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Abstract 
We can often anticipate the precise moment when a stimulus will be relevant for our behavioral 
goals. Voluntary temporal attention, the prioritization of sensory information at task-relevant time 
points, enhances visual perception. However, the neural mechanisms of voluntary temporal 
attention have not been isolated from those of temporal expectation, which reflects timing 
predictability rather than relevance. Here we used time-resolved steady-state visual evoked 
responses (SSVER) to investigate how temporal attention dynamically modulates visual activity 
when temporal expectation is controlled. We recorded MEG while observers directed temporal 
attention to one of two sequential grating targets with predictable timing. Meanwhile, we used a 
co-localized SSVER probe to continuously track visual cortical modulations both before and after 
the target stimuli. In the pre-target period, the SSVER gradually ramped up as the targets 
approached, reflecting temporal expectation. Furthermore, we found a low-frequency modulation 
of the SSVER, which shifted approximately half a cycle in phase according to which target was 
attended. In the post-target period, temporal attention to the first target transiently modulated the 
SSVER shortly after target onset. Thus, temporal attention dynamically modulates visual cortical 
responses via both periodic pre-target and transient post-target mechanisms to prioritize sensory 
information at precise moments.  
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Introduction 
We can often anticipate the points in time at which sensory events will be relevant for our behavior. 
For example, when playing table tennis, it is critical to see the ball at the moment it bounces on 
the table; only seeing the ball half a second earlier or later would be unhelpful (1). Voluntary 
temporal attention is the deliberate prioritization of a point in time that we know in advance will be 
relevant for our behavioral goals (2).  

Voluntary temporal attention involves prioritizing a stimulus on the basis of both its timing and its 
relevance to the observer’s task (3, 4). These two features distinguish voluntary temporal attention 
from other dynamic phenomena (5). For example, a task-relevant stimulus may appear at an 
unpredictable time, eliciting reactive attentional dynamics—as in the attentional blink (6–8)—
rather than the proactive dynamics of voluntary temporal attention. Alternatively, an irrelevant 
stimulus may appear at a predictable time, eliciting temporal expectation but not attentional 
prioritization (5, 9–11). 

Voluntary temporal attention has been shown to improve behavioral performance (3, 4, 12, 13) 
and affect microsaccades (10, 14) over and above the effects of temporal expectation, suggesting 
dissociable neural mechanisms. Likewise, in the domains of visual spatial and feature-based 
attention, as well as auditory temporal attention, relevance and predictability can have distinct 
behavioral and neural effects (9, 15–24). Finally, spatial (25, 26) and feature-based (27) attention 
have larger effects on visual responses to targets that appear at expected vs. unexpected times, 
further suggesting that temporal attention and expectation may have separable effects on visual 
cortex. 

The neural mechanisms specific to voluntary temporal attention are unclear, however, because 
previous neural studies have typically manipulated visual temporal attention and temporal 
expectation together, by presenting a single task-relevant target at a more or less predictable time 
(28–33). As a result, the neural modulations observed could be related to timing predictability, 
time point relevance, or a combination of the two. Such studies have found increased visual 
responses to temporally anticipated targets (31, 33) as well as slow ramping activity in dorsal 
stream cortical and subcortical areas (34–37) that peaked around the time of an anticipated event. 
These ramping signals could be related to time-keeping and top-down control of anticipatory 
processes, including motor preparation. Temporal expectation has also been associated with 
neural oscillations in sensory and fronto-parietal cortices, particularly in the delta (0.5-4 Hz) range, 
both during rhythmic stimulation at the delta frequency (38–40) and in predictable interval timing 
tasks (41).  

Our normalization model of dynamic attention, which was fit to psychophysical data (3, 4, 13), 
predicts that voluntary temporal attention will change the gain of visual responses rapidly and 
transiently, roughly coincident with the evoked sensory response to the visual stimulus (3), rather 
than slowly and gradually, before the stimulus appears. Importantly, sensory gain modulations 
that multiplicatively scale neural response amplitudes can only be measured in the presence of a 
probe stimulus that elicits non-zero visual activity. A few studies of temporal expectation 
presented probe stimuli during a pre-target period and found anticipatory modulation of sensory 
activity, including ramping up of gamma band signals in V1 (42), ramping of responses to auditory 
probe stimuli in A1 (43), and spatial attentional modulation that depended on task timing in V4 
(26), consistent with anticipatory gain modulation (3, 44). However, it remains unclear whether 
voluntary temporal attention still modulates visual gain when expectation is controlled and what 
the dynamics of any such modulation may be. 

Here we investigated how temporal attention dynamically modulates visual cortical responses 
using MEG. Human observers performed a challenging orientation discrimination task in which 
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voluntary temporal attention was manipulated independent of temporal expectation, which was 
constant. A precue directed temporal attention to one of two brief, sequential grating targets that 
were presented at fixed, predictable times. To measure attentional modulation continuously 
across time, we used time-resolved steady-state visual evoked responses (SSVER) (45–50). The 
grating targets were superimposed on a 20 Hz flickering noise probe, which generated a 
continuous SSVER signal (51, 52). We tracked this signal throughout the trial—both leading up 
to and following the target stimuli—by calculating the inter-trial phase coherence (ITPC) at the 
stimulus frequency in a time-resolved fashion. ITPC is the primary driver of SSVER power (51–
54) and indexes the reliability with which the visual stimulus drives cortical responses: a more 
reliable neural response to the stimulus will yield a higher phase coherence across trials (51, 55). 

We found dynamic task-related modulations of visual cortical responses leading up to and 
following target stimuli. Visual cortical ITPC slowly ramped up in anticipation of the predictable 
target stimuli regardless of the precue, an overall effect of temporal expectation. Furthermore, we 
found a low-frequency (2 Hz) modulation of the ITPC in the pre-target period, which shifted 
approximately 180 degrees in phase according to which target was attended. In the post-target 
period, temporal attention to the first target transiently modulated ITPC shortly after target onset, 
increasing the peak response to the target when it was attended. The findings show how both 
pre- and post-target modulatory mechanisms contribute to voluntary temporal attention. The 
presence and timecourse of these dynamic modulations in visually-driven cortical activity suggest 
mechanisms for how temporal attention can selectively enhance visual perceptual sensitivity at 
specific moments in time. 

Results  
Temporal precueing improved perceptual sensitivity 
To investigate the effects of voluntary temporal attention on visual cortical dynamics, we recorded 
MEG while observers performed a temporal attention task with fully predictable stimulus timing 
(Figure 1). Observers (n = 10 x 2 sessions) directed temporal attention to one of two sequential 
grating targets separated by a 300 ms stimulus onset asynchrony (SOA) and discriminated the 
orientation of one grating on each trial. A precue tone before the targets instructed observers to 
attend to either the first target (T1) or second target (T2), and a response cue tone after the targets 
instructed observers to report the tilt (clockwise or counterclockwise) of one of the targets. The 
response cue matched the precue with 75% validity, so observers had incentive to direct their 
attention to different points in time according to the precue.  

 
Figure 1. Temporal cueing task. Trial timeline showing stimulus durations and SOAs in ms. Targets were 
embedded in 20 Hz counterphase flickering noise. Precues and response cues were pure tones (high = 
cue T1, low = cue T2). 
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Temporal attention improved orientation discrimination performance, consistent with previous 
findings (3, 4, 13, 30, 56). Perceptual sensitivity (d’) was higher overall for valid trials (when the 
response cue matched the precue) than invalid trials (when the response cue did not match) 
(main effect of validity: F(1,9) = 8.03, p = 0.02, 𝜂	!" 	= 0.25) (Figure 2). Perceptual sensitivity for 
T1 was higher than that for T2 (main effect of target: F(1,9) = 16.47, p = 0.0028, 𝜂	!" 	= 0.26). No 
other main effects or interactions were found for d’ (F(1,9) < 3.05, p > 0.11). Given the directional 
nature of time, we also tested how temporal attention affected each target separately. The 
improvement in d’ with temporal attention was significant for T1 individually (F(1,9) = 9.08, p = 
0.01, 𝜂	!" 	= 0.38; valid: mean d’ = 1.79, SD = 0.44; invalid: mean d’ = 1.21, SD = 0.88) with a trend 
for improvement for T2 (F(1,9) = 4.75, p = 0.06, 𝜂	!" 	= 0.20; valid: mean d’ = 1.20, SD = 0.39; 
invalid: mean d’ = 0.85, SD = 0.61). Temporal attention did not affect observers’ discrimination 
criterion, or bias to report clockwise vs. counterclockwise (F(1,9) = 0.67, p = 0.43). Reaction time 
(RT) was faster for valid versus invalid trials overall (F(1,9) = 39.87, p < 0.001, 𝜂	!" 	= 0.76) and for 
each target individually ([T1: F(1,9) = 43.02, p < 0.001, 𝜂	!" 	= 0.79; valid: mean RT = 0.62 s, SD = 
0.23 s; invalid: mean RT = 0.89 s, SD = 0.23 s], [T2: F(1,9) = 34.71, p < 0.001, 𝜂	!" 	= 0.74; valid: 
mean RT = 0.63 s, SD = 0.24 s; invalid: mean RT = 0.88 s, SD = 0.22 s]). No other main effects 
or interactions were found for RT (F(1,9) < 2.66, p > 0.14) (Figure 2). Thus, we can rule out any 
speed-accuracy tradeoffs in the effect of the precue on performance. 

 
Figure 2. Behavior. Mean (A) perceptual sensitivity and (B) reaction time for each target (T1, T2) by 
attention condition. Sensitivity was higher and reaction time faster for valid (green) than invalid (purple) 
trials. Error bars indicate ± 1 SEM. ~ p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001. 
 
Continuous tracking of visual responses using ITPC  
To allow continuous tracking of visual responses as observers deployed temporal attention, we 
used time-resolved SSVER. The grating targets were embedded in a stream of 20 Hz 
counterphase flickering noise, filtered to have similar orientation and spatial frequency content as 
the targets. The targets were presented superimposed on the noise background for 100 ms each 
and also flickered at 20 Hz in phase with the ongoing noise flicker. This protocol allowed visual 
cortical responses to be tracked throughout the trial by measuring the 20 Hz SSVER. The SSVER 
technique allows stimulus-driven activity to be isolated and measured with high signal-to-noise 
(57). The use of a high-frequency flicker allows high temporal-resolution measurements of the 
SSVER signal and increases the localization of the signal to posterior sites (48, 58). 
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For each observer, we first measured the 20 Hz SSVER power for each channel, calculated from 
the average time series across all trials (henceforth “trial-average power”), and selected the five 
most visually responsive channels for further analysis. As expected, the most visually responsive 
channels were located in the back of the head, consistent with occipital responses (Figure 3A). 
We confirmed strong 20 Hz trial-average power in these channels and found that power was 
enhanced specifically at the 20 Hz stimulus frequency (Figure 3C). 

Trial-average power depends on two factors: 1) single-trial power and 2) phase coherence across 
trials at the frequency of interest, or ITPC (Figure 3B). Therefore, we next asked how the 20 Hz 
SSVER depended on these two factors. As in previous studies that have pulled apart ITPC and 
single-trial power (51–54), we found that ITPC was the dominant component of the trial-average 
SSVER, with a strong and specific 20 Hz ITPC response (Figure 3E). Single-trial power had a 
relatively weak 20 Hz component and was dominated by alpha power around 10 Hz (Figure 3D). 
We therefore used ITPC as our primary measure to quantify responsiveness to visual stimulation 
in our subsequent analyses. 

 

 
Figure 3. MEG responses to steady-state visual stimulation. (A) Topography of visually responsive 
channels across observers (top five channels selected for each session based on 20 Hz trial-average 
SSVER power). Grayscale indicates the proportion of sessions across observers in which the channel was 
selected as visually responsive. (B) Illustration of cartoon time series from five trials (gray) and their average 
(black). High phase coherence across trials results in high ITPC and trial-average power (top); low phase 
coherence across trials results in low ITPC and trial-average power (bottom), despite the same single-trial 
power. (C-E) Time frequency spectrograms of (C) trial-average power reveals a strong 20 Hz signal at the 
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stimulus frequency. Trial-average power depends on two factors: (D) the power on single trials and (E) 
phase coherence across trials, or ITPC. The trial-average power at 20 Hz was more strongly reflected in 
ITPC than in single-trial power.  
 
Temporal expectation was accompanied by a ramping increase in ITPC 
We first asked how temporal expectation affected ITPC in the period between the precue and the 
first target. In all trials, a predictable interval of 1.05 s elapsed between the onset of the precue 
and the onset of T1, so observers could form an expectation about the timing of T1 onset 
regardless of which target was precued to be attended (4, 13). We observed an apparent neural 
signature of expectation in the form of a slow ramping increase of ITPC (mean slope = 0.047 
ΔITPC/s, SD = 0.043) during the precue-to-T1 period (Figure 4A, Supplementary Figure 1). To 
quantify the rate of increase, we fit lines to each observer’s ITPC time series from the onset of 
the precue to 80 ms before T1 (a cushion before T1 was inserted to prevent responses to T1 from 
interfering with the fit, see Methods, Model fitting and parameter estimation). The slope of the 
ITPC time series was positive for 8/10 observers and significantly greater than zero across the 
group (F(1,9) = 12.02, p = 0.007, 𝜂	!" 	= 0.40) (Figure 4B). In contrast, single-trial power showed 
no ramping increase in the precue-to-T1 period (Supplementary Figure 1C), confirming that a 
ramping increase in cortical response reliability, as opposed to improved phase estimates due to 
increased signal strength, was the critical factor driving the change in ITPC. 
 

 
Figure 4. Anticipatory ITPC ramping associated with temporal expectation. (A) Group 20 Hz ITPC time 
series across all trials (n = 10). Lines were fit to each observer’s ITPC time series during the precue-to-T1 
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period (gray bar). Linear fit to group data (dashed purple line) shown for visualization. (B) Mean fitted slopes 
were significantly greater than zero. (C) ITPC ramp is time-locked to the precue. Mean 20 Hz ITPC time 
series (n = 10) for each jittered duration of SSVER stimulation before the precue. Colored vertical lines 
indicate the onset of the stimulus flicker for each duration. (D) ITPC slopes during the precue-to-T1 period 
did not differ across jitter durations. Error bars indicate ±1 SEM. ** p < 0.01 compared to zero. 
 
To ensure this ITPC ramp was locked to the precue and not simply the continuous build-up of the 
SSVER signal, we separated trials according to the duration of the SSVER stimulation period 
before the precue, which had been jittered from 500 to 1500 ms to prevent predictable precue 
timing. A one-way ANOVA revealed no significant differences in ITPC slope across the six jitter 
durations (F(1,9) = 1.19, p = 0.30, 𝜂	!" 	= 0.03). (Figure 4C,D). Therefore, the ITPC ramp was 
evidently initiated by the precue and indicates a gradual increase in visual cortical response 
reliability tied to temporal expectation. 

Delta modulation of anticipatory ITPC 
Given previous findings of both linear ramping and low-frequency modulations related to temporal 
expectation (41, 59), we next investigated whether the pre-target ITPC time series contained any 
periodic activity above what is expected from the intrinsic scale-free properties of neural activity, 
which follows a 1/f power law (60, 61). We found that the power spectrum of the ITPC time series 
exceeded the 1/f expectation for a range of low frequencies, from 1 to 6 Hz (delta and low-theta 
range) (Figure 5A) (see Methods, FFT). Fitting a linear plus periodic (sine wave) model in which 
frequency was a free parameter showed that frequencies between 0.5-3 Hz explained the most 
variance in the periodic component of the ITPC time series for all observers and precue 
conditions, with a mean of 1.69 Hz for precue condition fits to individual data and 2.13 Hz for the 
group fit to all trials (Figure 5B,C). Thus, visual response reliability during the predictable pre-
target interval exhibited periodic modulation, primarily at delta frequencies, on top of the ramping 
modulation. 

 
 
Figure 5. Anticipatory periodic modulations of ITPC. (A) The predictable precue-to-T1 period (gray bar in 
B) contains low frequency (1-6 Hz) periodicity above that expected from 1/f scale-free activity, determined 
by a linear fit to the power from 35-200 Hz (solid green line) in log-log space and extrapolated to lower 
frequencies (dashed green line). (B) Group 20 Hz ITPC time series from all trials fit with a linear plus 
periodic model (dashed line), in which frequency was a free parameter, indicates a dominant modulatory 
frequency near 2 Hz. Shaded error bars show ±1 SEM, normalized by a 100 ms baseline period before the 
precue. (C) Fitted frequencies to individual observer 20 Hz ITPC time series were similar across precue 
conditions. Error bars indicate ±1 SEM. 
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Temporal attention phase-shifts the periodic modulation of anticipatory ITPC 
Next, we tested the effect of temporal attention on the ramping and periodic components of the 
pre-target ITPC time series. To do so, we fit linear plus periodic models to each precue condition 
and assessed differences in fitted parameters. To determine whether temporal attention impacted 
the phase of the periodic modulation, we fixed frequency across observers and conditions and 
tested each of the six frequencies (1-6 Hz) that had exceeded the 1/f expectation (Figure 5A). 
The 2 Hz model fit (Figure 6) showed a significant phase difference between precue conditions, 
with a mean phase shift of 157° (𝜅 = 0.43, Rayleigh z = 5.13, p = 0.0035 uncorrected, p = 0.021 
after Bonferroni correction for multiple comparisons across 6 frequencies) (Figure 6C). The 2 Hz 
model also showed significant phase clustering in precue T1 trials (mean phase = 183°, 𝜅 = 1.83, 
Rayleigh z = 4.72, p = 0.0059 uncorrected, p = 0.035 after Bonferroni correction). The amplitude 
of the 2 Hz component and the slope and intercept of the linear component were all unaffected 
by the precue condition (all p > 0.1 uncorrected) (Figure 6B). The phase shift was specific to 2 
Hz, which concords with the dominant frequency observed in the time series (Figure 6A); none 
of the other models using different fixed frequencies showed significant phase shifts (all p > 0.05 
after Bonferroni correction). Interestingly, the 157° phase shift of a 2 Hz signal corresponds to a 
time interval 218 ms, which is similar to the SOA between the two targets. It is also similar to the 
SOAs at which maximal attentional tradeoffs occur: in a voluntary temporal attention study 
(Denison et al., 2021) that varied the interval between the two targets, the attentional precue had 
the largest effect on perceptual sensitivity when the targets were separated by 250 ms. Taken 
together, it appears that temporal expectation elicits a periodic modulation of visual response 
reliability in the delta band, and temporal attention shifts the phase of this modulation depending 
on the precise timing of the task-relevant target. 
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Figure 6. Temporal attention phase-shifts anticipatory ITPC modulation. (A) Group 20 Hz ITPC time series 
for each precue condition, fit with linear plus 2 Hz periodic models (dashed lines) to the precue-to-T1 period 
(gray bar). Shaded error bars indicate ±1 standard error of the difference (SED). (B) No difference in the 
fitted intercept, slope, or amplitude between precue conditions. Error bars indicate ±1 SED. (C) The 2 Hz 
phase is significantly concentrated on precue T1 trials (left), and temporal attention phase-shifts the periodic 
modulation (right). Shaded histograms show phase across observers. ** p < 0.01 uncorrected, p < 0.05 
after Bonferroni correction. 
 
Temporal attention transiently affected the target-evoked ITPC response 

We next asked how temporal attention affected the ITPC response to the targets. A target stimulus 
briefly superimposed on an SSVER stimulus can either enhance or suppress the ongoing SSVER, 
such that some observers show transient increases (upward peaks) in the SSVER signal following 
the target stimulus whereas others show transient decreases (downward peaks) (Supplementary 
Text). Thus, we asked how temporal attention affected the magnitude of this target-evoked ITPC 
response for each observer using a normalized measure of ITPC (see Methods, Peak analysis). 
The group average normalized ITPC time series has clear peaks after each target (Figure 7A). 
 

 
 
Figure 7. Group normalized ITPC. (A) Group normalized 20 Hz ITPC time series for each precue condition. 
Gray bar indicates the 500 ms baseline period used for normalization. (B) Effect of temporal attention on 
normalized target-evoked ITPC responses measured at individual observer peak times. Temporal attention 
increased the target-evoked ITPC response for T1. Error bars indicate ±1 SED. *** p < 0.001.   
 
The magnitude of the target-evoked ITPC response to T1 was larger when T1 was precued than 
when T2 was precued (Figure 7A). To quantify the magnitude of this difference, we measured 
the peak of the normalized target-evoked ITPC response for each individual observer for the two 
precue types (see Methods, Peak analysis). We found that temporal attention increased the 
target-evoked ITPC response to T1 (F(1,8) = 32.34, p = 0.0004, 𝜂	!" 	= 0.23; precue T1: mean = 
0.086, SD = 0.088; precue T2: mean = 0.060, SD = 0.083 (Figure 7B). We found no significant 
effect of the precue on the response to T2 (F(1,8) = 0.23, p = 0.64, 𝜂	!" 	= 0.005; precue T1: mean 
= 0.079, SD = 0.086; precue T2: mean = 0.075, SD = 0.088). The presence of an effect of the 
precue for T1 and absence for T2 was reflected in a significant interaction of target and validity 
(F(1,8) = 7.17, p = 0.028, 𝜂	!" 	= 0.055). See Supplementary Table 1 for all ANOVA results for the 
target-evoked response analyses.  

We further investigated the effect of the precue on other measures of the evoked response to the 
targets. At the same peak times, trial-average normalized SSVER power behaved similarly to 
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ITPC, whereas single-trial normalized 20 Hz power was unrelated to precue validity 
(Supplementary Table 1). Specifically, temporal attention increased the trial-average normalized 
SSVER power in response to T1 (F(1,8) = 5.80, p = 0.043, 𝜂	!" 	= 0.11; precue T1: mean = 560 fT2, 
SD = 560 fT2; precue T2 mean = 407 fT2, SD = 454 fT2) but not T2 (F(1,8) = 0.22, p = 0.65, 𝜂	!" 		= 
0.0026; precue T1: mean = 406 fT2, SD = 487 fT2; precue T2 mean = 377 fT2, SD = 497 fT2, 
Supplementary Figure 1H). Single-trial normalized 20 Hz power, in contrast, showed no effect 
of precue for either target (F(1,8) < 2.05, p > 0.19, Supplementary Figure 1I), demonstrating that 
the change in ITPC was not driven by a change in 20 Hz power regardless of phase. Finally, we 
confirmed that the ITPC effect for T1 was specific to 20 Hz (Supplementary Figure 2). Therefore, 
directing temporal attention to the first target changed the steady-state response to that target in 
a transient fashion.  

Discussion 
We investigated how temporal attention dynamically modulates visual processing by using time-
resolved SSVER to continuously track visual cortical activity as observers attended to precise 
points in time. Our two-target temporal cueing task (3, 4, 10, 13) allowed us to measure specific 
effects of voluntary temporal attention to task-relevant time points, over and above the effects of 
temporal expectation due to predictable stimulus timing. Temporal attention affected cortical 
response reliability both in anticipation of and in response to target stimuli. Visual response 
reliability slowly ramped up as target onset approached, an overall effect of temporal expectation. 
In addition, response reliability exhibited low-frequency modulations before target onset, which 
shifted in phase according to which target was attended. Temporal attention to task-relevant time 
points also enhanced target-evoked responses, specifically for the first target. These findings 
demonstrate both anticipatory and evoked visual cortical signatures of voluntary temporal 
attention, when temporal expectation is controlled.  

Both ramping activity and neural oscillations have been proposed to serve as timing mechanisms 
in the brain (59, 62), and both have been observed in anticipation of a predictable stimulus. 
Studies of temporal expectation have found anticipatory ramps in EEG voltage known as the 
contingent negative variation (CNV), often when a speeded response to a target was required 
(28, 63–67). The CNV is usually associated with response preparation or interval timing (68) and 
has been localized to frontal and parietal areas (69). Ramping activity in motor and parietal areas 
has also been observed leading up to timed movements (35, 70). In visual cortex, gamma 
responses to an irrelevant grating ramped up over the course of ~1 s before the expected target 
time, and alpha power decreased (42).  

Temporal expectation has also been associated with low-frequency oscillations in the delta band 
(~0.5-4 Hz) in both sensory (38, 41, 71, 72) and fronto-parietal (73, 74) areas. A study in 
macaques (38) found that interleaved rhythmic auditory and visual stimuli elicited V1 delta 
modulation, which phase-shifted to align with input in the task-relevant modality. Delta phase was 
related to the amplitude of visual responses trial by trial, suggesting that delta can modulate 
response gain. Alignment of rhythmic stimuli to a preferred phase of delta also has behavioral 
consequences, improving discrimination (40, 72, 74) and speeding reaction times (38, 39, 74). 
These reports of delta activity come from experiments that also presented rhythmic stimuli at delta 
frequencies. Thus, it is possible that the activity was due to stimulus-driven entrainment (38, 40, 
71). However, other expectation experiments found delta phase synchronization even in the 
absence of rhythmic input, using predictable cue interval timings (41, 74). None of the above-
mentioned studies attempted to isolate the effects of voluntary temporal attention from those of 
temporal expectation.  
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Here, we found expectation-related ramping and low-frequency modulation in the reliability of 
stimulus-specific visual responses, which was phase-shifted by temporal attention. The time-
resolved SSVER approach revealed a direct effect of ramping and periodic modulations on 
cortical responses to visual stimuli presented at each time point, demonstrating the continuous 
functional impact of these modulatory signals during target anticipation. Given that the ITPC signal 
and attention-related modulations were narrow-band at the stimulus frequency of 20 Hz and 
phase-locked to the stimulus, these measurements very likely reflect neural responses driven by 
the stimulus flicker rather than endogenously generated activity in the beta band. Unlike in 
previous studies (26, 27, 42) no speeded responses to targets were required, ruling out the 
possibility that the cortical modulations were associated with response preparation (64). SSVER 
studies of spatial attention sustained across seconds have reported SSVER amplitudes that are 
relatively constant across a trial (51, 52), suggesting that the ramping plus periodic pattern we 
observed is specific to situations when the observer can predict the upcoming target time. 
Interestingly, an overall anticipatory effect of temporal expectation that is time-shifted by temporal 
attention is similar to the pattern we have observed for microsaccades, which also provide 
continuous measures of anticipatory processes (10, 14).  

We also found that temporal attention enhanced the evoked ITPC response even for fully 
predictable stimuli, but this enhancement occurred only for T1 and not for T2. One possible 
explanation, albeit speculative, is that the neural mechanisms of temporal attention differ for T1 
and T2 given the directionality of time. When stimuli appear in rapid succession, anticipatory 
signals that slowly build up over time would mainly affect the first stimulus in the sequence. It may 
be that at occipital stages, changing the relative responses to the two targets by modulating T1 
alone is sufficient to bias downstream competition between the two target representations and 
produce attentional tradeoffs in behavior. In our data, consistent with a relative modulation of 
target responses by attention, the T2 evoked ITPC response was higher than the T1 response 
when T2 was precued and lower than the T1 response when T1 was precued. 

An investigation of temporal expectation using SSVER yielded mixed results (50): post-target 
SSVER amplitude was higher for predictable vs. unpredictable stimuli for some flicker frequencies 
but lower for other flicker frequencies, with no increase in SSVER amplitude in advance of a 
predictable target time. However, the SSVER stimulus had no spatial overlap with the target 
location, so any expectation-related modulation specific to the target location would not have been 
measurable in the SSVER signal. Here, with spatially co-localized SSVER and target stimuli, 
temporal attention increased the impact of the targets on the SSVER for all observers. However, 
the targets themselves increased the SSVER for some observers and decreased it for others. 
This directionality was stable across sessions for each observer. To our knowledge this individual 
variation is an unexplained observation in the field that deserves further study (Supplementary 
Text). 

Our normalization model of dynamic attention predicts that temporal attention will modulate 
sensory responses (3). Based on fits to psychophysical data, the model also predicts that the 
effects of temporal attention on neural gain will be transient and roughly coincident with the 
sensory responses. The current data are consistent with both model predictions: sensory 
modulation by temporal attention and modulation at a transient timescale. Specifically, the model 
predicts a change in gain at the neuronal level, which requires a linking hypothesis to make 
predictions for MEG measures. Higher gain would increase the probability or rate of neuronal 
spiking in response to each stimulus flicker, which in turn would be expected to lead to more 
reliable population responses to the SSVER stimulus across trials and thus higher ITPC. Such a 
mechanism also might be expected to increase single-trial power, which we did not observe. 
However, the SSVER stimulus itself did not substantially increase 20 Hz single-trial power above 
baseline. This raises the possibility that stimulus-driven 20 Hz activity interacted with ongoing 
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endogenous (non-phase locked) 20 Hz power, which may have obscured gain changes in the 
single-trial power measure. Alternatively, changes in ITPC could have arisen from a mechanism 
other than gain changes, such as more consistent timing of stimulus-driven responses without 
changes in neuronal response amplitude. Invasive recordings, and perhaps modeling efforts, 
could distinguish between these possibilities.  

This linking hypothesis between gain increases at the neuronal level and ITPC increases in the 
SSVER can account for the pre-target effects of attention and expectation we observed, as well 
as post-target effects for those observers showing a transient increase of the ITPC following each 
target. However, transient reductions of the ITPC in response to target stimuli, regardless of 
attention (Supplementary Text), appear to arise from observer-specific interactions between the 
ongoing SSVER and target-evoked responses and are thus not predictable from the normalization 
model of dynamic attention (3), which does not include specific biophysical structure. The model 
also could not predict the anticipatory ramping and periodic modulation we observed here, 
because the behavioral data alone could not distinguish anticipatory from stimulus and post-
stimulus processing; future versions of the model should incorporate these new experimental 
findings.  

Conclusions  
Using time-resolved SSVER, we studied how voluntary attention to points in time continuously 
impacts the reliability of cortical responses to visual stimulation. Our measurements revealed two 
complementary neural mechanisms of temporal attention: (1) a slow, periodic fluctuation of visual 
cortical ITPC that anticipated predictable target times and shifted in time depending on which time 
point was to be attended, and (2) a transient, post-target increase of the evoked ITPC response 
to targets at attended time points, which was specific to the first target. This transient modulation 
changed the relative strengths of the two target responses as a function of attention. By revealing 
the full timecourse of temporal attentional modulations of sensory activity, the results show how 
attention dynamically alters visual signals to select and prioritize visual information at precise 
moments in time.  

Methods  
Observers  
Ten observers (5 females), ages 24-35 years (M = 28.5 years, SD = 4.2 years) participated, 
including authors RND and KJT. Each observer completed two MEG sessions, which allowed us 
to check for consistency across sessions for each observer while collecting 20 sessions of MEG 
data in total, comparable to previous MEG studies of vision (75, 76). The sample size was also 
similar to previous temporal attention studies that measured accuracy (4, 13, 29) and to several 
studies on spatial attention (77–79). All observers provided informed consent, and the University 
Committee on Activities involving Human Subjects at New York University approved the 
experimental protocols. All observers had normal or corrected-to-normal vision.  

Stimuli  
Stimuli were generated on an Apple iMac using MATLAB and Psychophysics Toolbox (80, 81) 
and were displayed using a gamma-corrected InFocus LP850 projector (Texas Instruments, 
Warren, NJ) with a resolution of 1024 x 768 pixels and a refresh rate of 60 Hz. Stimuli were 
projected via a mirror onto a translucent screen at a viewing distance of 42 cm. Stimulus timing 
accuracy was confirmed with photodiode measurements. Stimuli were presented on a medium 
gray background (206 cd/m2). A central fixation circle subtended 0.15° visual angle.  
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SSVER stimulus. Throughout the trial, a 20 Hz contrast-reversing flickering noise patch was 
presented foveally, with the fixation circle overlaid. The noise patch was 4° in diameter with a 
blurred outer edge subtending 0.4°, fading to the background gray. To create the noise patch, 
pixel noise was generated from a normal distribution then bandpass filtered in both orientation 
and spatial frequency around target values: in orientation 0° ± 5° and 90° ± 5° forming a vertical 
and horizontal crosshatch pattern, and in spatial frequency 1.5 cpd ± 1 octave. A new noise patch 
was randomly generated on each trial and then flickered throughout the trial with a duty cycle of 
33% (1 frame of the original noise image in alternation with 2 frames of the contrast-reversed 
image). The contrast of the SSVER stimulus was adjusted to ensure high visibility of the target 
stimuli while still producing a clear SSVER signal (40-55% noise patch contrast across observers). 

Targets. Visual targets were 1.5 cpd sinusoidal gratings of 4° in diameter with a blurred outer 
edge subtending 0.4°. Targets were also presented foveally and were added pixelwise to the 
noise patch stimulus. To match the temporal frequency of the targets to the SSVER stimulus, the 
targets were also contrast-reversed for 2 cycles at 20 Hz, in phase with the noise patch flicker, 
for a total target duration of 100 ms. Target grating contrast was adjusted so that, when added to 
the noise patch, the total contrast was 100% (grating contrast 45-60% across observers). 

Cues. Auditory cues were pure sine wave tones 100 ms in duration (with 10 ms cosine amplitude 
modulation ramps at onset and offset) presented through earbuds at a comfortable volume. There 
were two possible auditory cue tones, one high-pitched (1046.5 Hz, C6) and one low-pitched (440 
Hz, A4).  

Experimental procedure 
All observers participated in two 2-hour MEG sessions on separate days, on average 3.6 days 
apart. Each session included 12 experimental blocks approximately 6 minutes each in duration. 
Observers took breaks between blocks and pressed a button to indicate their readiness for the 
next block.  

Task. On each trial, observers were asked to discriminate the orientation of one of two grating 
targets (Figure 1). The two targets (T1 and T2) were each presented for 100 ms, separated by a 
stimulus onset asynchrony (SOA) of 300 ms, based on previous psychophysical studies (3, 4, 13). 
Each target was tilted slightly clockwise (CW) or counterclockwise (CCW) from either the vertical 
or horizontal axis, with independent tilts and axes for T1 and T2. Both vertical and horizontal axes 
were used to reduce the number of trials on which the two stimuli were identical and discourage 
observers from adopting a strategy of judging whether the stimuli were the same or different to 
aid in discrimination. An auditory precue 1,050 ms before the first target instructed observers to 
attend to the first or the second target (high tone: attend T1; low tone: attend T2). An auditory 
response cue 950 ms after T2 indicated which of the two targets’ tilt to report (high tone: report 
T1; low tone: report T2). Observers pressed one of two buttons to indicate whether the tilt was 
CW or CCW relative to the main axis within a 1600 ms response window. The response cue 
matched the precue on 75% of the trials (valid trials) and mismatched the precue on the remaining 
25% (invalid trials). At the end of each trial, feedback was provided by a change in color of the 
fixation circle (green: correct; red: incorrect; blue: response timeout). At the end of each block, 
performance accuracy (percent correct) was displayed. The timing of auditory and visual events 
was the same on every trial. From trial to trial, the allocation of temporal attention varied 
(depending on the precue), and the response selection varied (depending on the response cue).  

So that only the precue would provide predictive timing information about the target onsets, and 
to allow time for the SSVER signal to stabilize before any trial events occurred, the interval 
between the SSVER onset and the precue was jittered from 500 to 1500 ms in steps of 200 ms. 
Between each trial, an inter-trial interval of 1500 ms was presented, during which only the fixation 
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circle appeared on a gray background. Observers were encouraged to blink during this period. 
The fixation circle turned black at the start of the ITI, turned white 500 ms before the SSVER onset 
to indicate that the trial was about to begin, and remained white throughout the trial until the 
response feedback was provided. 

Each session consisted of 12 blocks of 41 trials each with all combinations of cue type (valid: 
75%, invalid: 25%), probed target (T1, T2), target tilt (CW, CCW; independent for T1 and T2), and 
target axis (horizontal, vertical; independent for T1 and T2) in a randomly shuffled order. To 
reduce adaptation to the SSVER stimulus, every fifth trial was a blank trial, with an additional 
blank trial at the beginning of each block. This procedure yielded a total of 768 temporal attention 
trials per observer across the two sessions.  

Training and thresholding. Prior to MEG, observers completed at least one session of training 
to familiarize them with the task and to determine their orientation tilt thresholds. During the 
training session, a chin-and-head rest was used to hold head position and viewing distance 
constant. Stimuli were displayed on a gamma-corrected Sony Trinitron G520 CRT monitor with a 
refresh rate of 60 Hz at a viewing distance of 57 cm. A 3-up-1-down staircase procedure was 
used to estimate each observer’s tilt threshold to achieve ~79% accuracy across all trials. 
Threshold tilts ranged from 1.5-5°. 

Eyetracking. Eye position was recorded using an EyeLink 1000 eye tracker (SR Research) with 
a sampling rate of 1000 Hz. Raw gaze positions were converted into degrees of visual angle using 
the five-point-grid calibration, which was performed at the start of each MEG session. 

MEG recording. Data were recorded continuously in each block with a 157-channel axial 
gradiometer system (Kanazawa Institute of Technology, Kanazawa, Japan) in the KIT/NYU facility 
at New York University. The magnetic fields were sampled at 1000 Hz with online DC filtering and 
a 200 Hz low-pass filter. Three orthogonally-oriented reference magnetometers placed 
approximately 20 cm away from the recording array recorded environmental noise.  

Before recording, each observer’s head shape was digitized with a handheld FastSCAN laser 
scanner (Polhemus, VT, USA). Digital markers were placed on the forehead, nasion, and left and 
right tragus and peri-auricular points. To record marker locations with respect to the MEG 
channels, electrodes were placed on five of the locations identified by the digital markers (three 
points on the forehead and left and right peri-auricular points), and marker locations were 
measured at the beginning and end of the MEG recording session.  

Data analysis 
Preprocessing. Data was preprocessed in MATLAB using the FieldTrip toolbox for EEG/MEG-
analysis (82). Environmental noise was removed from the data by regressing signals recorded 
from three orthogonally oriented magnetometers against the recorded data.  

MEG channels in which there was no signal or excessive noise were interpolated from 
neighboring channels (the number of interpolated channels per recorded session ranged from 2 
to 16 (1.3-10.2%), mean = 3.9 (2.5%), SD = 3.0. Trials were manually inspected and rejected for 
blinks and other artifacts. The number of rejected trials per session ranged from 26 to 73 (5.3-
14.8%), mean = 45.4 (9.2%), SD = 14.3. 

Channel selection. We selected visually responsive channels as the five channels per session 
with the strongest 20 Hz trial-average SSVER power. Topographies confirmed selected channels 
were in the posterior part of the head.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2022.11.18.517084doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

SSVER analysis. For the SSVER analyses, trials were epoched from 1500 ms before to 5200 
ms after the precue. Time-frequency representations of the data were computed using wavelet 
convolution with the FieldTrip toolbox. For the 20 Hz SSVER frequency, Morlet wavelets had 8 
cycles (127 ms temporal resolution, 5 Hz spectral resolution). For full time-frequency spectra, 
frequency was sampled every 1 Hz from 1-50 Hz, time was sampled every 10 ms, wavelets were 
tapered with Hanning windows, and the time windows scaled with frequency according to 10 s 
divided by the frequency. 

Trial-average power. Trial-average power quantifies the power of a periodic signal that is phase-
locked across trials and so survives averaging across trials. This measure has been commonly 
used in the SSVER literature (45, 83–85). To calculate the trial-average power, the time series of 
all trials (or all trials in a given experimental condition) were first averaged together, giving the 
mean time series across trials. Time-frequency analysis was then performed on this single time 
series to calculate the power across time at a frequency of interest. Trial-average power depends 
on two factors: single-trial power and ITPC. 

Single-trial power. Single-trial power quantifies the power of a periodic signal present on 
individual trials. To calculate the single-trial power, time-frequency analysis was performed on 
each individual trial, and these time-frequency representations were then averaged together 
across trials. This procedure preserves oscillatory activity that is not phase-locked across trials 
but relies on having sufficient signal-to-noise at the single trial level to measure the periodic signal. 

ITPC. Inter-trial phase coherence (ITPC) quantifies the phase alignment of a periodic signal 
across trials. The measure ranges from 0 (no phase alignment) to 1 (perfect phase alignment) 
(86). To calculate ITPC, time-frequency analysis was performed on each individual trial, returning 
estimates of the instantaneous phase angle at each point in time for a frequency of interest. The 
following standard formula was then used to calculate the alignment of these phase angles across 
trials, providing an estimate of ITPC: 

𝐼𝑇𝑃𝐶#$ =	
1
𝑁
,- 𝑒%&!"
'

()*

, (1) 

where 𝜙tf is the instantaneous phase angle in radians at a time point t and frequency f for each 
trial nÎ[1,…,N].  

Anticipatory ITPC analyses 
FFT. To investigate whether there were any periodic modulations of the ITPC timeseries beyond 
the expected scale-free spectral content, we assessed whether the power spectrum of the ITPC 
timeseries in the precue-to-T1 period differed from a 1/f relationship. To do so, we converted the 
anticipatory ITPC time series per session into the frequency domain using fast Fourier transform 
(from 1 Hz to 200 Hz, with 1 Hz resolution). We bootstrapped the 20 resultant spectra 1000 times, 
resampling with replacement to generate a distribution of spectra. The 1/f power law—as 
frequency increases, power decays following a power-law function—simplifies to a linear 
relationship between power and frequency in log-log space (87). As such, we estimated the 
aperiodic components of the anticipatory ITPC period by fitting a line to the average empirical 
spectrum in log-log space from 35 to 200 Hz, while leaving out 60 Hz line noise and harmonics, 
following the procedure from (88), and extrapolated the fit to estimate the power expected from 
1/f scale-free activity at lower frequencies (<35 Hz). We calculated the 95% confidence interval 
of the bootstrapped distribution of spectra using its 2.5 to 97.5 percentiles. Deviation of the 
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confidence interval above or below the fitted line would be evidence for significantly more or less 
periodicity, respectively, than expected from scale-free activity alone, at an alpha level of 0.05. 

Using the same bootstrapping procedure, we confirmed the spectra of the recorded time series, 
averaged across the top 5 visually responsive channels (see Methods, Channel selection) per 
session, did not contain 2 Hz power above 1/f expectations; this means the periodic 2 Hz activity 
we find in the precue-to-T1 period was specific to phase coherence of the SSVER. 

Model fitting and parameter estimation. To quantify pre-target ITPC modulations for individual 
observers, we fit both linear and linear plus periodic models to the ITPC time series in the time 
window between the precue and first target. In all trials, a predictable interval of 1.05 s elapsed 
between the onset of the precue and the onset of T1, so observers could form an expectation 
about the timing of T1 onset. To prevent T1 from influencing ITPC measurements of pre-target 
activity due to the temporal bandwidth of the wavelet, we set a cushion before T1 based on the 
group average ITPC time series across all trials. The start of the cushion was the inflection point 
80 ms before T1 when ITPC began to sharply decrease due to the T1 response. Thus the precue-
to-T1 window was defined as the onset of the precue to 80 ms before T1 (0-970 ms).  

To assess the overall effect of expectation on ITPC in this precue-to-T1 period, we fit the models 
on the ITPC time series calculated from all trials. To assess the effect of temporal attention, we 
fit the models to ITPC time series calculated from trials for each precue condition separately. In 
all cases, we fit the models for each observer and session and then statistically assessed the 
parameter estimates from these fits. 

The linear plus periodic model was defined as:  

𝑦(𝑡)4	= 	𝑏	 + 𝑚(𝑓+	𝑡) + 𝐴	𝑠𝑖𝑛[(𝜔
2𝜋
𝑓+
		(𝑡 + 𝜙)] (2) 

where 𝑦B is the predicted ITPC, 𝑡 is time, 𝑓+ is the sampling frequency (1000 Hz), 𝑏 is the intercept, 
𝑚 is the slope of the linear component, and 𝐴, 𝜔, and 𝜙 are the amplitude, frequency, and phase 
of the periodic (sine wave) component. 𝑏, 𝑚, 𝐴, and 𝜙 were always free parameters, and 𝜔 could 
be free or fixed to a specific frequency, e.g. 2 Hz. 

The linear only model was identical but contained only the intercept and slope terms.  

We estimated the model parameters by minimizing the mean squared error between the predicted 
and true ITPC using the optimization algorithm Bayesian Adaptive Direct Search (BADS) (89). 
The search bounds for each parameter were:  

𝑏:	[0, ,1] 
𝑚:	[−2, ,2] ΔITPC/s 
𝐴:	[0,1]  
𝜔:	[0.1, 5] Hz 
𝜙:	[−𝑝𝑖, 𝑝𝑖] radians 

To avoid local minima, we randomly generated 100 sets of initial parameters within the search 
bounds. We performed BADS optimization for each set of initial parameters, then selected the set 
of fitted parameters associated with the minimum error across iterations as the best fitting 
parameters.   

Phase analysis. Phase analyses were performed using the Circular Statistics Toolbox (90). The 
effect of temporal attention on phase was assessed using Rayleigh’s z test, which tests for non-
uniformity of a circular distribution.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2022.11.18.517084doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Evoked ITPC analysis 
Peak analysis. To quantify the evoked ITPC response for individual observers, we estimated the 
latency, direction, and amplitude of the most prominent deflection in the 20 Hz ITPC following 
each target, which we refer to as a “peak”. As ITPC data in the selected visual channels was 
highly consistent across sessions for a given observer, we identified peak times for each observer 
using the ITPC time series averaged across the two sessions. To find the peaks, we applied the 
MATLAB algorithm findpeaks.m to the time window 0 ms to 600 ms after T1 onset, which captured 
the evoked ITPC responses to both T1 and T2.  

All observers but one had two peaks that were either upward or downward during this window. 
The observer without an identifiable pair of peaks was not considered further in the peak analysis. 
Two observers had both upward peaks and downward peaks during the window, so for these 
observers we selected the pair of peaks whose timing was best aligned with the peaks of the 
other observers. The direction of the pair of peaks identified by this algorithm determined the 
classification of an observer as having either upward or downward peaks. 

We next assessed the effect of attention on the magnitude of the ITPC peaks, regardless of their 
direction. To combine evoked ITPC data across observers for this analysis, we first normalized 
the data so that peaks for all observers pointed upward. To do so, we measured a baseline ITPC 
value for each observer and session in the window 470-970 ms after the precue (a 500 ms window 
before target onset, excluding the 80 ms cushion before T1, see “Slope analysis”). We then 
subtracted that baseline value from the time series, and for observers with downward peaks, 
reversed the sign: 

𝐼𝑇𝑃𝐶,-./012345 = (𝐼𝑇𝑃𝐶 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) ∗ 𝑠 (3) 

where s = 1 for observers with upward peaks and -1 for observers with downward peaks. This 
procedure allowed all evoked ITPC peaks to point upward while preserving all other features of 
the time series. 
 
Finally, to quantify the ITPC magnitude at the peak times, for each observer, session, and precue 
condition, we took the mean normalized ITPC value in a 100 ms window centered on each peak 
time (i.e., following each target). Equivalent peak analyses were performed for trial-average 20 
Hz power and single-trial 20 Hz power using the same peak times and normalization procedure. 

Statistical analysis. The effects of temporal attention on behavior (d’ and RT) and MEG time 
series (anticipatory model parameter estimates and evoked peak values) were assessed using 
repeated measures ANOVAs via the ezANOVA package in R. For behavioral data, the within-
subject factors were session, target, and validity (valid or invalid, with respect to the match 
between the precue and response cue), with session as an observed factor. For MEG anticipatory 
analyses, within-subject factors were session and precue (precue T1 or precue T2), with session 
as an observed factor. For MEG peak analyses, within-subject factors were session, target, and 
attention (attended or unattended, with respect to the precue type, referenced to each target), 
with session as an observed factor. Planned ANOVAs were also conducted for each target 
separately.  

To assess the effect of the precue on the full time series or time-frequency spectrum, we used a 
non-parametric test with cluster correction (91). This involved a two-step procedure using data 
averaged across sessions for each observer. In the first step, paired t-tests were performed at 
each time point or time-frequency bin (henceforth, “bin” for both) comparing precue T1 to precue 
T2 condition values. This operation yielded t-statistics for each bin for the empirical data. 
Contiguous bins passing the p < 0.05 threshold were considered to form a cluster, and a statistic 
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was generated for each cluster by taking the sum of the t-values for bins within the cluster. The 
largest statistic out of all clusters was considered to be the maximum cluster statistic for the 
empirical data. Next, null distributions of the maximum cluster statistic were constructed by 
shuffling the labels for the precue conditions, computing the maximum cluster statistic for the 
shuffled data, and repeating this process 1000 times. Significance levels for the empirical data 
were determined by comparing the value of the maximum cluster statistic to the null distribution. 
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