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Abstract 

Prostate cancer (PCa) is associated with several genetic alterations which play an important role in 

the disease heterogeneity and clinical outcome including gene fusion between TMPRSS2 and 

members of the ETS family of transcription factors specially ERG. The expanding wealth of pathology 

whole slide images (WSIs) and the increasing adoption of deep learning (DL) approaches offer a 

unique opportunity for pathologists to streamline the detection of ERG:TMPRSS2 fusion status. Here, 

we used two large cohorts of digitized H&E-stained slides from radical prostatectomy specimens to 

train and evaluate a DL system capable of detecting the ERG fusion status and also detecting tissue 

regions of high diagnostic and prognostic relevance. Slides from the PCa TCGA dataset were split 

into training (n=318), validation (n=59), and testing sets (n=59) with the training and validation sets 

being used for training the model and optimizing its hyperparameters, respectively while the testing 

set was used for evaluating the performance. Additionally, we used an internal testing cohort 

consisting of 314 WSIs for independent assessment of the model’s performance. The ERG prediction 

model achieved an Area Under the Receiver Operating Characteristic curve (AUC) of 0.72 and 0.73 in 

the TCGA testing set and the internal testing cohort, respectively. In addition to slide-level 

classification, we also identified highly attended patches for the cases predicted as either ERG-

positive or negative which had distinct morphological features associated with ERG status. We 

subsequently characterized the cellular composition of these patches using HoVer-Net model trained 

on the PanNuke dataset to segment and classify the nuclei into five main categories. Notably, a high 

ratio of neoplastic cells in the highly-attended regions was significantly associated with shorter overall 

and progression-free survival while high ratios of immune, stromal and stromal to neoplastic cells 

were all associated with longer overall and metastases-free survival. Our work highlights the utility of 

deploying deep learning systems on digitized histopathology slides to predict key molecular alteration 

in cancer together with their associated morphological features which would streamline the diagnostic 

process.  
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Introduction 

Prostate cancer (PCa) is the second most common solid organ malignancy among men 

worldwide with more than 1 million annually diagnosed new cases 1,2. The PCa genome is characterized 

by several gene rearrangements involving E26 transformation-specific (ETS) transcription factors 3. Of 

the ETS rearrangements, fusion between ERG and the androgen-regulated transmembrane protease, 

serine 2 (TMPRSS2) is the most frequent, being present in nearly 40-50% of PCa cases 4. The 

ERG:TMPRSS2 fusion was found to be instrumental during the transformation of prostate intraepithelial 

neoplastic lesions into invasive adenocarcinoma as well as during PCa progression and metastasis 5.  

The diagnosis of PCa is based on the light microscopic examination of hematoxylin and eosin 

(H&E)-stained tissue sections obtained from the prostate gland 6–8. However, H&E staining alone cannot 

differentiate between ERG-positive (those with ERG:TMPRSS2 fusion) and ERG-negative tumors. 

Instead, ERG status is usually detected using fluorescence in situ hybridization (FISH) or reverse 

transcription-polymerase chain reaction (RT-PCR) while immunohistochemical staining for the ERG 

protein can be used to infer the ERG:TMPRSS2 gene fusion status with optimal sensitivity and 

specificity 9. Since these technologies are costly and require specialized equipment and trained 

personnel, there is need for innovative tools to decrease the cost and streamline the diagnostic process. 

Specifically, a tool that can utilize routine H&E-stained slides for such task would potentially achieve 

the aforementioned goals given the practicality and widespread availability of these slides. 

Since 2000, whole-slide imaging (WSI) started to become common, as digital slide scanners 

became commercially available 10. Currently, modern pathology practice is moving toward a digital 

workflow through the deployment of artificial intelligence (AI) and computer vision systems for image 

preprocessing, segmentation, feature detection, and quantification on H&E-stained WSIs 10,11. Deep 

learning (DL) systems in particular have been employed extensively over the past few years in several 

tasks involving the use of H&E-stained WSIs for phenotype prediction, classification, and subtyping 

especially in cancer research 12,13. For instance, DL models have been developed to automatically 

detect tumor regions in several cancer types including breast, lung, and prostate cancers 14–19. 

Additionally, DL has been employed in more advanced tasks including classification of tumor subtypes 

20–22, tumor grading 19,23, and prediction of therapeutic response 24. Notably, the utilization of DL systems 

in molecular pathology has gained momentum over the past years with more models being deployed 

to predict genetic alterations from histopathology images 12. For instance, Coudray et al. have 

developed a model for predicting several key mutations in lung adenocarcinoma 25 while Bilal et al. 

developed a DL system for predicting several key genetic alterations in colorectal cancer 26. Similar 

studies have aimed at identifying other molecular alterations and phenotypes including ER status in 

breast cancer 27, BRAF mutations in melanoma 28, and SPOP mutations in prostate cancer 29.  

Here, we introduce a semi-supervised DL model capable of predicting the ERG:TMPRSS2 

gene fusion status solely from H&E-stained pathology images. This model has been trained and 

validated using two large imaging cohorts containing 750 WSIs derived from radical prostatectomy 

specimens of PCa patients with known ERG status. Additionally, we deciphered the cellular composition 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2022. ; https://doi.org/10.1101/2022.11.18.517111doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517111
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the top patches contributing to the prediction of each ERG phenotype and examined the association 

of this cellular composition with overall, progression-free, and metastasis-free survival.   

 

 

Materials & Methods 

Patients and Slides Selection  

We queried the Genomic Data Commons (GDC) portal and the Cancer Genome Atlas (TCGA) for whole 

slide images (WSIs) derived from primary prostate cancer (PCa) patients with known TMPRSS2:ERG 

gene fusion status. The following terms were used: Project Id: TCGA-PRAD, Data Type: Slide Image, 

Experimental Strategy: Diagnostic Slide. The PCa TCGA dataset included 436 formalin-fixed paraffin-

embedded (FFPE) H&E-stained WSIs from 393 PCa patients with known ERG fusion status (positive 

versus negative) determined by FusionSeq 3,30. Subsequently, a dataset of 314 FFPE-derived WSIs 

from PCa patients has been provided by the Johns Hopkins University (henceforth termed the natural 

history cohort) and was used as an additional testing set. The ERG status in this cohort has been 

determined using IHC staining of FFPE tumor tissue from radical prostatectomy specimens to detect 

the ERG/TMPRSS2 fusion protein 9. Slides from the TCGA and natural history cohorts were digitized 

using Aperio (Leica Biosystems) and Hamamatsu (Hamamatsu Photonics K.K.) slide scanners, 

respectively. 

Image Preprocessing  

Tissue Segmentation 

Tissue segmentation was performed on all slides by first converting the RGB images to HSV space 

then applying a median blur filter with a kernel size of 7, followed by thresholding using Otsu’s method 

31. Finally, morphological closing (dilation followed by erosion) with a 4X4 structuring element was 

applied to close small gaps.  

Tiling and Feature Extraction 

Following segmentation, tissue masks were tiled into 2048X2048 patches at 40 magnification. We 

followed by down sampling the patches by a factor of 4 resulting into 512X512 patches at 10 

magnification on which feature extraction was performed using a pre-trained ResNet50 model 32.   

Training the ERG Status Model 

The Deep Learning Framework 

To build a model capable of detecting the ERG status from H&E WSIs, we used Clustering-constrained 

Attention Multiple Instance Learning (CLAM) 32. CLAM is a modified multiple instance learning (MIL) 

framework which aggregates patch-level into slide-level representations using attention-based pooling 

function instead of max pooling 33. In the CLAM network, the first layer is a fully connected linear layer 

that takes the 1024-dimensional vector representing the extracted patch features and returns a 512-

dimensional vector which is then fed to the attention network. The attention network is based on a gated 

attention mechanism that assigns different weights to instances (patches) within a bag (WSI) based on 

their contributions to the slide-level prediction 33. This network then splits into 2 separate branches, one 
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for each class (ERG-positive and negative). Notably, slide-level representations are scored by 2 class-

specific separate classifiers and a softmax function is then used to convert these into class-specific 

probability scores for each WSI. Cross-entropy loss was used to compare the slide-level predictions to 

the true labels and the model’s weights were modified using Adam Optimizer with an alpha of 0.0001 

and weight decay of 0.00001. Finally, a maximum of 150 epochs was used for training the model and 

we used early stopping to stop training and save the model if the error in the validation set did not 

decrease for over 20 epochs.  

WSIs Datasets 

We divided the TCGA PCa cohort into training (70%), validation (15%), and testing (15%) sets. The 

training (n=318 WSIs) and validation (n=59) sets were used for training the model and tuning its 

hyperparameters, respectively while the testing set (n=59) was left out for evaluating the model’s 

performance.  

Independent Evaluation of Performance 

In addition to the testing set derived from the TCGA cohort (n=59), we tested the model on the entire 

natural history cohort (n=314) to provide a completely independent assessment of performance. The 

model was used to infer class-specific predicted probabilities for each WSI in the natural history cohort. 

Using the best threshold from the ROC curve of the training data, we converted these probability scores 

into binary class predictions (ERG positive vs negative) and compared these predictions with the true 

class labels.  

Nuclei Segmentation and Classification 

To decipher the cellular composition of the highly attended regions by our model, we used the HoVer-

Net model trained on the PanNuke dataset 34,35 to segment and classify the nuclei in these regions. 

Specifically, we pooled the patches with highest attention scores (15 patches per WSI) from all WSIs 

predicted as either positive or negative. Notably, these patches were retrieved after basic preprocessing 

and tissue segmentation and had the size of 512X512 at 10 magnification. HoVer-Net was used on 

patches from each class separately to segment and classify the nuclei into five different types: benign 

epithelial, neoplastic, inflammatory/immune, necrotic, and stromal 34. Subsequently, we compared the 

abundance of different nuclear types in the highly attended regions from cases predicted as ERG-

positive with those predicted as ERG-negative in both the TCGA and natural history cohorts.  

Survival Analyses 

To examine the association between the nuclear/cellular content in the highly attended patches and the 

survival probability, we calculated the number and ratio of different nuclear types in each WSI in the 

TCGA and natural history cohorts. The ratio of each nuclear type was computed by dividing the absolute 

number of each nuclear type by the number of all nuclei in the highly attended patches of each slide 

(top 15 patches). This ratio was then binarized into high versus low content using maximally selected 

log-rank statistics to compute the best cutoff that is most significantly associated with the survival 

outcome 36,37. We subsequently computed the association between the binarized nuclear content and 

the overall survival (OS) (TCGA and natural history cohorts), progression-free survival (PFS) (TCGA 
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cohort), and metastases-free survival (natural history cohort) using Kaplan Meier (KM) survival curves 

38. Notably, only the correctly classified slides from each cohort were included in this analysis.  

Statistical Analyses and Software 

The performance was assessed using the AUC, accuracy, balanced accuracy, sensitivity, specificity, 

and Matthews Correlation Coefficient (MCC). Receiver Operating Characteristics (ROC) curves were 

plotted using the predicted probability scores together with the ground truth labels. For all cohorts, the 

probability scores were binarized into predicted classes using the best threshold from the training 

data. Slide preprocessing and training the deep learning model were performed using python (v3.7.5), 

openslide (v3.4.1), and PyTorch (v1.3.1). For nuclei segmentation and classification, we used the 

pytorch (v1.6) implementation of HoVer-Net model trained on the PanNuke dataset 34,35. Survival 

analyses were performed using the survival (v3.3-1) 39 and survminer (v0.4.9) 40 packages.  

 

Results 

Patient Selection 

The PCa TCGA cohort included 436 slides from 393 unique patients with available slide-level 

information about the ERG fusion status. This cohort was split into 70% training (318 WSIs; 188 ERG-

negative and 130 ERG-positive), 15% validation, and 15% testing (59 WSIs; 33 ERG-negative and 26 

ERG-positive for each). Additionally, we used the entire natural history cohort as an independent testing 

set to further validate the model’s performance. This cohort included 314 WSIs (185 ERG-negative and 

129 ERG-positive) from patients who underwent radical prostatectomy between 1992 and 2010 and 

received no treatment prior to the procedure.  
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Figure 1. Detecting ERG status using H&E-stained radical prostatectomy specimens from 

patients with prostate cancer. Whole slide images from the PCa TCGA (n=436) and natural history 

(n=314) cohorts were used in this study. Following tissue segmentation, each WSI was tiled into 

2048X2048 patches at 40 magnification and were further down sampled by a factor of 4 to extract 

features from 512X512 patches at 10 magnification. WSIs from the PCa TCGA cohort were split into 

training (70%), validation (15%), and testing (15%) sets while the natural history cohort was used as an 

additional testing set. HoVer-Net model was used for nuclei segmentation and classification in the top 

patches of WSIs predicted as ERG fusion positive or negative. 
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Predicting ERG Status From H&E-stained Whole Slide Images 

The ERG prediction model was trained on H&E-stained WSIs to distinguish slides derived from 

patients with ERG-positive from those with ERG-negative using tissue morphological and spatial 

features only. Since ERG fusion is known to induce changes in the tumor microenvironment, we 

hypothesized that this can also be associated with morphological changes that are not limited only to 

the tumor but also involve the stroma and other regions surrounding the tumor. With this in mind, we 

used the whole tissue sections (after preprocessing) for making predictions instead of using only 

tumor regions. We trained 10 different models using 10 different splits of the TCGA dataset, with each 

split consisting of training (n=318), validation (n=59), and testing (n=59) sets (Figure 2A). The average 

Area Under the ROC Curve (AUC) for the 10 models in the training data was 0.79 (SD=0.03) while 

the average accuracy was 0.71 (SD=0.03). The best performing model had an AUC of 0.84 and 

accuracy of 0.77 in the training data (Figure 2A). We further evaluated this model on the TCGA 

testing set (n=59), in which it had an AUC of 0.72 and accuracy of 0.70 (Figure 2B). 
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Figure 2. Performance of the models predicting ERG-TMPRSS2 fusion status using H&E-stained 

whole slide images. A) Performance of the models in the 10 different training folds. The prostate 

cancer TCGA cohort was divided 10 times into training, validation, and testing sets with each fold 

having different slides in each set. In each fold, models were trained on the training set while the 

validation set was used for tuning the model hyperparameters. The best performing model (fold 3) was 

used for downstream evaluation on the TCGA testing set as well as the natural history cohort. B, C) 

Performance of the model in the TCGA testing set (n=59) and the natural history cohort (n=314). 
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Independent Evaluation of Performance on the Natural History Cohort 

To further assess the performance of the ERG fusion status prediction model, we used it to 

distinguish ERG-positive from negative cases in the natural history cohort which included 314 WSIs of 

tissue from radical prostatectomy specimens in which the ERG status has been inferred using 

immunohistochemistry (IHC). In this cohort, the ERG model could detect the ERG status with an AUC 

of 0.73 and accuracy of 0.69 (Figure 2C). 

 

Highly Attended Patches Show Distinct Morphological Features Associated with ERG Fusion 

To further decipher the cellular architecture contributing to the model’s prediction, we extracted the 

top 15 highly attended patches (highest attention scores) from each slide predicted as either ERG-

positive or negative. We then used HoVer-Net model to perform nuclear segmentation and 

classification into five categories: benign epithelial, tumor, stroma, inflammatory/immune, and necrotic 

cells and compared the frequency of these nuclear types between the two predicted classes. 

Subsequently, we compared the cellular composition in these top patches between the ERG-positive 

and negative cases. On average, the highly attended patches from the TCGA WSIs predicted as 

ERG-positive tended to have more neoplastic content compared to those predicted as negative. The 

same pattern was observed in the natural history cohort in which the ERG-positive highly attended 

patches had a higher neoplastic content compared to the ERG-negative patches.  
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Figure 3. Distinct morphological features corresponding to ERG:TMPRSS2 fusion in the TCGA 

cohort. A, B) Example of a slide predicted as ERG positive (A) and negative (B) with the 

corresponding top 15 tiles with highest attention scores. HoVer-Net model was used to segment and 

classify the nuclei in these patches into 5 types: neoplastic, inflammatory, stroma, necrotic, and 

benign epithelial.   
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Figure 4. Distinct morphological features corresponding to ERG:TMPRSS2 fusion in the 

natural history cohort. A, B) Example of a slide predicted as ERG positive (A) and negative (B) with 

the corresponding top 15 tiles with highest attention scores. HoVer-Net model was used to segment 

and classify the nuclei in these patches into 5 types: neoplastic, inflammatory, stroma, necrotic, and 

benign epithelial.   
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Cellular Composition in the Highly Attended Patches Is Associated with Survival 

We further examined whether the cellular composition in the highly attended patches is associated 

with the survival probability in both cohorts. For each WSI correctly predicted as positive or negative, 

we computed the number and ratio of each nuclear type predicted by the HoVer-Net model in the 

highly attended patches (top 15 patches with the highest attention scores for each WSI). We 

subsequently computed the association between the cellular composition and the progression-free 

survival in the TCGA cohort together with overall survival and metastases-free survival in the natural 

history cohort. In the TCGA, a high ratio of neoplastic cells in the highly attended patches was 

significantly associated with shorter progression free survival (p-value=0.01) while high ratios of 

necrotic, and stromal cells were significantly associated with longer PFS (p-values=0.031 and 0.002, 

respectively) (Figure 5). Additionally, we found a significant association between the ratio of stromal to 

neoplastic cells and PFS (p-value=0.006) (Figure 5).  

 

 

 

 

 

 

Figure 5. Cellular composition in the highly attended patches is associated with progression-free 

survival in the TCGA cohort. Kaplan-Meier curves showing the association between the ratio of each 

nuclear type and progression-free survival. The ratio of each cell type was calculated by dividing the 

absolute number of that cell type over the number of all cells in the highly attended patches of each slide. 

The stromal to neoplastic ratio was calculated by dividing the number of stromal cells by that of 

neoplastic cells in the highly attended patches of each slide. These ratios were then then binarized into 

high versus low using maximally selected log-rank statistics.   
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In the natural history cohort, a high ratio of neoplastic cells in the highly attended patches was 

significantly associated with shorter overall survival (p-value=0.02) while high ratios of immune (p-

value=0.004), stromal (p-value=0.002), and stromal to neoplastic cells (p-value=0.01) were 

significantly associated with longer overall survival (Figure 6A). Similarly, high ratios of immune (p-

value=0.01), necrotic (p-value=0.01), benign epithelial (p-value<0.001), stromal (p-value=0.002), and 

stromal to neoplastic ratio (p-value=0.001) were each associated with significantly longer metastasis-

free survival (Figure 6B). Altogether, these results show that the ERG status prediction model is also 

capable of deciphering gigantic WSIs to capture biologically informative small tissue regions whose 

cellular composition is associated with survival in PCa patients.     
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Discussion 

Over the past few years, there has been a tremendous growth in the research and clinical 

applications of artificial intelligence (AI) and deep learning (DL) in the fields of computational 

pathology and cancer research. These applications have allowed for automated or semi-automated 

inspection of large numbers of histopathology images to extract informative spatially resolved features 

that can be associated with phenotypes of interest. While deep learning systems have the potential of 

reducing the workload of pathologists by automatically detecting known morphological features, they 

can also help detect previously uncharacterized features. Altogether, this has allowed for a wide array 

of diagnostic and prediction tasks that implement these features to detect certain clinical and 

molecular phenotypes as well as improve the subtyping of various disease states and cancer types 

12,41. Particularly, semi-supervised learning has been utilized extensively to implement prediction tasks 

on WSIs using only slide-level labels instead of pixel-level annotations. This has covered a wide array 

of research and clinical interests with variable complexity 42. For instance, DL systems have been 

deployed on H&E-stained histopathological slides to detect tumor tissue 16,17,27 and for tumor subtyping 

20,22, grading 19, and prognostication 43–45. Additionally, DL models have been employed to predict 

several molecular alterations including for example ER status in breast cancer 27, BRAF 28 and TP53 

46 mutations, and microsatellite instability 47. In this study, we introduce a semi-supervised DL model 

capable of inferring the ERG:TMPRSS2 gene fusion status from digitized H&E-stained WSIs. In the 

training cohort which included 318 WSIs from the TCGA dataset, the best performing model had an 

AUC and accuracy of 0.84 and 0.77, respectively and was tested on the TCGA testing set (59 WSIs) 

with an AUC of 0.72 and accuracy of 0.70. Additionally, we deployed the model on an internal testing 

cohort (the natural history cohort) with 314 WSIs in which our model maintained its good performance 

with an AUC of 0.73 and accuracy of 0.69. These results show that our model could maintain its 

predictive performance on slide cohorts from different institutions and scanned by different 

technologies.  

While many studies in this field have focused on reporting the predictive performance with 

little regard for biological interpretation, in our study, we thoroughly addressed the interpretability of 

our model to understand what distinct morphological features are associated with its predictions. 

Specifically, the use of attention-based DL in our study allowed us to assign attention scores for 

patches contributing to slide-level representation 32 with high scores suggesting the importance of 

these patches in predicting either ERG-positive or negative cases. With this in mind, we computed the 

attention scores for all the slide patches and examined the highly attended patches from each slide 

Figure 6. Cellular composition in the highly attended patches is associated with overall and 

metastasis-free survival in the natural history cohort. A, B) Kaplan-Meier curves showing the 

association between the ratio of each nuclear type and overall survival (A) and metastasis-free survival (B). 

The ratio of each cell type was calculated by dividing the absolute number of that cell type over the number 

of all cells in the highly attended patches of each slide. The stromal to neoplastic ratio was calculated by 

dividing the number of stromal cells by that of neoplastic cells in the highly attended patches of each slide. 

These ratios were then then binarized into high versus low using maximally selected log-rank statistics.   
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predicted as either positive or negative to see if there are pathomorphological or cellular composition 

features specific to ERG status. To characterize the cellular composition in these highly attended 

patches, we used HoVer-Net model 35 trained on the PanNuke dataset 34 to segment and classify the 

nuclei into one of five main nuclear types; neoplastic, immune, stromal (connective tissue), necrotic, 

and benign epithelium. Notably, highly attended patches for the positive class were enriched in more 

neoplastic content than their ERG-negative counterparts and were more enriched in necrotic, 

immune, and stromal cells. We hypothesized that the unique cellular content in these regions might 

capture prognostic information. For this reason, we examined whether the ratio of each nuclear type 

is associated with progression-free survival in the TCGA cohort as well as overall survival and 

metastasis-free survival in the natural history cohort. Notably, the ratio of neoplastic cells in the highly 

attended patches was significantly associated with shorter progression-free survival and overall 

survival in the TCGA and natural history cohorts, respectively. In contrast, the ratio of immune cells 

was associated with longer progression-free (TCGA cohort), overall, and metastasis-free survival 

(natural history cohort). These results show that the cellular composition in the relevant tissue regions 

reflects known biology and can serve as additional validation of our results.   

In this study, our model could predict the ERG:TMPRSS2 gene fusion status using routine 

histopathological images and only slide-level labels without expert pixel-level annotation. This 

together with other studies with similar scope 28,46,47 highlight the rising importance and relevance of AI 

and computer vision in the field of pathology by assisting pathologists and improving the cost and 

efficiency of the diagnostic process. For instance, detecting ERG:TMPRSS2 fusion is currently 

performed using either fluorescence in situ hybridization (FISH) or reverse transcription-polymerase 

chain reaction (RT-PCR), both of which are costly and require trained personnel and equipment. 

Having clinical-grade models capable of detecting ERG status from simple H&E-stained sections, 

even on the patient level, can offer tremendous financial and operational advantages. While most of 

the current models, including ours, did not yet achieve the performance that can enable their clinical 

usage, they show the potential utility of DL systems to perform complex diagnostic tasks using only 

tissue pathomorphological features from simple H&E-stained slides without pixel annotations. In fact, 

it is expected that the accuracy of such models will continue to improve over the next few years with 

more data available for training and validation up to the point where their clinical deployment will be 

optimal and justified,    

The present study has some inherent limitations. First, our ERG model has been retrospectively 

tested on two datasets, the first being a subset of the PCa TCGA cohort with 59 slides and the second 

is the entire natural history cohort with 314 slides. However, there is still the need to prospectively 

validate the model on larger cohorts from different institutions. Second, while the performance of our 

model was optimal and stable when tested on slides from a different institution and scanned by a 

different slide scanner (Hamamatsu versus Aperio), this performance can still improve with further 

training and re-evaluation on future multi-institutional cohorts. Additionally, our model has been trained 

and tested on radical prostatectomy specimens and would need additional evaluation on prostate 

biopsy specimens which would further enhance its clinical utility as a diagnostic or screening test for 

ERG status. Finally, it is worth mentioning that some deep learning models could achieve a performance 
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similar to or even better than human performance. We believe that with further training and validation 

on larger scale datasets, we would be able to get higher quality diagnostic networks that can be 

implemented seamlessly into clinical practice. Perhaps soon, automated ERG fusion prediction from 

H&E-stained histopathological slides may have the potential of becoming a robust diagnostic and 

affordable tool that would save the time and efforts associated with costly molecular investigation 48.  

Here, we presented a DL system that can predict ERG status using digitized H&E-stained WSIs 

from prostate cancer radical prostatectomy specimens. Such tool can potentially be used by clinicians 

to infer ERG fusion status quickly and accurately. We thoroughly examined the cellular composition of 

the highly attended patched for cases predicted as either ERG-positive or negative and found a 

significant association between this composition and overall, progression-free, and metastasis-free 

survival. Altogether, these findings show the utility of semi-supervised DL models in predicting a 

complex phenotype like ERG:TMPRSS2 fusion from routine histopathological slides without known 

morphological features or pixel-level annotation.    
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