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Abstract  

Cold marine environments are abundant on earth and represent a rich resource for low 

temperature enzymes. Here we apply in silico bioprospecting methods followed by in vitro 

expression and biochemical analyses to characterise a novel low temperature lipase from the 

Antarctic tunicate Salpa thompsoni. A 586 amino acid pancreatic lipase-like gene was 

identified from S. thompsoni transcriptomic data, expressed as a hexahistadine fusion protein 

in Escherichia coli at 10°C and purified by affinity chromatography. Hydrolysis of the 

synthetic substrate ρ-nitrophenyl butyrate (PNPB) showed that this recombinant protein has 

optimal activity at 20 °C and pH 7, and a specific activity of 3.16 U/mg under this condition. 

Over 60% of enzyme activity was maintained between 15 to 25 °C, with a sharp decrease 

outside this range. These results are indicative of cold active psychrophilic enzyme activity. A 

meta-analysis of lipase activities towards PNPB showed that the novel S. thompsoni lipase 

displays a higher activity at lower temperatures relative to previously characterised enzymes. 

The work demonstrates a methodology for conversion of transcriptomic to in vitro expression 

data for the discovery of new cold-active biocatalysts from marine organisms.   
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Introduction 

 

Low temperature environments, while seemingly inhospitable, contain a variety of life forms 

that present a rich treasure trove for bioprospecting (Wagner Fernandes Duarte et al. 2018).   

The world’s oceans that encompass the largest biome on Earth (Keith et al. 2020) and most 

cold environments are marine. These include not only polar surface waters but also waters 

found at depth below the thermocline. Despite the broad geographic coverage of low 

temperature marine environments, they remain underexplored from a bioprospecting 

perspective because they are typically remote and complex to access.   

 

Psychrophilic biocatalysts are cold adapted enzymes that may be found in organisms inhabiting 

environments where the temperature for growth is 15°C or lower (Moyer and Morita 2007). 

By definition, these enzymes are most active below 30C (D’Amico et al. 2003; Feller and 

Gerday 2003). Psychrophilic enzymes possess several features that are thought to ameliorate 

the exponential slowing of chemical reactions at decreasing temperatures to maintain crucial 

functions. Glycine clusters around the active site provide thermostability and structural 

flexibility to encourage higher activity (Veno et al. 2019). Increased hydrophobic surface 

residues and increased hydrophilic groups within protein cavities contribute to conformational 

stability and enhance ionic reaction catalysis (Metpally and Reddy 2009). Amino acid 

composition also influences the overall conformational stability, for instance a high lysine-to 

arginine ratio was previously shown to be important in cold adaptation (Siddiqui et al. 2006).   

Enzymes from the triglyceraldehyde hydrolase family, known as lipases, E.C 3.1.1.3, are an 

industrially important class of biocatalysts. Their primary function in native conditions is to 

hydrolyse carboxylic ester bonds in hydrophobic compounds. In aqueous conditions lipases 

catalyse the hydrolysis of carboxylate ester bonds into free fatty acids (FFAs) and organic 

alcohols. Lipases are also able to catalyse reactions in organic solvents including esterification 

and transesterification (Chandra et al. 2020). A range of recombinant lipases have been 

produced from bacterial (Salwoom et al. 2019; Schumann and Ferreira 2004; Guozeng Wang 

et al. 2016), fungal (Lin et al. 2017; S.-J. Tang et al. 2000) and mammalian sources (Kawaguchi 

et al. 2018; Valdez-Cruz et al. 2017). These industrially relevant classes of enzymes include 

Candida antarctica Lipase B (Cal-B) derived from a low temperature Antarctic yeast. This 

enzyme is valuable due to its high enantioselectivity, ability to recognise a wide range of 
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substrates, thermal stability, and capacity to catalyse reactions in polar solvents which 

facilitates the application of Cal-B in organic synthesis (Stauch, Fisher, and Cianci 2015).  

 

Lipases that have been optimised to function at lower temperatures have potential applications 

in the fine chemical and personal care sectors. They have been applied for the synthesis of high 

value chiral intermediates for pharmaceutical applications (Patel, Banerjee, and Szarka 1997) 

and for the production of biologically active compounds such as xanthenes used in the synthesis 

of insecticidal molecules (Jiang et al. 2014). Furthermore, low temperature lipases afford the 

opportunity for enzyme inactivation at higher temperatures to enable precise control over 

thermally sensitive reactions (De Santi et al. 2014). For bulk processes, the lower energy 

requirement of cold temperature biocatalysts can represent a benefit in terms of sustainability 

(Cavicchioli et al. 2011). This range of applications has motivated explorations for novel 

lipases from multiple environmental sources. However, while lipases from polar bacteria and 

yeasts have been explored for low temperature activity, lipases originating from more complex 

eukaryotic organisms inhabiting cold environments remain under-investigated as potential 

sources for new biocatalysts.  

 

Salpa thompsoni is a marine animal found in the Southern Ocean surrounding Antarctica 

(Figure 1). Commonly referred to as a salp, it is a zooplankton from the tunicate group, which 

is an early diverging lineage of chordates (Ambrosino et al. 2019). In contrast to the vast 

majority of salp species that occur in tropical to temperate waters, S. thompsoni appears to have 

evolved as a low temperature adapted species (Goodall-Copestake 2018). It is capable of 

immense population blooms at temperatures from 3°C to 5°C degrees (Henschke and 

Pakhomov 2019). As such, this species might be expected to have evolved an effective low 

temperature metabolism which potentially involves psychrophilic enzymes of industrial 

relevance. These could include FFA digesting lipases that assist S. thompsoni in processing the 

wide range of food particles it obtains through filtration (von Harbou et al. 2011). 
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Figure 1: Schematic of the translucent zooplankton Salpa thompsoni with gut highlighted in 

dark grey, filter in mid grey and arrows to indicate water inlet and outlet (A), and 

generalised S. thompsoni distribution highlighted in dark grey, where 60 °S marks the 

northern limit of the Southern Ocean. Figure adapted from Foxton 1966; Van Soest 1974. 

 

Here we used a bioinformatic bioprospecting workflow to identify a putative lipase gene from 

S. thompsoni as a novel, potential low temperature lipase. This was subsequently expressed in 

a bacterial host and purified to allow for functional characterisation using a common substrate. 

Optimising heterologous expression in bacterial host systems, such as Escherichia coli 

facilitates more robust manufacture of biocatalysts (Rosano and Ceccarelli 2014).  The results 

obtained were compared against previously published activities on the same substrate from 

other animals, plants, fungi and bacteria in order to contextualise cold temperature activity 

amongst lipases from all kingdoms of life. 
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Materials and Methods 

 

Identification 

A putative S. thompsoni lipase was identified using the annotated genome of the tunicate and 

model organism Ciona intestinalis (Godeaux, 1981). NCBI GenBank was interrogated using 

the search terms "Ciona intestinalis"[Organism] AND lipase [All Fields] (Agarwala et al. 2018; 

Altschul 1997) to recover a ‘pancreatic lipase-related protein’ from C. intestinalis; GenBank 

accession XP_002130573.1. As pancreatic lipases are one of the main digestive enzymes used 

to break down dietary fat molecules in animals (Zhu et al. 2021), this accession was used to 

search for a novel, orthologous lipase gene from S. thompsoni.  

The un-annotated S. thompsoni transcriptome assembly (GenBank GFCC00000000.1; Batta-

Lona et al., 2016) was queried using the accession XP_002130573.1 with the tBLASTn tool 

as implemented in the software package GeneiousPrime version 2021.1 (Kearse et al., 2012). 

This identified S. thompsoni assembly sequence GFCC01067991 which contains a 1761bp 

open reading frame and putative orthologue of XP_002130573.1. To assess if this enzyme was 

expressed in the digestive system, short read archive data generated solely from S. thompsoni 

gut RNA (samples AC_e20 and AC_e242, accession numbers SRX13276964 and 

SRX13276963, respectively) were screened for matching sequences using the Map to 

Reference method in Geneious under the LSF setting (word length 24, index word length 14, 

maximum mismatches per read 10). Sequence characterisation of the 1761bp lipase sequence 

was carried out using the Expasy Protein Parameter tool to identify physical and chemical 

parameters including the molecular weight and amino acid composition (Artimo P 2020; 

Gasteiger et al. 2005).  InterProScan analysis was also used, to identify predictive domains 

using a genome-scale protein function classification (Jones et al. 2014). 

 

Expression of lipase 

The 1761bp S. thompsoni lipase sequence was synthesised and codon optimised by GenScript 

(Leiden, Netherlands). Codon optimisation increased the GC content from 44.4% to 55%. The 

codon-optimized lipase was cloned within the expression vector pET-28a (+) with an N-

terminal hexahistadine tag to aid purification. The plasmid was transformed into competent E. 

coli ArcticExpress (DE3) cells (Agilent, Santa Clara, CA, USA) through heat shock 

methodologies following manufacturer’s guidelines. Two biological chaperonins from cold 

active species were co-transformed for increased protein solubility, Cpn 10 and Cpn 60, with 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.11.18.517127doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517127
http://creativecommons.org/licenses/by-nc-nd/4.0/


high similarity to the E.coli chaperones GroEL and GroES (Belval et al. 2015; Ferrer et al. 

2003). Escherichia coli harbouring the salp lipase was inoculated overnight in terrific broth 

(TB) medium (10ml) supplemented with kanamycin and gentamycin and grown at 37°C and 

125 rpm. Subsequently, 500 mL TB medium was inoculated with 2 mL of the preculture and 

incubated at 30°C until an OD600 of 4 was reached. Gene expression was induced on ice by 

addition of isopropyl-β-D- thiogalactopyranoside (IPTG) to a final concentration of 1mM. The 

cultures were incubated at 10°C at 180 rpm for 24 h. Cultures were harvested after 24 hours by 

centrifugation (10,000g, 10 minutes at 4 °C). Cell pellets were collected and stored at - 20°C 

for further analysis (Akbari et al. 2010).  

 

Cultures were analysed for expression levels using BoltTM Sample buffers and Reducing 

Agents as per the manufacturer’s guidelines, with 12% gels stained using Coomassie brilliant 

blue for SDS analysis.  Gels were visualised using Amersham™ Imager 600 (GE healthcare, 

USA). Western blotting (Burnette 1981) was carried out using the Bio-Rad Trans-Blot® 

TurboTM Transfer System. Subsequent methodologies were adapted from previous work 

(Colant et al. 2021).  The membrane was incubated with the primary antibody:  Anti-His mouse 

monoclonal antibody (ab18184, Abcam) diluted 1:1000 in TBST-M for two hours. The 

membrane was then washed with TBST before being incubated with the secondary antibody: 

Goat anti-mouse HRP conjugated antibody (HAF007, Biotechne), diluted 1:1000 in TBST-M. 

Imaging took place using The Pierce ECL Western Blotting Substrate (Thermo Fisher 

Scientific) for 1-2 minutes in darkness then exposed and imaged using an Amersham™ Imager 

600 (GE Healthcare). 

 

Purification 

Purification was carried out as described by (Spriestersbach et al. 2015). Ni-NTA Superflow 

cartridges (Qiagen, Sussex, UK) were equilibrated with 10 mL of binding buffer (50 mM 

NaH2PO4, 300 mM NaCl and 10 mM imidazole). The clarified lysate was loaded into the 

cartridge and subsequently washed with 20 mL of wash buffer (50 mM NaH2PO4, 300 mM 

NaCl and 25 mM imidazole). The enzyme was eluted with 5mL of elution buffer (50 mM 

NaH2PO4, 300 mM NaCl and 150 mM imidazole). Ammonium sulfate at 70%, was used to 

precipitate and store the protein at 4 °C. 
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Characterisation   

A lipase activity assay was performed using ρ-nitrophenyl substrates with modifications (U. 

K. Winkler and Stuckmann 1979). In brief, the reaction mixture consisted of 125 µl of 55 mM 

phosphate buffer adjusted to pH 7 and 10 µl of the substrate 1 mM ρ-nitrophenyl butyrate 

(PNPB) (Sigma N9876) homogenised in 2-propanol. The mixture was pre-incubated at 20°C 

for 10 minutes and then 15 µl of the 0.5mg/ml enzyme solution was subsequently added. After 

15 minutes of incubation at 20°C, the reaction was terminated using an equal volume of 0.25 

M sodium carbonate pH 10.5 (Ozcan et al. 2009) and ethanol. The absorbance of the liberated 

4-Nitrophenol was measured at 410 nm using multi-well plate reader (Clariostar, BMG 

Labtech). One unit (U) of lipase activity was defined as the amount of enzyme that released 1 

µmol of 4-Nitrophenol per minute. Lipase concentration was measured by the method of 

Bradford with bovine serum albumin as a standard (Bradford 1976).The temperature profile of 

the salp lipase was measured at 5 to 60 °C for 15 minutes. A pH stability test was performed 

by pre-incubating the lipase for 10 minutes at 4 °C in the buffers and assessing activity at the 

optimum temperature. The effect of pH on lipase activity was assayed at pH 6–9 by measuring 

the amount of 4-Nitrophenol liberated using PNPB (C4) as a substrate. The buffer systems used 

to assess pH effects were: 55mM sodium phosphate buffer (pH 6–8), 55mM Tris–HCl buffer 

(pH 9).  
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Results and Discussion  

 

A putative 1761bp salp lipase, subsequently referred to as PL002, was identified within the 

salp transcriptome assembly sequence GFCC01067991 using bioinformatic methods. This 

sequence had a 46% amino acid identity to the pancreatic lipase accession XP_002130573.1 

from C. intestinalis, and a 36% similarity to that of the Human Pancreatic Lipase (Waterhouse 

et al. 2018) inferred through the Swiss Model Homology tool, thus suggesting that PL002 is a 

pancreatic-like lipase (Figure 2). Identical DNA sequence transcripts were found within cDNA 

reads isolated from the S. thompsoni gut sample AC_e20, and 99.7% identical transcript 

sequences were recovered from S. thompsoni sample AC_e242. This corroborated the 

identification of this lipase as of salp origin and demonstrated that it is expressed in the gut 

consistent with the hypothesised digestive function.  

 

Bioinformatic characterisation of sequences was used to confirm several structural features 

found within lipases. Alpha-beta hydrolases locate the nucleophilic serine across the two other 

residues of the catalytic triad (Denesyuk et al. 2020). The catalytic triad consists of Ser-208, 

from the conserved  pentapeptide, Asp-235 and His-314 (Figure 2), which is critical for lipase 

activity (Brumlik and Buckley 1996; F. K. Winkler, D’Arcy, and Hunziker 1990) and common 

to all enzymes from the serine hydrolases family (Lazniewski et al. 2011). It was found in 

PL002 alongside the conserved pentapeptide, Gly-206 Phe-207 Ser-208 Leu-209 Gly-210, 

corresponding to a nucleophilic elbow motif housing a nucleophile serine residue required for 

catalytic activity (Figure 2).  A SignalP-TM was also identified in the N-terminus which may 

suggest that this lipase is in the secretory pathway but may not necessarily be a secretory 

enzyme (Nielsen 2017).   

 

Another highly conserved feature of lipases present within the PL002 sequence that occurs in 

the catalytic domain was Cys-295, His-296, Val-311 and Cys-312. Variations in this lid domain 

can be used to explain substrate affinity (Ollis et al. 1992; Saavedra et al. 2018) and temperature 

dependence studies have shown that the lid structure in cold active lipases is smaller than in 

other lipases active at higher temperatures (Khan et al. 2017). A similar lid structure has also 

been identified in other aquatic invertebrate neutral lipases from the microcrustacean Daphnia 

pulux (Colbourne et al. 2011). It has been suggested that the cysteine residues contribute 
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towards a disulfide bridge, this has been observed in mammalian pancreatic lipases, 

particularly that of the secondary fold, the β9 loop (Lowe 2002).  

 

The Expasy Protein Parameter tool (Duvaud et al. 2021) showed that 50% of all glycine amino 

acids were clustered around the nucleophilic elbow and the active site/lid (Figure 2). In this 

region glycine clusters potentially encourage greater local mobility of the active site and also 

support the stability of the enzyme (Mavromatis et al. 2002; Siddiqui et al. 2006).  

 

InterProScan analysis predicted domains within the salp lipase (Lu et al. 2020) based on 

conserved molecular functions (Figure 2). They included the PLAT (Polycystin-1, 

Lipoxygenase, Alpha-Toxin) and LH2 (Lipoxygenase homology) domains that are found 

within membrane  or lipid associated proteins (Bateman and Sandford 1999). These domains 

were identified from Superfamily (Gough et al. 2001; Wilson et al. 2009) and Pfam (Mistry et 

al. 2021) databases. Lipase domains were also identified through PRINTS (Attwood et al. 

2003), Pfam (Mistry et al. 2021) and CDD (Lu et al. 2020) protein prediction software 

databases. 
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Figure 2: Annotated PL002 amino acid gene sequence of the putative pancreatic salp lipase with InterProScan identified motifs 

 

PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) domains, Lipase domains, LH2 (Lipoxygenase homology) identified using 

InterProScan analysis. Further structural motifs and molecular functions have been highlighted.  
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Figure 3: Confirmation of recombinant expression of PL002 using SDS-PAGE (A), Western 

blot (B), and Purification of PL002 (C) 

A Coomassie Blue stained SDS PAGE (A) and its corresponding Western Blot developed 

using chemiluminescence with the Anti-His mouse monoclonal antibody (ab18184, Abcam) 

For images A and B: Lanes 1 and 2: PL002 clarified lysate and insoluble fraction 

Lanes 3 and 4: control pET-28a (+) empty vector clarified lysate and insoluble fraction  

Lanes 5 and 6: control untransformed ArcticExpress (DE3) clarified lysate and insoluble 

fraction  

For image C: Lane 1 and 2: Flowthrough and wash fraction (50 mM) of PL002. Lane 3-7: 

imidazole elusion steps (150 mM) 

 

Purification of PL002 was aided by recombinant production in the Arctic Express cell line 

(Figure 3A and C). The visualization of purified protein was complicated by the similarity of 

the size of PL002 at 65kDa and the ArcticExpress (DE3) cell line chaperone, Cpn 2 at 57 kDa. 

Due to this size similarity, a His-tag Western blot analysis was employed to confirm the 

presence of the protein (Figure 3B). Pure elution of PL002 was ensured by increasing imidazole 

concentration of the binding buffer by 10mM, as demonstrated by previous separation studies 

(Hartinger et al. 2010).  The overall recovery of soluble fractions purified in one step affinity 

chromatography was 60%.  
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Figure 4: The effect of temperature (A) and pH (B) on PL002 lipase activity on the PNPB 

substrate 

Each data point represents the mean ± standard deviation (SD) of five replicate assays. 

Activity profiles were expressed in relation to the maximum value (=100%).  

 

Under the conditions evaluated, enzyme characterisation using the PNPB substrate showed a 

peak in activity for PL002 at 20°C and pH7 (Figure 4A and B). It was observed that 60% of 

relative activity was retained between 15 and 25 °C, however PL002 loses close to 90% of its 

activity at temperatures greater than 50 °C which implies that this lipase meets the definition 

of cold active (Gatti-Lafranconi et al. 2010). Lipases isolated from other eukaryotic sources 

have been identified to possess a similar pH optimum within the range of 6.2 and 7 (van Kuiken 

and Behnke 1994). This pH condition is crucial to maintaining the form of the lipolytic lid in 

lipases, which is composed of charged residues required for substrate binding.  

 

The highest activity using PNPB synthetic substrate measured for PL002 was 3.16 +/- 0.14 

U/mg under conditions of 1mM of PNPB, 20 °C and pH 7. To understand this in relation to 

other enzymes, a meta-analysis was conducted to compare reported lipase activity against the 

PNPB substrate in a range of psychrophilic, mesophilic, and thermophilic enzymes (Figure 5). 

In comparison to other eukaryotic lipases, PL002 exhibited a higher activity on this substrate 

and the lowest optimum temperature (Supplementary Table 1.3). This is consistent with the 

evolutionary adaptation of S. thompsoni to life in a low temperature marine environment and 

highlights the potential of this organism as a source of novel psychrophilic biocatalysts. 

A B
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Furthermore, this result provides an additional putative example of a genomic change in S. 

thompsoni in response to low temperatures, adding to reports of increases in nuclear ribosomal 

DNA content in this species that may represent an adaptation compensating for slower 

metabolism at low temperatures (Goodall-Copestake 2018; Jue et al. 2016). Subsequent 

temperature studies with PL002 could include the equivalent lipase from a salp species found 

in a more tropical climate. This will encourage further refinements of in silico bioprospecting 

whilst functionally characterising eukaryotic cold candidates.  

 

Marine invertebrate genomes have been mined to uncover multiple lipase genes that display 

different specificities towards different substrate sizes. Studies on the lipid metabolism of the 

whiteleg shrimp Penaeus vannamei  (Rivera-Pérez and García-Carreño 2011) found optimal 

enzyme activity when substrates of a similar nature to their feed source were used, compared 

to the synthetic substrate. Hydrolysis of neutral lipids is an important aspect of organismal 

development, and many organisms possess lipase genes defined as functionally hydrolysing 

triacylglycerol substrates (Rivera-Perez 2015). A complex suite of such enzymes probably 

works in tandem for digestive purposes. Indeed, it is conceivable that S. thompsoni may have 

a more specialised lipase profile, such as that found in the gastric pouches of the jellyfish 

(Stomolophus sp. 2) where, in comparison to lipases from other invertebrates, lipolytic 

enzymes favour shorter and medium length triacylglycerides (Martínez-Pérez et al. 2020). The 

size of carboxyl ester based substrates hydrolysed has been used to categorise enzymes 

candidates as either a lipase or esterase. A more complete classification of lipolytic esterases 

should also investigate the ability to hydrolyse long chain fatty acids (Ali, Verger, and 

Abousalham 2012). Generally, it has been identified that true lipases hydrolyse longer chain 

fatty acid-based substrates while esterases act on shorter chain substrates, such as PNPB (De 

Santi et al. 2014). Multiple lipase candidates may exist in eukaryotic invertebrates therefore 

the activity profile generated from in vitro characterisation can be used to describe enzyme 

function and activity against a wide range of substrates (Volokita et al. 2011).  An alternative 

bioprospecting approach may be to use proteomic and metabolomic trials to understand the 

lipid preferences of enzymes in vivo to uncover industrially promising candidates. 
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Figure 5: Specific activity (U/mg) of PNPB active lipases from Bacteria, Animalia, Fungus 

and Plantae 

Temperature domains adapted from (D’Amico et al. 2003). Animalia and plantae lipases are 

labelled in the figure. The origin of each lipase and its class are detailed in Supplementary 

information Table 1.3  

 

While the activity for PL002 using synthetic substrate, PNPB, was within detectable limits, the 

impact of biological modifications such as the addition of affinity tags on enzymes, including 

hexahistadine tags, have been shown to diminish PNP ester hydrolysis activity (de Almeida et 

al. 2018). It has been previously demonstrated for a Staphylococcus aureus lipase that an N 

terminal His tag may alter the specific activity, the chain length selectivity and the 

thermostability (Horchani et al. 2009). In another case, it was reported that there was a 33% 

increase in specific activity as well as preference towards medium length chain fatty acid pNP-

laurate (C12) of an untagged recombinantly produced lipase from Geobacillus kaustophilus 

(Özdemir, Tülek, and Erdoğan 2021).  There has also been evidence which indicates that this 

hexahistadine tag can alter the quaternary structure of proteins (Carson et al. 2007) impacting 

their specific activities. As such, it is plausible that such a modification may have altered the 
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activity of the recombinantly produced affinity tagged protein PL002.  Subsequent analyses 

could explore this further through a comparison against histidine cleaved proteins generated at 

both the expression and characterisation stages of in vitro enzyme production. 

 

To expand the toolkit for low temperature biocatalysis, the pipeline demonstrated here for the 

identification of cold active lipase candidates using in silico methods can be followed. Here we 

have employed this workflow to identify a pancreatic-like lipase from assembled genomes 

constructed on sequence homologies of annotated genes. For prokaryotic organisms, culture-

independent methods are already a powerful means of overcoming practical limitations in 

enzyme identification (Sysoev et al. 2021). The characterisation of PL002 from S.thompsoni is 

a step towards a wider understanding of how the expanding database of eukaryotic sequences 

from extreme environments can be a source of promising biocatalysts for temperature-specific 

industrial applications. 

 

Summary 
This study combined in silico bioprospecting with the in vitro expression of a gene of interest 

to characterise a novel source of biocatalytic activity. To our knowledge, this is the first time 

such an approach has been used to characterise a lipase from a marine tunicate. The lipase was 

identified from S. thompsoni and exhibited psychrophilic characteristics in accordance with the 

cold Antarctic marine habitat of this organism, retaining over 60% activity between 15 to 25 

°C and optimal conditions of pH 7. In future, bioprospecting of the genomic and transcriptomic 

data available on digestive enzymes from marine invertebrates inhabiting low temperature 

environments may yield biocatalysts with novel functionality.  
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