table 4). In conclusion, the factors that might contribute to multi-J mapping 36 
include specific cell types and J gene identity, which potentially affect splicing efficiencies; 37 
as well as V gene presence, which might be partially explained by NMD (illustrated by 38 
Supplementary Fig. 2d). 39 
 40 
An additional application of Dandelion’s contig annotation functionality is improved γδTCR 41 
contig recovery. The only existing method for sc-γδTCR mapping is the cellranger vdj 42 
pipeline developed by 10X Genomics, although this is primarily tailored for αβTCR contigs. 43 
The software is capable of reconstructing the γδTCR contigs, but most versions struggle with 44 
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annotating them, a problem 10X was aware of and addressed with user-side workaround 1 
instructions. Supplying the reconstructed contigs into Dandelion’s pre-processing pipeline 2 
yields re-annotated output that can be used for downstream analysis. We processed 33 γδTCR 3 
libraries3; One mapping was done with cellranger 6.1.2 to the 10X GRCh38 5.0.0 V(D)J 4 
reference, with the contigs identified by cellranger as high confidence subsequently re-5 
annotated with Dandelion. Another mapping was done with cellranger 6.1.2 to the 5.0.0 6 
reference modified to obtain annotated γδTCR contigs as per 10X Genomics’ instructions. 7 
We see a consistent higher recovery rate of both high confidence γδTCR contigs and high 8 
confidence productive γδTCR contigs in the mapping post-processed with Dandelion, 9 
verified as statistically significant by the Wilcoxon signed-rank test (P-value for high 10 
confidence contigs: 5.39e-7, P-value for high confidence productive contigs: 3.14e-6) and 11 
showing a large effect size (rank correlations equal to 1 and 0.98 for all high confidence 12 
contigs and high confidence productive contigs respectively) (Fig. 2f). While 10X Genomics 13 
has introduced some γδTCR support with cellranger 7.0.0, the results were inferior to the 14 
prior workaround from version 6 (Supplementary Fig. 2d). 15 
 16 
Creating a V(D)J feature space 17 
To better leverage the combined gene expression and AgR repertoire data, we introduced a 18 
novel analysis strategy to create a pseudo-bulk V(D)J feature space, which transforms select 19 
V(D)J data from categorical to continuous format for downstream applications (Fig. 3a). 20 
Cells are first grouped into pseudo-bulks, which can be based on metadata features such as 21 
donors, or partially overlapping cell neighborhoods21. V(D)J usage frequency per pseudo-22 
bulk is then computed, serving as the V(D)J feature space. This can then be used with 23 
conventional dimension reduction techniques such as principal component analysis (PCA) or 24 
uniform manifold approximation and projection (UMAP).  25 
 26 
The utility of this V(D)J feature space is demonstrated on a dataset containing adult human T 27 
cells5 (Fig. 3b). We pseudo-bulked cells by cell types and donors to explore differential usage 28 
that is consistent across different donors. On the new UMAP computed from the V(D)J 29 
feature space, pseudo-bulks containing mucosal-associated invariant T (MAIT) cells formed 30 
a distinct cluster away from the others, in contrast to the single-cell gene expression space 31 
UMAP, indicating its unique V(D)J usage (Fig. 3b, Supplementary Fig. 3a-b). Although 32 
there is no clear clustering in other cell types apart from MAIT (Supplementary Fig. 3b), 33 
there is a distinct separation between cell types that belong to CD4+T cells with those of 34 
CD8+T cells (Fig. 3b). The differential V(D)J usage for each cell type can be computed 35 
similarly to differentially expressed gene calculation e.g. with non-parametric statistical tests 36 
implemented within scanpy15 (Fig. 3b, Supplementary Table 5). 37 
 38 
Leveraging V(D)J usage in pseudotime trajectory inference 39 
We also developed a novel usage for V(D)J data by performing pseudotime inference in 40 
lymphocytes with the cell neighborhood-based V(D)J feature space. Many pseudotime 41 
inference methods have been proposed to infer cell development based on transcriptomic 42 
similarity22. However, the current approaches remain problematic in immune cell 43 
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development because the differentiation process is often interspersed with waves of 1 
proliferation, and transcriptomic convergence e.g. between NKT cells and NK cells can be 2 
misleading. Because usage of V(D)J genes in AgRs changes definitively as a result of cycles 3 
of recombination and selection during lymphocyte development, the AgR repertoire acts as a 4 
natural ‘time-keeper’ for developing T and B cells. A developing T cell’s fate towards CD8 5 
versus CD4 T cells is determined by whether its TCR interacts with antigen presented on 6 
MHC class I or class II during positive selection. Therefore, it is biologically conceivable that 7 
the TCR gives more accurate predictions on the branch probability to each T cell lineage. 8 
This is the motivation for leveraging V(D)J data in pseudotime inference. For this task, we 9 
chose to pseudo-bulk by cell neighborhoods as modeling cell states with partially overlapping 10 
cell neighborhoods has advantages over clustering into discrete groups; clusters do not 11 
always provide the appropriate resolution and might miss important transition states. 12 
 13 
We sampled cell neighborhoods on a k-nearest neighbor (KNN) graph built with gene 14 
expression data using Milo21. An example is shown in Supplementary Fig. 3c and Fig. 3c 15 
using the dataset from Suo et al. 20223 showing cells with paired productive αβTCR from 16 
double positive (DP) T cells to mature CD4+T and CD8+T. This neighborhood V(D)J feature 17 
space was the input to compute pseudotime with palantir23. It outputs pseudotime and branch 18 
probabilities (Fig. 3c) to each terminal state with a predefined starting point and terminal 19 
states (Supplementary Fig. 3d). The inferred pseudotime follows from proliferating DP 20 
(DP(P)) to quiescent DP (DP(Q)) T cells, to abT(entry) which splits into CD8+T and CD4+T 21 
lineages. Trends of TCR usage can also be visualized along the pseudotime trajectory 22 
(Supplementary Fig. 3e). Pseudotime and branch probabilities can then be projected back 23 
from neighborhoods to cells (Fig. 4a) by averaging the parameters from all neighborhoods a 24 
given cell belongs to, weighted by the inverse of the neighborhood size. 25 
 26 
With the same dataset, we tested an alternative method provided by CoNGA24 whereby 27 
dimension reduction was performed on TCR sequence-based distance metrics. However, the 28 
relationships between cell types were not preserved (Supplementary Fig. 3f). This is not 29 
surprising, as what is changing during recombination is selection of different V(D)J genes, 30 
while CDR3 junctional sequence diversity can additionally be influenced by random 31 
nucleotide insertions. This likely explains why the sequence-based distance metrics used in 32 
e.g. CoNGA do not capture the intercellular relationships as faithfully as the V(D)J feature 33 
space. 34 
 35 
V(D)J trajectory accurately orders DP T cells and reveals early CD4/CD8 36 
lineage decision genes 37 
We next compared the pseudotime and branch probabilities inferred from the neighborhood 38 
V(D)J feature space with the same parameters inferred from either single-cell gene 39 
expression or neighborhood gene expression feature space.  40 
 41 
Pseudotime inferred directly from single-cell gene expression performed unsatisfactorily, as a 42 
large proportion of CD8+T and CD4+T cells were misclassified with higher branch 43 
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probabilities to the opposite terminal state (Supplementary Fig. 4a-b). We mainly focused 1 
our comparison with results from pseudo-bulked neighborhood gene expression (GEX) 2 
space, which produced more biologically meaningful pseudotime and branch probabilities 3 
(Fig. 4a). To construct the pseudo-bulked neighborhood GEX space, raw gene counts were 4 
pseudo-bulked by the same neighborhoods used to construct the V(D)J feature space 5 
(Supplementary Fig. 3c), and then normalized and logarithmically transformed. Pseudotime 6 
and branch probabilities were computed on this neighborhood GEX feature space and 7 
projected back to cells (Supplementary Fig. 4c and 4d). The inferred pseudotime in the 8 
pseudo-bulked space better reflected the known biology of DP(P)_T to DP(Q)_T, to 9 
abT(entry) and subsequent splits into CD8+T and CD4+T lineages. This suggests that 10 
pseudotime inference with pseudo-bulked cells work better than directly from single cells, 11 
potentially due to more stable transcriptomic profiles compared to more noisy single-cell 12 
data.  13 
 14 
We observed two major differences when comparing the pseudotime inferred from 15 
neighborhood V(D)J feature space versus that from neighborhood GEX space (Fig. 4a). First, 16 
DP(Q) T cells appeared to dwell for a longer ‘time’ in the V(D)J trajectory as compared to 17 
the GEX trajectory. Second, the branching point of CD8+T and CD4+T cell lineages 18 
happened earlier in abT(entry) cells in the V(D)J trajectory (Supplementary Fig. 5c). In 19 
order to assess the fidelity of the V(D)J trajectory, we used the known fact that V-J 20 
recombination in the TRA locus happens processively25 using genes in the middle of the 21 
genomic locus and progressing to the two distal ends in an orderly manner. We have 22 
therefore encoded the genomic order numerically for each TRAV and TRAJ gene, and looked 23 
at the average TRAV and TRAJ relative locations for each DP(Q) neighborhood against their 24 
pesudotime ordering (Fig. 4b). V(D)J pseudotime showed a substantially better monotonic 25 
relationship with TRAV relative locations. Local Pearson’s correlations were computed over 26 
sliding windows of 30 adjacent neighborhoods on the pseudotime order (Supplementary 27 
Fig. 5a), and V(D)J pseudotime had higher absolute correlation coefficients on average (-28 
0.65 versus -0.40 for TRAV). A smaller improvement was also observed for TRAJ, with the 29 
average local Pearson’s correlations improved from 0.38 to 0.40 (Supplementary Fig. 5b).  30 
 31 
CD4 versus CD8 T cell lineage commitment is a classical immunological binary lineage 32 
decision that has been intensely investigated over many years26 but remains challenging to 33 
study as the selection intermediates have been difficult to observe directly27. We examined 34 
which genes in abT(entry) cells showed expression patterns that are correlated with branch 35 
probabilities to CD8+T lineage (Fig. 4c). This approach actually allows us to subdivide the 36 
abT(entry) cell population into two subsets, associated with higher probability of CD4 versus 37 
8 differentiation respectively. 38 
 39 
When considering the top genes that were positively correlated with the CD8+ T cell lineage 40 
choice, these included CD8A and CD8B, which are markers for CD8+T cells6. The top genes 41 
that were negatively correlated included CD40LG, which is a marker for CD4+T helper 42 
cells6, and ITM2A which is found to be induced during positive selection and causes CD8 43 
downregulation28. Other markers of CD4+T cells such as CD46, together with highly 44 
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validated transcription factors (TFs) that are known to be involved in CD8+T or CD4+T 1 
lineage decisions26, including RUNX329,30, ZBTB7B31,32, TOX33 and GATA334,35 all displayed 2 
significant correlations in the expected directions. In contrast, when we performed the same 3 
test with CD8+T branch probabilities from GEX pseudotime, the magnitude of the 4 
correlation coefficients were notably reduced and some (e.g. ITM2A and RUNX3) were no 5 
longer statistically significant (Fig. 4c). In the case of TOX, the direction of the correlation 6 
was wrongly inverted (Fig. 4c). In addition, the V(D)J pseudotime also revealed novel 7 
associations between the trajectories and TFs such as ZNF496, MBNL2, RORC and FOXP1 8 
for CD8+T, and SATB1, STAT5A and STAT1 for CD4+T (Supplementary Fig. 5d, full gene 9 
list in Supplementary Table 6). These new insights into TFs predicted to be involved in 10 
lineage commitment merit future investigations and validations.  11 
 12 
Taken together, we showed that V(D)J-based pseudotime inference gives more accurate 13 
DP(Q) T cell alignment, improves association of CD8/CD4 branch probabilities within 14 
abT(entry) cells allowing us to subdivide this cell state. We can use this approach to 15 
recapitulate known regulators, and uncover novel candidate regulators underlying 16 
CD8+T/CD4+T fate choice. 17 
 18 
New insights into lymphocyte development using non-productive 19 
recombination as a “fossil record” 20 
Based on our earlier observations of high proportions of non-productive contigs being 21 
represented in the single-cell V(D)J data (Fig. 2a), we next explored whether different 22 
lymphoid cell types expressed different proportions of non-productive contigs. While non-23 
productive BCR contigs were restricted to B lineage cells (Supplementary Fig. 6a-b) as 24 
expected, we were surprised to find that non-productive TRB contigs were not only expressed 25 
in developing DN T cells, but also in the ILC/NK lineage, and some B lineage cells (Fig. 5a, 26 
Supplementary Fig. 6c). The majority of the non-productive TRB contigs within ILC/NK/B 27 
cells were contigs without V gene (Supplementary Fig. 6d).  28 
 29 
The B lineage cells with non-productive TRB contigs included pre-pro B and B1 cells but not 30 
pro- or pre-B cells (Fig. 5a, Supplementary Fig. 6c). Pre-pro B and B1 cells expressed only 31 
non-productive TRB but not TRG/D contigs (Supplementary Fig. 7a-c), suggesting that pre-32 
pro B and B1 cells share a common development route (Fig. 5b schematic illustration). This 33 
clarifies that B1 cells in human fetal development stages emerge through an alternative route 34 
to the rest of mature B cells (B2 cells). This is a different paradigm for B1 development as 35 
compared to the murine data suggesting B1 differentiation from B2 cells36. 36 
 37 
The ILC/NK lineage also expressed non-productive TRG/D contigs with some TRA contigs 38 
(Supplementary Fig. 7a-c), similar to DN T cells. With the V(D)J feature space described 39 
above (Fig. 3), we used TRBJ frequency as the input to delineate T/ILC/NK developmental 40 
trajectories, since all of them express TRBJ (Fig. 5b, Supplementary Fig. 8a). The inferred 41 
trajectory suggests that ILC/NK cells deviate away from T cell development between 42 
DN(early) and DN(Q) stage (Fig. 5b-c).  43 
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 1 
Previous literature on the ILC/NK lineage has also demonstrated partial recombination of 2 
TRG/D in murine lung ILC237, and of TRB/G in murine thymic ILC238, leading to the 3 
hypothesis of ‘aborted’ DNs for ILC/NK development39. Our observation of the expression of 4 
non-productive TRB/G/D in ILC/NK cells partially supports this theory. Notably, we also 5 
observed non-productive TRB expression in ILC/NK cells in other fetal organs, with no overt 6 
differences in frequencies between organs (Supplementary Fig. 7d). This potentially 7 
suggests that T cells and ILC/NK cells might share the same initial stage of development, and 8 
then deviate away from each other before productive TRB/G/D is made.  9 
 10 
In addition, by examining the expression patterns of transcription factors (Fig. 5c) and genes 11 
encoding cell surface proteins (Supplementary Fig. 8b) that changed along the TRBJ-12 
inferred pseudotime, we can define stages for DN development at higher resolution than 13 
previously reported in the literature. We observed that expression levels of genes such as 14 
SPI1, RAG1, HHEX, TCF12, CD34, CD3D, CD3E, CD8A, CD8B, CD4 followed an expected 15 
pattern along the trajectory40. At the same time, we also discovered many novel genes that 16 
could re-define DN stages. We further noted that there were some discordances in expression 17 
patterns of selected transcription factors between human and mouse DN development40 18 
(Supplementary Fig. 8c). 19 
 20 
In summary, the unexpected finding of expression of non-productive TCR contigs in specific 21 
cell types sheds new light on the origin and history of lymphocyte development. We have 22 
utilized this information and suggested that B1 potentially arises directly from pre-pro B 23 
cells, and provided support for the ‘aborted’ DN theory for the origin of ILC/NK cells. 24 
 25 
Discussion 26 

Overall, Dandelion improves upon existing methods with more refined contig annotations, 27 
recognising non-productive contigs, identifying multi-J mapping and recovering more γδTCR 28 
contigs. In conjunction with our novel V(D)J feature space approach with pseudotime 29 
trajectory inference, it has allowed us to better align CD4 versus CD8 T cell lineage 30 
commitment processes, and further identify developmental origins of innate-like lymphocyte 31 
cells.  32 
 33 
Our improved data processing workflow revealed two unexpected data challenges and 34 
opportunities with scVDJ-seq. First, the surprising observation that a high proportion of 35 
TCR/BCR contigs are non-productive suggests that these are unique data challenges in the 36 
single-cell space due to choice of library construction. However, it is not unexpected as 37 
V(D)J rearrangement is a ‘wasteful’ exercise, a price that comes with the generation of 38 
effective and diverse immune response; for example, two out of three rearrangement events 39 
for immunoglobulins are destined to be non-productive41,42. While non-productive TCRs and 40 
BCRs from high-throughput ‘bulk’ AgR sequencing data have previously been used in 41 
conjunction with productive contigs to estimate the generation probabilities and diversities of 42 
AgRs during affinity maturation and infection43,44, these would only have factored in those 43 
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with V gene annotation due to library construction limitations. Through scVDJ-seq and 1 
analysis using Dandelion, we now have the ability to corroborate this at the single-cell level, 2 
including partially rearranged contigs, as outlined in our analysis of innate lymphocyte 3 
development. This suggests that the presence of the non-productive contigs may have 4 
important biological implications in a cell-type specific manner.  5 
 6 
Second, detection of multi-J mapping suggests that these are naturally occurring and likely 7 
represent products of partial splicing events at the transcript level. A few factors were 8 
identified to be associated with multi-J mapping, including J gene identities, which 9 
potentially affect splicing efficiencies with their disrupted splicing site, as well as V gene 10 
presence, which might be partially explained by NMD19. The biological implications of the 11 
presence of these multi-J mapping contigs are unclear at this stage and require future 12 
experimental validation to understand how and why they arise. 13 
 14 
We introduced a novel way of analyzing the single-cell V(D)J modality in Dandelion with 15 
the pseudo-bulk V(D)J feature space, which can be used for visualization and differential 16 
V(D)J usage testing. In addition, when the pseudo-bulking is done by gene expression 17 
neighborhoods, the V(D)J feature space is anchored to the underlying gene expression feature 18 
space where cell neighborhoods are sampled. We utilized this approach for pseudotime 19 
trajectory inference and demonstrated its advantages in both of our case studies. 20 
 21 
The first case study examined the processes underlying T cell development in the thymus. 22 
Our approach allowed us to discover that fate commitment starts earlier than expected with 23 
the inclusion of TCR information. It was previously suggested that abT(entry) cells were 24 
likely to be a point of divergence due to its position as an intermediary cell state between DP 25 
T cells and mature single positive T cells6. With this new technique that includes TCR 26 
information, we are now able to better delineate the branching point to a much earlier point 27 
within the abT(entry) cells. The gene expression patterns of marker genes and transcription 28 
factors known to be associated with CD4 versus CD8 T cell fate were better aligned with the 29 
new trajectories. Our analysis has further revealed novel CD4/8 associations with other 30 
transcription factors that remain to be explored.  31 
 32 
Similar approaches can be applied to other TCR trajectories in different contexts e.g. across 33 
different developmental stages in human lifespan, diseases and in vitro settings. It remains to 34 
be seen whether a VDJ-based trajectory can be utilized in T cell activation. Furthermore, this 35 
approach has not been optimized for BCR trajectories, as we are limited by the small number 36 
of B progenitors in the existing dataset collections. Further, BCRs have additional 37 
rearrangement rules that need to be considered e.g. somatic hypermutation, differential 38 
rearrangement events leading to asymmetric usage of kappa and lambda light chains and light 39 
chain editing processes45, as well as recently described light chain coherence in COVID-1946. 40 
We hope to improve on these aspects in a future iteration of Dandelion when more single-cell 41 
V(D)J data become available. 42 
 43 
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The second case study extended the observations of non-productive V(D)J contig 1 
representation in 10X Genomics’ single-cell data, which has been largely ignored and/or not 2 
easily accessible with other existing workflows e.g. scirpy13 and immcantation14. Our 3 
unexpected finding that B1 cells and pre-pro B cells were expressing relatively higher levels 4 
of non-productive TRB contigs suggest that B1 lineage commitment diverged earlier than 5 
expected, some time between the pre-pro B stage and pro-B stage. The conventional B cell 6 
differentiation route is thought to start from pre-pro B cells, the earliest cells that are 7 
committed to B lineage. The cells then progress through the pro- and pre-B cell stages, 8 
rearranging their BCR heavy and light chains respectively, while expressing the pre-BCR, 9 
and then emerge as immature B cells with a productive BCR and then finally differentiate 10 
into mature naive B cells47. We recently identified a putative B1-like cell cluster in our atlas 11 
of human developing immunity3, but were unable to definitively locate cells with similar 12 
characteristics in adult human tissues5. We posit that this could be due to altered development 13 
processes in the bone marrow between fetuses and adults, as pre-pro B cells are almost 14 
undetectable in adult bone marrow48. While lineage specificity of RAG1/RAG2 binding 15 
activity was previously reported in mice49, it is unknown if they have similar lineage binding 16 
specificities in human fetal B progenitors. Our observations are consistent with findings in 17 
murine B1s, which were shown to bypass the pre-BCR selection stage50,51 that normally 18 
happens in pre-B cells to remove self-reactive B cells. This may also explain why B1 cells 19 
have BCRs with shorter non-coded/palindromic (N/P) nucleotide insertions3, due to 20 
negligible expression of DNTT in pre-pro B but much higher expression in pro- and late pro-21 
B cells3.  22 
 23 
The enrichment of the non-productive TRB contigs is not just found in the pre-pro B and B1 24 
cells, but also in NK and ILC lineage cells along with non-productive TRG and TRD. The 25 
latter lineage is easier to explain as partial recombination of TCR has been reported in murine 26 
ILC37,38 and our findings support the ‘abandoned’ DN theory39. The hypothesis is that 27 
ILC/NK cells are originally on a canonical T cell development trajectory, but subsequently 28 
influenced to abort this process, resulting in sustained expression of non-productive TCR 29 
rearrangements whilst developing into ILC/NK. Perhaps this is driven by overexpression of 30 
key transcription factors such as ID2 and ZBTB1639,40, or lack of NOTCH signaling39. While 31 
we cannot rule out other routes of ILC/NK development, our new insights do support the 32 
notion that T and NK/ILC developments partially overlap but diverge before productive 33 
TCRs are rearranged. Our analysis has further revealed that transcription factor expression 34 
trends in DN T development in human thymus are different to mice, with only a handful of 35 
factors showing conserved trends. Our analysis offers new insights into transcription factors 36 
and surface marker genes that define DN T cell stages at high resolution, opening avenues for 37 
future in-depth investigation. 38 
 39 
In summary, we present Dandelion as an easy-to-use package/pipeline for integrative 40 
analyses of single-cell GEX and V(D)J data modality. The package is freely available online 41 
at https://github.com/zktuong/dandelion with tutorials and demo cases and is actively updated 42 
for further improvements. The pseudo-bulk V(D)J data is also publicly available for use as a 43 
reference to project or align new query data e.g. for disease samples such as cancers that 44 
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originate from T cells. We hope that the software and the resource will be useful to the 1 
community for exploring lymphocyte biology in the single-cell space, generating new 2 
insights that will help advance our understanding of immune cell development and function 3 
in health and disease. 4 
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Main Figures 1 

 2 

Fig. 1 | Holistic scVDJ-seq analysis pipeline. a, Schematic illustration showing that 3 
Dandelion bridges methods from single-cell V(D)J workflows such as AIRR standards and 4 
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the single-cell gene expression analysis software, and combines with them additional novel 1 
methods of its own to create a holistic pipeline for analysts. b, Schematic illustration of the 2 
Dandelion workflow. Paired single-cell gene expression (scRNA-seq) and AgR repertoire 3 
(scVDJ-seq) data is generated, followed by mapping of the sequencing reads. From the 4 
mapped results, Dandelion provides refined contig annotations with BCR mutation calling, 5 
improved γδTCR mapping and identification of multi-J mapping contigs. It also provides 6 
downstream analysis after integration with scRNA-seq results. Apart from allowing the users 7 
to explore clonotype networks and V(D)J usage, Dandelion also supports building a V(D)J 8 
feature space on pseudo-bulked cells, that can be used for differential V(D)J usage and 9 
pseudotime inference. Additional unique features provided by Dandelion are boxed in 10 
orange. 11 
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 1 
Fig. 2 | Dandelion offers improved contig annotations. a, Left: barplot of proportion of 2 
contigs that are productive or non-productive in each locus. Right: barplot showing the causes 3 
of non-productive contigs in each locus. For both plots, sc-γδTCR, -αβTCR and -BCR data 4 
were taken from Suo et al. 20223. b, Schematic illustration of the V(D)J rearrangement 5 
process and the potential cause of multi-J mapping with sequential mapped J genes on the 6 
same contig. c, Boxplot of the proportion of contigs with multi-J mapping, in the presence 7 
(blue) or absence (orange) of V genes. Each point represents a sample and data were taken 8 
from Suo et al. 20223. Only samples with at least 10 contigs are shown. Boxes capture the 9 
first to third quartiles and whisks span a further 1.5X interquartile range on each side of the 10 
box. For each locus, the proportions in contigs with and without V genes were compared by 11 
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the Wilcoxon rank sum test. P-values less than 0.001 were marked with *** (P-value for 1 
TRA: 1.1 x 10-9; TRB: 3.3 x 10-19; TRG: 6.5 x 10-5; TRD: 0.49; IGH: 6.6 x 10-11; IGL: 0.84; 2 
IGK: 0.096). d, Top: logistic regression formula to explore factors associated with multi-J 3 
mapping. Bottom: volcano plot summarizing logistic regression results using data from Suo 4 
et al. 20223. The y-axis is the −log10(BH adjusted P-value) and the x-axis is log(odds ratio). 5 
The variables that were also significant in our control/cycloheximide-treated PBMC dataset 6 
were highlighted in red (associated with increased multi-J mapping) or blue (associated with 7 
decreased multi-J mapping). e, Sequence logos of sequences covering the last 10 nucleotides 8 
at 3′ ends (position 1 to 10) and the first 11 nucleotides of the neighboring intron (position 11 9 
to 21) for genes associated with increased (top) or decreased (bottom) multi-J mapping. J 10 
genes associated with increased multi-J mapping were less likely to have T in position 17 (P-11 
value 0.052 in logistic regression) and ‘GTAAGT’ is a known consensus motif for splicing in 12 
position 12 to 17 i.e. +1 to +6 in the intron. They were also more likely to have T in position 13 
6 (P-value 0.019 in logistic regression) although the effect on splicing is unknown. f, 14 
Swarmplots of fraction difference of sc-γδTCR contigs annotated by Dandelion versus 10X 15 
cellranger vdj (v6.1.2) using data from Suo et al. 20223. The red dashed line marks the 16 
threshold of 0, above which Dandelion recovers more γδTCR contigs than 10X. Left: all high 17 
confidence contigs. Right: high confidence productive contigs.   18 
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 1 
Fig. 3 | Creating a V(D)J feature space. a, Schematic illustration of the workflow of 2 
creating a V(D)J feature space. Step 1: cells are assigned to pseudo-bulks, which can be 3 
based on metadata features, or partially overlapping cell neighborhoods. Step 2: V(D)J usage 4 
frequency per pseudo-bulk is computed for each gene, and used as input of the V(D)J feature 5 
space. Step 3: the V(D)J feature space can be visualized with conventional dimension 6 
reduction techniques such as PCA or UMAP, and it can then be utilized for differential V(D)J 7 
usage analysis and pseudotime inference. b, Top left: gene expression UMAP of all T cells 8 
from adult human tissues in Conde et al. 20225, colored by low-level cell type annotations. 9 
Each point represents a cell. Top right: UMAP of the pseudo-bulk V(D)J feature space of the 10 
same cells. Each point represents a cell pseudo-bulk. Bottom panel: top two differentially 11 
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expressed TCR genes in CD4+T cells, CD8+T cells and MAIT cells. c, Left: UMAP of 1 
neighborhood V(D)J feature space covering DP to mature T cells with paired productive 2 
αβTCR in data from Suo et al. 20223. Each point represents a cell neighborhood, colored by 3 
the dominant cell type in each neighborhood. The point size represents neighborhood size, 4 
with connecting edges representing overlapping cell numbers between any two 5 
neighborhoods. Only edges with more than 30 overlapping cells are shown. Right top: 6 
inferred pseudotime, and branch probabilities to CD8+T and to CD4+T respectively overlaid 7 
onto the same UMAP embedding on the left. Right bottom: scatterplot of branch probability 8 
to CD8+T against pseudotime. Each point represents a cell neighborhood, colored by the 9 
dominant cell type in each neighborhood.  10 
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 1 
Fig. 4 | Comparing pseudotime inferred from V(D)J space or gene expression (GEX) 2 
space. a, Top: pseudotime and branch probability to CD8+T inferred from neighborhood 3 
V(D)J space in Fig. 3c, projected back to the cells, overlaid onto the same UMAP embedding 4 
as in the top left panel. Left bottom: UMAP of DP to mature T cells with paired productive 5 
αβTCR in data from Suo et al. 20223. Each point represents a cell, colored by cell types. 6 
Underneath the UMAP is a schematic showing the T cell differentiation process. Right 7 
bottom: pseudotime and branch probability to CD8+T inferred from neighborhood GEX 8 
space, projected back to the cells, overlaid onto the same UMAP embedding as in the top left 9 
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panel. b, Scatterplots of the pseudotime ordering against the average relative TRAV or TRAJ 1 
location. Each point represents a cell neighborhood. Each TRAV or TRAJ gene is encoded 2 
numerically for its relative genomic order. The x-axis represents the average TRAV/TRAJ 3 
relative location for each cell neighborhood. Top: results from pseudotime inferred from 4 
neighborhood V(D)J space. Bottom: results from pseudotime inferred from neighborhood 5 
GEX space. c, Stripplot of correlation coefficients of gene expression with branch 6 
probabilities to CD8+T within abT(entry) cells, for branch probabilities inferred from 7 
neighborhood V(D)J space and neighborhood GEX space separately. Only genes that are 8 
known CD4+/CD8+T cell markers or TFs involved in CD8+T/CD4+T lineage decision are 9 
labeled, and colored. The rest of the genes are grayed out. Labeled genes that had significant 10 
(BH adjusted P-value < 0.05) positive correlations were colored in red, the ones with 11 
significant negative correlations were colored in blue, and those without significant 12 
correlations were colored in orange.   13 
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 1 
Fig. 5 | Non-productive TCR reveals B1 origin and ILC/NK lineage development. a, 2 
Boxplot of the proportion of cells with productive (blue) or non-productive (orange) TRB in 3 
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different fetal lymphocyte subsets. Each point represents a sample and data were taken from 1 
Suo et al. 20223. Only samples with at least 20 cells are shown. Boxes capture the first to 2 
third quartiles and whisks span a further 1.5X interquartile range on each side of the box. The 3 
annotations used here were based on the version whereby the exact identity of cycling B cells 4 
was predicted to be immature B, mature B, B1 or plasma B cells using Celltypist3,5. The 5 
equivalent boxplot using the original annotations is shown in Supplementary Fig. 6a. b, Top 6 
left: schematic illustration showing the proposed development of B cells (top panel), and 7 
relationship between ILC/NK and T cell lineages. Top right: UMAP of neighborhood V(D)J 8 
feature space covering ILC, NK and developing T cells with TRBJ in data from Suo et al. 9 
20223. Each point represents a cell neighborhood, colored by cell types. The point size 10 
represents neighborhood size, with connecting edges representing overlapping cell numbers 11 
between any two neighborhoods. Only edges with more than 30 overlapping cells are shown. 12 
Bottom: inferred pseudotime, and branch probabilities to ILC/NK and T lineage respectively 13 
overlaid onto the same UMAP embedding on the top right. c, Top: scatterplot of branch 14 
probability to ILC/NK lineage against pseudotime. The pseudotime was inferred from 15 
neighborhood V(D)J space shown in Fig. 5b and projected back cells. Each point represents a 16 
cell, colored by cell types. Bottom: heatmap of TF expressions across pseudotime in DN T 17 
cells. Pseudotime is equally divided into 100 bins, and the average gene expression is 18 
calculated for DN T cells with pseudotime that falls within each bin. Genes selected here are 19 
TFs that had significantly high Chatterjee’s correlation52 with pseudotime (BH adjusted P-20 
value < 0.05, and correlation coefficient > 0.1).   21 
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Methods 1 
Dandelion 2 
Pre-processing 3 
Dandelion can run the pre-processing of data using the standard outputs from all cellranger 4 
vdj versions. In this manuscript, single-cell V(D)J data from the 5′ Chromium 10X kit were 5 
initially processed with cellranger vdj pipeline (v6.1.2) with cellranger vdj reference 6 
(v5.0.0). TCR and BCR contigs contained in ‘all_contigs.fasta’ and 7 
‘all_contig_annotations.csv’ from all three library types (αβTCR, γδTCR and BCR) were 8 
then reannotated using an immcantation-inspired14 pre-processing pipeline contained in the 9 
Dandelion singularity container (v0.3.0).  10 
 11 
The pre-processing pipeline includes the following steps:  12 

i) adjust cell and contig barcodes by adding user-supplied suffixes and/or prefixes to 13 
ensure that there are no overlapping barcodes between samples; 14 

ii) optionally subset to contigs deemed high confidence in the cellranger output; this was 15 
done in the analysis performed here;  16 

iii) re-annotation of contigs with igblastn (v1.19.0) against IMGT (international 17 
ImMunoGeneTics) reference sequences (last downloaded: 01/08/2021) with the 18 
following parameters: minimum D gene nucleotide match = 9, V gene e-value cutoff 19 
= 10-4;  20 

iv) re-annotation of D and J genes separately using blastn with similar parameters as per 21 
igblastn17 (dust =“no”, word size (J = 7; D = 9)) but with an additional e-value cutoff 22 
(J = 10-4 in contrast to igblastn’s default cut off of 10; D = 10-3). This is to enable 23 
annotation of contigs without the V gene present;  24 

v) identification and recovery of non-overlapping individual J gene segments (under 25 
associated ‘j_chain_multimapper’ columns). In the list of all mapped J genes 26 
(all_contig_j_blast.tsv) from blastn, the J gene with the highest score (j_support) was 27 
chosen. Dandelion then looks for the next J gene with the highest ‘j_support’ value, 28 
and with start (j_sequence_start) and end (j_sequence_end) position not overlapping 29 
with the selected J gene, and does so iteratively until the list of all mapped J genes is 30 
exhausted. In contigs without V gene annotations, we then select the 5′ end leftmost J 31 
gene and update the ‘j_call’ column in the final AIRR table. For contigs with V gene 32 
annotations, but with multiple J gene calls, we use the annotations provided by 33 
igblastn (NCBI IgBLAST Release 1.19.0’s release notes states that they “*Added 34 
logic to handle the case where there is an unrearranged J gene downstream of the 35 
VDJ rearrangement.”).  36 

 37 
For BCRs, there are two additional steps:  38 
vi) additional re-annotation of heavy-chain constant (C) region calls using blastn 39 

(v2.13.0+) against curated sequences from CH1 regions of respective isotype class;  40 
vii) heavy chain V gene allele correction using tigger (v1.0.0)53. The final outputs are then 41 

parsed into AIRR format with change-o scripts14.  42 
 43 
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All the outputs from each step are saved in a subfolder which the user can elect to retain or 1 
remove as per their requirements. Typically a user would proceed with the file ending with 2 
the suffix ‘_contig_dandelion.tsv’ as this represents the rearrangement sequences that pass 3 
standard quality control checks. In this manuscript, we used the data found in the 4 
‘all_contig_db-all.tsv’ as it also contains the multi-J mapping. 5 
 6 
Post-processing 7 
In addition to the pre-processing steps at the contig level, post-processing, or integrating cell-8 
level quality control, is performed using Dandelion’s ‘check_contig’ function. The function 9 
checks through whether a rearrangement is annotated with consistent V, D, J and C gene calls 10 
and performs special operations when a cell has multiple contigs. All contigs in a cell are 11 
sorted according to the unique molecular identifier (UMI) count in a descending order and 12 
productive contigs are ordered higher than non-productive contigs. For cells with other than 13 
one pair of productive contigs (one VDJ and one VJ), the function will assess if the cell is to 14 
be flagged with having orphan (no paired VDJ or VJ chain), extra pair(s) or ambiguous 15 
(biologically irreconcilable e.g. both TCRs and BCRs in the same cell) status with some 16 
exceptions: ii) IgM and IgD are allowed to co-exist in the same B cell if no other isotypes are 17 
detected; ii) TRD and TRB contigs are allowed in the same cell because rearrangement of 18 
TRB and TRD loci happens at the same time during development and TRD variable region 19 
genes exhibits allelic inclusion54. The function also asserts a library type restriction with the 20 
rationale that the choice of the library type should mean that the primers used would most 21 
likely amplify only relevant sequences to a particular loci. Therefore, if there are any 22 
annotations to unexpected loci, these contigs likely represent artifacts and will be filtered 23 
away. A more stringent version of ‘check_contigs’ is implemented in a separate function, 24 
‘filter_contigs’, which only considers productive VDJ contigs, asserts a single-cell should 25 
only have one VDJ and one VJ pair, or only an orphan VDJ chain, and explicitly removes 26 
contigs that fail these checks (with the same exceptions for IgM/IgD and TRB/TRD as per 27 
above). If a single-cell gene expression object (AnnData) is provided to the functions, it will 28 
also remove contigs that do not match to any cell barcodes in the gene expression data. 29 
Lastly, Dandelion can accept any AIRR-formatted data formats e.g. BDRhapsody VDJ data.  30 
 31 
Clonotype definition and diversity 32 
Dandelion’s mode of clonotype definition and network based diversity analysis has been 33 
previously described4. Briefly, TCRs and BCRs are grouped into clones/clonotypes based on 34 
the following sequential criteria that apply to both heavy-chain and light-chain contigs: (1) 35 
identical V and J gene usage; (2) identical junctional CDR3 amino acid length; (3) CDR3 36 
sequence similarity: for TCRs, 100% nucleotide sequence identity at the CDR3 junction is 37 
recommended while the default setting for BCRs is to use 85% amino acid sequence 38 
similarity (based on Hamming distance). Single-cell V(D)J networks are constructed using 39 
adjacency matrices computed from pairwise Levenshtein distance of the full amino acid 40 
sequence alignment for TCR/BCR(s) on a per cell basis. A minimum-spanning tree is then 41 
constructed on the adjacency matrix for each clone/clonotype, creating a simple graph with 42 
edges indicating the shortest total edit distance between a cell and its neighbor. Cells with 43 
total pairwise edit distance of zero are then connected to the graph to recover edges trimmed 44 
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off during the minimum-spanning-tree construction step. A graph layout is then computed 1 
either using the Fruchterman–Reingold algorithm in networkx (≥ v2.5) or Scalable Force-2 
Directed Placement algorithm implemented through graph-tool package55,56. Visualization of 3 
the resulting single-cell V(D)J network is achieved via transfer of the graph to relevant 4 
‘AnnData’ slots, allowing for access to plotting tools in scanpy. The resulting V(D)J network 5 
enables computation of Gini coefficients based on cluster/cell size/centrality distributions, as 6 
discussed previously4. 7 
 8 
Pseudo-bulk V(D)J feature space 9 
Pseudo-bulk construction requires pseudo-bulk assignment information of cells, along with V 10 
and J genes for the cells’ identified primary TCR/BCR contigs (selected based on productive 11 
status and highest UMI count). The former is a cell by pseudo-bulk binary matrix which can 12 
be either explicitly provided by the user or inferred from unique combinations of cell level 13 
discrete metadata. While the code is calibrated to work with Dandelion’s structuring by 14 
default, it can work with any V(D)J processing provided it stores cell level information on 15 
primary per-locus V/D/J calls. The input is used to generate a pseudo-bulk by V(D)J feature 16 
space, with the V(D)J calls converted to a binary matrix, added up for each pseudo-bulk, and 17 
normalized to a unit sum on a per-pseudo-bulk, per-locus, per-segment basis. The cell by 18 
pseudo-bulk information is stored in the resulting object for potential communication with the 19 
original cell space. Utility functions are provided for compatibility with Palantir23 output for 20 
trajectory inference.  21 
 22 
Non-productive TCR/BCR contigs  23 
Single-cell BCR, αβTCR and γδTCR data from Suo et al. 20223 were remapped with 24 
cellranger vdj (v6.1.2) and processed further using Dandelion as described above. For all 25 
samples, contigs were extracted from ‘all_contig_igblast_db-all.tsv’ or in the case whereby 26 
‘all_contig_igblast_db-all.tsv’ was empty, ‘all_contig_igblast_db-fail.tsv’ was used. 27 
Preprocessed and annotated scRNA-seq data was downloaded from 28 
https://developmental.cellatlas.io/fetal-immune. Only contigs from annotated cells were kept 29 
for downstream analysis. For each contig, productive status was obtained from the column 30 
‘productive’, and the causes for non-productive contigs were extracted from ‘vj_in_frame’ (is 31 
‘F’ if there is a frameshift), ‘stop_codon’ (is ‘T’ if there is a premature stop codon) and 32 
‘v_gene_present’ (is ‘False’ if V gene is absent) columns. 33 
 34 
Cycloheximide treatment on PBMC  35 
Frozen PBMCs (Stemcell Technologies) were thawed in pre-warmed RF10 media, which was 36 
RPMI (Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS; Gibco) and 37 
penicillin/streptomycin (Sigma-Aldrich). Cells were pelleted by centrifugation at 500g for 5 38 
min and resuspended in RF10 media, and split between two 10 cm petri dishes. Control 39 
PBMCs were then incubated in a total of 10 ml RF10 media at 37°C for 2 hr, whereas treated 40 
PBMCs were incubated in RF10 supplemented with cycloheximide (Sigma-Aldrich; final 41 
concentration of 100 μg/ml). After incubation, control and treated PBMCs were washed with 42 
ice cold RF10 and resuspended in 2% FBS in phosphate buffered saline (PBS; Gibco). For 43 
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treated PBMCs, both the washing and resuspension buffer contained 100 μg/ml 1 
cycloheximide. 2 
 3 
Control and treated PBMCs were then loaded onto separate channels of the Chromium chip 4 
from Chromium single cell V(D)J kit (10X Genomics 5′ v2) following the manufacturer’s 5 
instructions before droplet encapsulation on the Chromium controller. Single-cell cDNA 6 
synthesis, amplification, gene expression (GEX) and targeted BCR and αβTCR libraries were 7 
generated. Sequencing was performed on the Illumina Novaseq 6000 system. The gene 8 
expression libraries were sequenced at a target depth of 50,000 reads per cell using the 9 
following parameters: Read1: 26 cycles, i7: 8 cycles, i5: 0 cycles; Read2: 91 cycles to 10 
generate 75-bp paired-end reads. BCR and TCR libraries were sequenced at a target depth of 11 
5000 reads per cell. 12 

Raw scRNA-seq reads were mapped with cellranger 3.0.2 with Ensembl 93 based GRCh38 13 
reference. Low quality cells were filtered out (minimum number of reads > 2000, minimum 14 
number of genes > 500, maximum number of genes < 7000, maximum mitochondrial reads 15 
fraction < 0.2, maximum Scrublet57 doublet score ≤ 0.5). Data normalization and log 16 
transformation were performed using scanpy15 (v1.9.1) 17 
(scanpy.pp.normalize_per_cell(counts_per_cell_after=10e4) and scanpy.pp.log1p). Highly 18 
variable genes were then selected (scanpy.pp.highly_variable_genes), and PCA 19 
(scanpy.pp.pca), neighborhood graph (scanpy.pp.neighbors) and UMAP (scanpy.tl.umap) 20 
were computed. Automatic annotation was done using celltypist (v1.2.0) 21 
(celltypist.annotate(model = 'Immune_All_Low.pkl', majority_voting = True)). 22 

Single-cell αβTCR and BCR sequencing data was mapped with cellranger vdj (v6.1.2) and 23 
processed further using Dandelion as described above. For all samples, contigs were 24 
extracted from ‘all_contig_igblast_db-all.tsv’ or in the case whereby ‘all_contig_igblast_db-25 
all.tsv’ was empty, ‘all_contig_igblast_db-fail.tsv’ was used. Only contigs from annotated 26 
cells were kept for downstream analysis. 27 

Factors associated with multi-J mapping 28 
Logistic regression analysis 29 
We used the following logistic regression model to look for factors associated with multi-J 30 
mapping: 31 

𝑙𝑜𝑔
𝑝!

1 − 𝑝!
= 𝛽"#$$,"(!) + 𝛽(,)(!) + 𝛽*𝑥*,! + 𝛽"+"$,𝑥*,!𝑥"+"$,,! 32 

where 𝑝! is the probability of multi-J mapping present in the 𝑖th contig, c(i) and j(i) are the 33 
cell type and the 5′ end J gene of the 𝑖th contig respectively, 𝑥*,! is the indicator of whether V 34 
gene is present in the 𝑖th contig and 𝑥"+"$,,! is the indicator of whether 𝑖th contig belongs to a 35 
cell that had cycloheximide treatment. Here, (𝛽"#$$,":	𝑐	 ∈ 	𝑐𝑒𝑙𝑙	𝑡𝑦𝑝𝑒𝑠), (𝛽"#$$,):	𝑗 ∈36 
	5′	𝑒𝑛𝑑	𝐽	𝑔𝑒𝑛𝑒𝑠), 𝛽* and 𝛽"+"$, are parameters to be estimated. 37 
 38 
To control for multiple testing, P-values were adjusted with Benjamini–Hochberg 39 
procedure58. This was applied on all contigs from the γδTCR, αβTCR and BCR sequencing 40 
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data that were identified within high-quality annotated cells from Suo et al. 20223 and results 1 
are shown in Supplementary Table 2; and it was also applied on contigs from the αβTCR 2 
and BCR sequencing data that were identified within high-quality annotated cells from 3 
control/cycloheximide-treated PBMCs and results are shown in Supplementary Table 3.  4 
 5 
Splicing site motif analysis 6 
For the lists of 5′ end J genes that had significant (BH adjusted P-value < 0.05) association 7 
with increased or decreased multi-J mapping from Supplementary Table 2, the sequences of 8 
the last 10 nucleotides at each gene’s 3′ ends with the first 11 nucleotides of its 3′ end intron 9 
were extracted from the 10X GRCh38 2020-A reference. Sequence logos shown in Fig. 2e 10 
were generated on https://weblogo.berkeley.edu/logo.cgi59.  11 
 12 
γδTCR annotation comparison 13 
To compare our γδTCR annotations against the 10X cellranger vdj output in the 33 γδTCR 14 
libraries3, we performed two additional mappings following 10X γδTCR support instructions. 15 
In one, the 5.0.0 reference was modified according to 10X instructions by replacing all 16 
instances of TRG with TRA and TRD with TRB. The reference was filtered to just 17 
TRG/TRD sequences prior to this replacement to avoid erroneous sequence overlaps. For the 18 
other, we performed the alignment with cellranger v7.0.0 with the accompanying reference 19 
(v7.0.0). The output of these two mappings was compared with the cellranger - Dandelion 20 
pre-processing pipeline described above. The number of high confidence γδTCR contigs and 21 
high confidence productive γδTCR contigs were determined for each mapping and each 22 
sample, and mappings were compared with the Wilcoxon signed-rank test. The effect size r is 23 
the rank correlation, which is the signed-rank test statistic divided by the total rank sum60. 24 
 25 
Differential V(D)J usage in adult T cell subsets 26 
Preprocessed and annotated scRNA-seq data of T and innate lymphoid cells with paired 27 
αβTCR information from Conde et al. 20225 was downloaded from 28 
https://www.tissueimmunecellatlas.org/. Only cells within the T cell subsets with paired 29 
αβTCR were included in the downstream analysis. T_CD4/CD8 was excluded as a low 30 
quality cell cluster. The cells were then pseudo-bulked by donor ID and cell type, and the 31 
pseudo-bulk V(D)J feature space was created with TRAV, TRAJ, TRBV and TRBJ. Only 32 
pseudo-bulks with at least 10 cells were kept. PCA, neighborhood graph and UMAP of the 33 
pseudo-bulk V(D)J feature space were computed using scanpy15 (v1.9.1) with default settings 34 
(scanpy.pp.pca, scanpy.pp.neighbors, scanpy.tl.umap).  35 
 36 
For low-level cell type annotations, Tem/emra_CD8, Tnaive/CM_CD8, Trm/em_CD8, 37 
Trm_gut_CD8 were grouped into CD8+T, and Teffector/EM_CD4, Tfh, Tnaive/CM_CD4, 38 
Tnaive/CM_CD4_activated, Tregs, Trm_Th1/Th17 were grouped into CD4+T, while MAIT 39 
was left as a separate annotation. For differential V(D)J usage, Wilcoxon rank-sum test was 40 
performed using scanpy.tl.rank_genes_groups(method='wilcoxon'). 41 
 42 
Pseudotime inference from DP to mature T cells 43 
Data integration and filtering 44 
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scRNA-seq data of human fetal lymphoid cells from Suo et al. 20223 was integrated with 1 
Dandelion preprocessed αβTCR, BCR and γδTCR data (see section on Non-productive 2 
TCR/BCR contigs, using all_contig_igblast_db-all.tsv for all samples) with 3 
dandelion.tl.transfer. Two samples from F67, F67_TH_CD137_FCAImmP7851896 and 4 
F67_TH_MAIT_FCAImmP7851897 were excluded from the analysis as they were sorted for 5 
specific T cell subpopulations, instead of the CD45 sorting in all other donor samples, and 6 
inclusion might result in biased TCR sampling within this donor. Only DP(P)_T, DP(Q)_T, 7 
ABT(ENTRY), CD8+T, CD4+T cells with productive TRA and TRB were included for the 8 
trajectory analysis. Neighborhood graph (scanpy.pp.neighbors(n_neighbors = 50)) and 9 
UMAP (scanpy.tl.umap) was re-calculated using scVI latent factors as the initial data was 10 
integrated with scVI61.  11 
 12 
Pseudotime inference from neighborhood V(D)J feature space  13 
Neighborhoods were sampled using Milo21 (milo.make_nhoods). Cells were pseudo-bulked 14 
by the sampled neighborhoods and the V(D)J feature space was created with cells’ primary 15 
TRAV, TRAJ, TRBV and TRBJ genes. The cell type annotation of each neighborhood was 16 
assigned to be the most frequent annotation of the cells within that neighborhood. PCA, 17 
neighborhood graph and UMAP of the neighborhood V(D)J feature space were computed 18 
using scanpy15 (v1.9.1) with default settings (scanpy.pp.pca, scanpy.pp.neighbors, 19 
scanpy.tl.umap).  20 
 21 
For pseudotime trajectory analysis, palantir23 was used and diffusion map was computed 22 
using the first five principal components (PCs) 23 
(palantir.utils.run_diffusion_maps(n_components=5), 24 
palantir.utils.determine_multiscale_space). The root cell was chosen to be the DP(P) T 25 
neighborhood with the smallest value on UMAP1 axis, and the two terminal states were 26 
chosen with the largest and smallest values on the UMAP2 axis for CD4+T and CD8+T 27 
neighborhoods respectively (Supplementary Fig. 3d). Pseudotime and branch probabilities 28 
to the terminal states were then computed with 29 
palantir.core.run_palantir(num_waypoints=500).  30 
  31 
Imputed pseudotime and branch probabilities were then projected back from neighborhoods 32 
(Fig. 3c) to cells (Fig. 4a top panel) by averaging the parameters from all neighborhoods a 33 
given cell belongs to, weighted by the inverse of the neighborhood size. Cells that did not 34 
belong to any neighborhood were removed (88 out of 17308).  35 
 36 
Pseudotime inference from neighborhood GEX feature space  37 
Raw gene counts from scRNA-seq data were pseudo-bulked by the same cell neighborhoods 38 
as above. Data normalization and log transformation were performed using scanpy15 (v1.9.1) 39 
(scanpy.pp.normalize_per_cell(counts_per_cell_after=10e4) and scanpy.pp.log1p). Highly 40 
variable genes were then selected (scanpy.pp.highly_variable_genes), and PCA 41 
(scanpy.pp.pca), neighborhood graph (scanpy.pp.neighbors) and UMAP (scanpy.tl.umap) of 42 
the neighborhood GEX feature space were computed. Pseudotime trajectory inference was 43 
done similar to above with the first five PCs. The root cell was chosen to be the DP(P) T 44 
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neighborhood with the smallest value on UMAP1 axis, and the two terminal states were 1 
chosen with the largest and smallest values on the UMAP2 axis for CD4+T and CD8+T 2 
neighborhoods respectively (Supplementary Fig. 4c). Imputed pseudotime and branch 3 
probabilities were then projected back from neighborhoods (Supplementary Fig. 4d) to cells 4 
(Fig. 4a bottom right panel). 5 
 6 
Pseudotime inference from single cell GEX  7 
Pseudotime trajectory inference was performed with palantir23 using the first 20 scVI latent 8 
factors. The root cell was chosen to be the DP(P) T cell with the largest value on UMAP2 9 
axis, and the two terminal states were chosen with the largest and smallest values on the 10 
UMAP1 axis for CD8+T and CD4+T cells respectively (Supplementary Fig. 4a). Results of 11 
the inferred pseudotime and branch probabilities are shown in Supplementary Fig. 4b. 12 
 13 
Correlation between pseudotime ordering and relative TRAV/TRAJ locations 14 
The relative genomic location of each TRAV gene was encoded numerically based on its 15 
order among all TRAV genes from 5′ to 3′ on the genome, and similarly for TRAJ. For each 16 
neighborhood, its relative TRAV or TRAJ location was computed by the average relative 17 
locations of all cells within that neighborhood. Only neighborhoods that had more than 90% 18 
cells being DP(Q) T cells were selected. The relative pseudotime order was plotted against 19 
the average relative TRAV or TRAJ location for each neighborhood in Fig. 4b. Local 20 
Pearson’s correlations were then computed over sliding windows of 30 adjacent 21 
neighborhoods on the pseudotime order (Supplementary Fig. 5a-b). 22 
 23 
Correlation between gene expression and branch probabilities to CD8+T in abT(entry) cells  24 
Pearson’s correlations were computed between gene expression and branch probabilities to 25 
CD8+T lineage within abT(entry) cells for all genes. P-values were adjusted for multiple 26 
testing with Benjamini–Hochberg procedure. Results are shown in Fig. 4c, Supplementary 27 
Fig. 5d and Supplementary Table 6.  28 
 29 
VDJ-based dimensionality reduction with Conga 30 
Preprocessed and annotated scRNA-seq data of human fetal lymphoid cells from Suo et al. 31 
20223 was downloaded from https://developmental.cellatlas.io/fetal-immune. Matching 32 
αβTCR samples had their all_contig_annotations.csv cellranger output files flagged with the 33 
sample IDs for both cell and contig IDs, and were subsequently merged into a single file and 34 
subset to just high confidence contigs for cells present in the scRNA-seq object. This file was 35 
used on input for Conga’s setup_10x_for_conga.py script, which produced a tcrdist-based 36 
PCA representation of the cells’ VDJ data. The PCA coordinates were used to compute a 37 
neighborhood graph and UMAP representation (Supplementary Fig. 3f), using default 38 
scanpy settings. 39 
 40 
Pseudotime inference combining ILC/NK and T cells 41 
Pseudotime inference using TRBJ 42 
scRNA-seq data of human fetal lymphoid cells from Suo et al. 20223 was integrated with 43 
αβTCR data as described above. Only DN(early)_T, DN(P)_T, DN(Q)_T, DP(P)_T, 44 
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DP(Q)_T, ILC2, ILC3, CYCLING_ILC, NK, CYCLING_NK cells with TRBJ were included 1 
for the trajectory analysis. Neighborhood graph (k=50) and UMAP was re-calculated using 2 
scVI latent factors similar to above.  3 
 4 
For pseudotime trajectory analysis, palantir23 was used and a diffusion map was computed 5 
using the first five PCs. The root cell was chosen to be the neighborhood with the highest 6 
CD34 expression, and the two terminal states were chosen with the largest and smallest 7 
values on the UMAP1 axis for T and NK/ILC cell neighborhoods respectively 8 
(Supplementary Fig. 8a). Pseudotime and branch probabilities to the terminal states were 9 
then computed and projected back from neighborhoods (Fig. 5b) to cells (Fig. 5c top panel).  10 
 11 
Gene expression trend in DN T cells along pseudotime 12 
Chatterjee’s correlations52 were computed between gene expression and inferred pseudotime 13 
within DN T cells for all genes that were expressed in at least 10 cells. Chatterjee’s 14 
correlation was chosen instead of Pearson’s or Spearman’s correlation to look for any 15 
functional change and not restricted to a monotonic change. TFs62 and genes encoding cell 16 
surface proteins that had significantly high Chatterjee’s correlation with pseudotime (BH 17 
adjusted P-value < 0.05, and correlation coefficient > 0.1) were shown in Fig. 5c and 18 
Supplementary Fig. 8b respectively.   19 
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Code and data availability 1 
Dandelion is implemented as an open-source package in Python 3 2 
(https://github.com/zktuong/dandelion) with tutorials available at https://sc-3 
dandelion.readthedocs.io/en/latest/. The tool and workflow is also available through an 4 
interactive online Google Colab notebook at 5 
https://colab.research.google.com/github/zktuong/dandelion/blob/master/container/dandelion6 
_singularity.ipynb. Code and data used to generate figures and perform analyses in the 7 
manuscript are available at https://github.com/zktuong/dandelion-demo-8 
files/dandelion_manuscript.  9 
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