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Abstract

Despite the breakthrough achievements in understanding structural and functional connectivity alterations that underlie autism spec-
trum disorder (ASD), the exact nature and type of such alterations are not yet clear due to conflicting reports of hyper-connectivity,
hypo-connectivity, and –in some cases– combinations of both. In this work, we approach the debate about hyper- vs hypo-
connectivity in ASD using a novel network comparison technique designed to capture mesoscopic-scale differential structures.
In particular, we build on recent algorithmic advances in the sparsification of functional connectivity matrices, in the extraction of
contrast subgraphs, and in the computation of statistically significant maximal frequent itemsets, and develop a method to identify
mesoscale structural subgraphs that are maximally dense and different in terms of connectivity levels between the different sets of
networks.

We apply our method to analyse brain networks of typically developed individuals and ASD patients across different developmen-
tal phases and find a set of altered cortical-subcortical circuits between healthy subjects and patients affected by ASD. Specifically,
our analysis highlights in ASD patients a significantly larger number of functional connections among regions of the occipital cortex
and between the left precuneus and the superior parietal gyrus. At the same time, reduced connectivity characterised the superior
frontal gyrus and the temporal lobe regions. More importantly, we can simultaneously detect regions of the brain that show hyper
and hypo-connectivity in ASD in children and adolescents, recapitulating within a single framework multiple previous separate
observations.
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1. Introduction

Autism spectrum disorder (ASD) is associated with disrupted
or altered brain connectivity (Kana et al., 2014b) at both struc-
tural (Vissers et al., 2012) and functional (Hull et al., 2017a)
levels. Deviations of the functional connections among brain
regions from the normal pattern of connectivity are associated
with several functional impairments (Abrams et al., 2013; Su-
pekar et al., 2013). Specifically, alterations of the functional
connectivity strength among brain regions support a variety of
social (Gotts et al., 2012; Abbott et al., 2016), cognitive (Nair
et al., 2015; Farrant and Uddin, 2016), and sensorimotor (Rudie
et al., 2013; Di Martino et al., 2014) functions in ASD patients.
Indeed, experimental evidence exists of a correlation between
functional connectivity perturbations and ASD symptom sever-
ity (Fishman et al., 2014) and adaptive behaviour (Plitt et al.,
2015). Despite the incredible results achieved in understand-
ing structural and functional connectivity alterations that un-
derlie core and associated features of ASD, the exact nature
and type of such alterations are not completely clear due to
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conflicting reports of hyper-connectivity (Chien et al., 2015;
Ray et al., 2014), hypo-connectivity (Just et al., 2012a), and
–in some cases– combinations of both (Coben et al., 2014).

The techniques used to investigate the pathological func-
tional connectedness of the brain typically deal with correla-
tion networks built from the functional time series extracted
from brain regions, whose spatial resolution can vary on a large
mesoscopic scale (Khan et al., 2013). The results of network
analyses at different scales can find similar topological proper-
ties across scales (van den Heuvel et al., 2015). The energetic
and spatial constraints that shape network structure at the scale
of brain regions and areas work similarly at the cellular level
(Henriksen et al., 2016). Nonetheless, the function of network
nodes and node clusters likely depends critically upon the scale
at which a network is constructed and analyzed. Accordingly,
we might expect networks to be optimized to perform scale-
specific functions (Yuan et al., 2022), and focusing on a partic-
ular scale gives a unique insight into the network architecture
underpinning those functions. Therefore, the open problem is
finding a coherent approach to highlight connectivity alterations
across multiple scales while retaining a global perspective on
the network level.

Against this background, identifying specific neuroimaging-
based biomarkers for ASD, especially ones that could be related
to symptom severity, is still a challenging task, usually requir-
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ing large-scale datasets and analyses (Abraham et al., 2017;
Doyle-Thomas et al., 2015). The reason is that, in addition
to the issues described above, to be effective such biomarkers
have not only to reach statistical significance but also to be sta-
ble across multiple datasets, experimental designs and subjects
(Mueller et al., 2013). Similarly to other alterations of func-
tional connectivity (Gheiratmand et al., 2017), existing meth-
ods rely either on the identification of network features specific
to the ASD spectrum (Yerys et al., 2017) or on opaque neural
network techniques (Sherkatghanad et al., 2019; Aghdam et al.,
2018).

In this work, we approach the debate about hyper- vs hypo-
connectivity in ASD, taking on a mesoscopic approach based
on recent advances in network comparison techniques. We
build on top of the recent proposal by (Lanciano et al., 2020)
to detect contrastive subgraphs in terms of density between
two groups of graphs obtained from resting state fMRI data.
The method outputs group-level contrast subgraphs, which are
maximally different, in terms of connectivity level, between
the brain networks of typically developed (TD) individuals and
ASD patients. We equip our method with simultaneous min-
ing of different subgraphs exhibiting this property, making it
able to provide a variety of findings at the same time. For ex-
ample, we show here that, under these goggles, it is possible
to reframe previous results on network architectures in ASD
subjects in terms of a complex interplay between hyper- and
hypo-connectivity, which evolves across age and relates deeply
to individual differences. In addition to the group-level discrim-
ination, the information obtained from contrast subgraphs can
be used to build individual-level subgraphs, which can then be
studied and related to individual phenotypical properties, for
example, cognitive and social performances.

2. Methods

2.1. Subjects
Resting-state fMRI data from 57 males with ASD (15 chil-

dren, 42 adolescents) and 80 typically developed (TD) (17 chil-
dren, 63 adolescents) males were acquired from the Prepro-
cessed Connectomes Project (Craddock et al., 2013). The data
had been obtained from ABIDE (Martino et al., 2013), and
preprocessed using the Data Processing Assistant for Resting-
State fMRI (DPARSF) (Yan, 2010). Participants were excluded
if mean framewise displacement (FD) during the resting-state
fMRI scan was greater than 0.10 mm, and the percentage of
data points exceeding 0.10 mm was greater than 5%. Groups
were matched for age, IQ, mean FD, and the percentage of data
points exceeding 0.10 mm. ASD diagnoses were confirmed
using ADOS (Lord et al., 2000) and/or the Autism Diagnos-
tic Interview-Revised (ADI-R; (Lord et al., 1994)). Participant
characteristics are described in Appendix A.1. Written in-
formed consent or assent was obtained for all participants in
accordance with respective institutional review boards.

2.2. fMRI acquisition and preprocessing
Information about scanner types and parameters can be found

on the ABIDE website.1 We carried out the following DPARSF

1http://fcon_1000.projects.nitrc.org/indi/abide/

preprocessing steps: slice timing correction, motion correction,
realignment using a six-parameter (rigid body) linear transfor-
mation with a two-pass procedure (registered to the first im-
age and then registered to the mean of the images after the
first realignment). Individual structural images (T1-weighted
MPRAGE) were co-registered to the mean functional image af-
ter realignment using a 6 degrees-of-freedom linear transfor-
mation without re-sampling. The transformed structural images
were segmented into grey matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) (Ashburner and Friston, 2005) and
nuisance parameters were regressed out (including 24 motion
parameters, WM and CSF signals, linear and quadratic trends,
and the global signal) (Satterthwaite et al., 2013). Temporal
filtering (0.01 - 0.1 Hz) was performed on the time series.

The Diffeomorphic Anatomical Registration Through Expo-
nentiated Lie algebra (DARTEL) tool (Ashburner, 2007) was
used to compute transformations from individual native space
to MNI space. We chose to use data that had the global sig-
nal regressed out, as this step has been shown to help mitigate
differences across multiple sites (Power et al., 2014). Further-
more, it has been shown recently that global signal regression
attenuates artifactual changes in BOLD signal that are intro-
duced by head motion (Ciric et al., 2017; Power et al., 2017).
The time series of 116 regions of interest (ROIs) from the Au-
tomated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002) were obtained. Additional details of the fMRI
preprocessing steps can be found on the Preprocessed Connec-
tomes Project website 2.

For any participant, we computed standard functional con-
nectivity matrices from the preprocessed timeseries using Pear-
son’s correlation coefficient (Bassett and Sporns, 2017) (Fig-
ure 2A). We then sparsified each matrix using recent network-
theoretical methods (SCOLA (Masuda et al., 2018; Kojaku and
Masuda, 2019)), to obtain the individual sparse weighted net-
work (with densities typically ρ < 0.1 consistent with standard
sparsification methods (Hermundstad et al., 2013)).

2.3. Contrast subgraphs extraction

We make use of a dataset D of functional networks, where
the i-th observation corresponds to the sparse weighted net-
work of the i-th individual, each one defined over the same
set of nodes V (i.e., the 116 regions of the AAL atlas). D
can be divided into two cohorts c = {children, adolescents},
each one composed of individuals belonging two one of the
groups g = {TD, ASD}. Our proposal aims to detect multiple
sets of regions of interest (ROIs) that, given a single cohort, si-
multaneously show hyper-connectivity in one group and hypo-
connectivity in the other group. This can be achieved by appro-
priately generalizing the methodology proposed by (Lanciano
et al., 2020) to fit our purposes. A summary of our proposed
pipeline is depicted in Figure 1 while each step is represented
in detail in Figure 2.

Given a cohort of individuals, for each group, we combine
the group’s networks in a single graph, dubbed summary graph:
this step is crucial because it compresses in a single observation
the peculiarities contained across the group of networks. Then,

2http://www.preprocessed-connectomes-project.org/abide
2
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Figure 1: Our proposed pipeline. After an initial preprocessing of the fMRI scans that leads to the generation of the brain networks, we implement a bootstrap
scheme that computes multiple contrast subgraphs, which are finally filtered to retain only those statistically significant. Each step of the pipeline is depicted, in
finer details, in Figure 2.
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Figure 2: Details of our proposed pipeline. (A) fMRI preprocessing: We use BOLD timeseries to construct functional connectivity (FC) matrices, which we then
sparsify using state-of-art network filtering techniques (Masuda et al., 2018; Kojaku and Masuda, 2019) to obtain sparse functional networks. (B) Computation of
the contrast subgraph (Lanciano et al., 2020): Given the functional networks for two subject groups, the first step is to reduce both of them to their relative summary
graph. Once both groups have been reduced, an optimisation problem is defined over the difference graph. Finally, we can solve and refine the optimisation problem
with a local search approach. The final result is a set of nodes, dubbed contrast subgraph. In this instance, the two solutions make it clearer the approach followed:
the set of nodes {1, 2, 8} is sparsely connected in the Group A, while it shows a large number of connections in the graphs of Group B. The set of vertices {4, 5, 6}
shows the opposite pattern: density in the observations of Group A and sparsity in those of Group B. (C) Bootstrap of solutions: to compare unbalanced groups,
we apply a down-sampling of the most populated group, such that it makes the groups balanced. For each resampled reduced dataset, we recompute the contrast
subgraph as in (B), adopting as a value of α the one expressed by the proposal in (De Vico Fallani et al., 2017). (D) Alignment of bootstrap solutions: starting from
the solutions obtained in the Bootstrap pipeline, we compute the statistically significant (overrepresented) maximal frequent itemsets (Kirsch et al., 2012), i.e. those
that are not a subset of any other itemset. We compute the final solution as the union of these statistically significant maximal frequent itemsets (set of nodes) and
the corresponding set of edges.
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considering the two summary graphs, we combine them in a dif-
ference graph, a new network whose edges have weights equal
to the difference of the weights of the two summary graphs.
Once the difference graph was computed, an optimization prob-
lem is defined on it, whose solution is the contrast subgraph,
i.e. the set of ROIs that maximizes the difference in terms of
density between the graphs of two groups. A general summary
of the whole pipeline is depicted in Figure 2B. In Supplemen-
tary Material (Appendix A.2), we provide further details on the
technical implementation of the optimization.

We note here that while the extraction of a contrast subgraph
is defined at the group level, the relative individual subgraphs
induced are different across individuals in the same group,
which in turn provide subject-level information that can be ex-
ploited (as we will do, for example, in Section 3.4).

2.4. Computation and robustness of contrast subgraphs

Towards our objective, the pipeline described in the previous
section has three main limitations that need to be taken into
account:

1. the potential group imbalance in the dataset: imbalances
between the number of subjects in each class can affect the
optimization results, biasing it toward one of the classes;

2. the dependence of the contrast subgraph extraction on an
accuracy parameter α (see Appendix A.2 for formal defi-
nition): indeed, depending on the value of α, it is possible
to exclude potential ROIs that are contrastive but not the
most contrastive one;

3. the presence of multiple subgraphs exhibiting the contrast
property, that are not detected by the optimization problem
proposed in (Lanciano et al., 2020).

Therefore, starting from the algorithm provided in (Lanciano
et al., 2020), we employ an enhance to the existing pipeline to
efficiently address all these limitations. To address the first issue
we employ a subsampling scheme to correct class imbalances.
In particular, for a datasetD with unbalanced groupsA and B,
we perform a bootstrap procedure (Figure 2C), by subsampling
a number m = min(|A|, |B|) of subjects from each group, and
repeating the contrast subgraph extraction for each subsample.
Thanks to this procedure, we are also able to tackle the third
issue, producing a larger number of solutions. To address the
second issue, we relate our choice of the value of the parameter
α to follow the proposal of (De Vico Fallani et al., 2017), which
provides a topological criterion to threshold a graph in such way
there is balance in the trade-off between efficiency of a network
and its wiring cost. Therefore, we set α equal to this value, so
that the positive contribution to the objective function is brought
only from edges whose weight is greater than the threshold.

Finally, to solve the third issue, we rely on the bootstrap
scheme proposed above, and test the general representative-
ness of the obtained solutions by reconciliating the multiple
subgraphs using a filter based on the Frequent Itemset Mining
paradigm (Figure 2D). The problem can be formalized as fol-
lows: we are given a set of transactions (contrast subgraphs),
each one containing a set of different items (nodes), and we

want to detect those items who are often co-occurring (those
groups of ROIs that are often contrastive between the 2 dif-
ferent classes). Therefore, considering the different solutions
computed, we mine the most frequent contrast subgraphs that
are also statistically significant (such that False Discovery Rate
≤ 0.01), exploiting the proposal of (Kirsch et al., 2012), and
retain only those that are maximals (i.e., sets that are not the
subset of any other set in the collection). In this way, we are
able to address the last limitation previously described, and to
obtain a single solution by considering the union of these sta-
tistically significant maximal frequent itemsets (set of nodes),
and the corresponding set of edges. Further technical details of
these procedures are provided in Appendix A.3.

3. Results

3.1. Contrast subgraphs classify subject group

Following the methods described above, we extracted the
two edge-sets that define the contrast subgraphs encoding the
main network-level differences between the two groups. While
these edge-sets are determined at the group level, it is naturally
possible to observe fluctuations in the individual-induced sub-
graphs –the graph obtained by projecting the subgraph of the
individual functional connectivity on the edges induced by such
dense sets of nodes. This leads to variable levels of hyper/hypo-
connectivity, measured in terms of the weights’ sum of edges in
the induced subgraph across subjects. Indeed, by considering
these overall connectivity levels (as described in Methods and
Fig. 2), we can obtain a separation boundary to separate sub-
jects in terms of their induced graph density that provides a sim-
ple rule to classify subjects in one of two groups. While identi-
fying this boundary is not the primary aim of the contrast sub-
graph extraction method, the differences in densities between
groups (Fig. 3A and 3B for children and adolescents respec-
tively) are clear. To confirm this and validate the goodness of
our solution, we solve the classification task described above
over any repetition of the bootstrap, running a linear SVM over
the whole dataset to find a linear separation bound between the
two groups, which can classify with large accuracy. Interest-
ingly, the separation based on the contrast subgraphs is more
effective in children (accuracy 0.80±0.06) than adolescents (ac-
curacy 0.68 ± 0.04).

3.2. Node-level description of contrast subgraphs

Below we report in the extended form our results for
hyper- and hypo-connectivity patterns in ASD individuals (as
compared to TD ones), separately for children and adoles-
cents. All the reported regions and substructures have been
statistically validated for the contrast generated by the two
classes, according to the U-Test (p < 0.05). If not otherwise
indicated, brain regions reported must be considered as bi-
laterally involved. Figure 3C depicts the contrast subgraphs
for the two age groups (left, children; right, adolescents),
highlighting the edges retained in the Contrast Subgraphs that
are hyper-(hypo-)expressed in ASD subjects as compared to
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Figure 3: (A) Level of hyper-connectivity and hypo-connectivity for Children (left) and Adolescents (right). Connectivity is expressed as the number of edges
inside the contrast subgraph. We refer to hyper-connectivity for the solution denser for ASD and sparser in TD (and vice versa for hypo-connectivity). See main text
for accuracy reports. (B) Visualization of the contrast subgraphs for the two age groups, children (left) and adolescents (right). Red (blue) edges represent edges
present in the contrast subgraph for the ASD subjects (TD subjects).

TD ones (3C top and bottom row respectively).

Children. Hypo-connectivity: We find the subgraph mostly
localized inside the Frontal Lobe. In particular, we find a
central role of the Superior Frontal Gyrus (Medial), that shows,
bilaterally, hypo-connectivity with two different sub-modules:
(i) Orbital part of the Superior Frontal Gyrus, Medial Orbital
part of the Superior Frontal Gyrus and Right Rectus; (ii)
Rolandic Operculus, Left Insula and Left Superior Temporal
Gyrus. Inside the Temporal Lobe, in particular between the
Temporal Pole of the Superior and Middle Temporal Gyrus,
and their connections with Right Inferior Temporal Gyrus and
Left Middle Temporal Gyrus.

Children. Hyper-connectivity: We find localized structures:
between Middle Occipital Gyrus and Left Inferior Occipital
Gyrus; between Calcarine, Cuneus, Lingual and Right Superior
Occipital Gyrus; and between the Superior Parietal Gyrus and
the Left Precuneus.

Adolescents. Hypo-connectivity: We find, in this case,
a huge contrastive structure involving different patterns of
disconnection that include: (i) Inferior Frontal Gyrus (Trian-

gular, Opercular and Orbital parts), the Insula, Left Putamen,
Left Rolandic Operculus and the Temporal Pole of the Right
Temporal Gyrus; (ii) Amygdala and Left Hyppocampus; (iii)
Posterior Cingulate Gyrus, Right Cuneus and Right Precuneus;
(iv) Vermis 3 and Left Cerebellum 3. Each submodule shows
a significant disconnection from the cerebellar Vermis 1 and
2 and the Right Cerebellum 3. We also find a unique contrast
subgraph composed of: the Postcentral and the Anterior
Cingulate Gyrus, the Orbital Part of the Middle Frontal Gyrus,
the Right Olfactory cortex, the Paracentral Lobule and the
Orbital Part of the Middle Frontal Gyrus.

Adolescents. Hyper-connectivity: The Contrast subgraphs
are localized in the Occipital Lobe (Superior and Middle
Occipital Gyrus, Lingual, Calcarine and Left Cuneus) with
connections with the Right Fusiform and the Left Cerebellum
6. We also find nodes within and between Cerebellum (Left 3,
Right 8, 9, Right 10) and Vermis (9 and 10).
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3.3. Mesoscopic differences in lobe integration across age-
groups

To summarise the information and to understand how the
large-scale integration patterns differ across conditions, we
coarse-grain the individual induced subgraphs from nodes to
brain lobes (see Appendix A.4). We then select the edges ex-
pressed in a significantly stronger way in ASD than in TD sub-
jects for each age group (see Appendix A.4), which we denote
as hyper-expressed, and those that are instead weaker in adoles-
cents versus children, which we denote as hypo-expressed.

In Figure 4A we show the adjacency matrices of the lobe-
level induced graphs, divided by hyper- and hypo-expression
for the four conditions. The first observation is that, at
the mesoscopic level, both hyper- and hypo-expressed ASD-
induced graphs show significant connectivity between occipital
and cerebellar regions, which is instead absent in the case of TD
subjects. More in detail, we also see that the amount of hypo-
and hyper-expression is larger for ASD than for TD graphs be-
tween the occipital and temporal lobes and within the cerebel-
lum. Together these observations suggest a nuanced reorganiza-
tion of the ASD subjects’ brains from childhood to adolescence
than in TD subjects. In particular, we do not only observe more
or less connectivity but also find a combination of both effects
simultaneously. We also find that lobes differ in the evolution
of their self-interaction across age and condition (Fig. 4B). In
particular, for the cingulate lobe, deep grey Matter, and insula,
we find a significant increase (linear regression, p < 0.05 on all
coefficients) of lobe integration with age for TD subjects, which
is instead absent in ASD individuals. The parietal and tempo-
ral lobes show conflicting trends: in the former, self-integration
significantly increases for TD subjects and decreases for ASD
subjects, while for the latter, the trends are reversed. Finally, we
find that the cerebellum is progressively more integrated with
age in both groups, but the increase of integration with age is
significantly larger for ASD subjects. For the frontal and oc-
cipital lobes, we did not find any significant group-level effect
with age for either ASD or TD subjects. Overall, our analysis
shows that, whereas TD subjects develop greater local integra-
tion within lobes as they grow, ASD subjects maintain a more
distributed architecture with the notable exceptions of the cere-
bellum and the temporal lobe.

3.4. Induced contrast subgraphs correlate with individual phe-
notypes

The contrast subgraphs discussed so far describe the salient
features of each subject group and condition. However, inspired
by the previous results, we wonder whether any differences ob-
served at the lobe-level integration correlate with individual
performance. We can investigate this by considering changes
in individual architectures within the same group, for example,
whether these sets can highlight individual phenotypical differ-
ences. To do this, we consider the induced contrast subgraphs
at the individual level: given a cohort of patients, once com-
puted the contrast subgraph Cg1,g2 , i.e., the set of nodes whose
induced subgraph is denser in group g1 and sparser in group
g2, we consider, for any individual i of the cohort, the subgraph

G
g1,g2
i obtained by restricting the functional connectivity net-

work of i to the edge-set induced by the node-set Cg1,g2 .
We then investigate whether simple graph metrics, i.e. lobe

integration strength and lobe-lobe integration strength, corre-
late with the subjects’ phenotypes as measured by standard per-
formance scales (Lord et al., 1994, 2000). In Figure 5 we report
the statistically significant (p < 0.05 before Bonferroni correc-
tion) relationships we obtained. We find that cerebellar and oc-
cipital lobe integrations are negatively correlated with standard
intelligence scores (F/VIQ), and that the strength of the interac-
tion between the occipital and temporal lobes in the lobe-level
graphs associates with more severe social symptoms.

4. Discussion

Using contrast subgraph analysis, we elucidated atypical
resting-state brain functional connectivity underlying the symp-
toms of ASD both in children and adolescents. Specifically,
we analyzed a large rs-fMRI dataset from the ABIDE database
to determine whether neurophysiological changes typical of
the disease are associated with cortico-cortical and cortico-
subcortical dysfunctional connectivity in the brains of males
with ASD. Our findings indicated that children of the ASD
group exhibited a significantly larger number of functional con-
nections among regions of the occipital cortex and between the
left precuneus and the superior parietal gyrus. At the same time,
reduced connectivity characterized the superior frontal gyrus as
well as regions of the temporal lobe. Conversely, adolescents of
the ASD group showed hypo connectivity of Vermis 1, Vermis 2
and right III lobule of the cerebellum, while hyper-connectivity
was found between regions of the occipital cortex and the left
IV lobule of the cerebellum and the right fusiform, as well as
among the left III, the right 8, 9 and 10 lobules of the cerebel-
lum and Vermis 9 and 10.

The method proposed here captured both hyper-connectivity
and hypo-connectivity across the whole brain, as opposed to
common functional connectivity approaches that typically are
only able to unveil only one direction of alteration or a subset
of brain regions involved (Kana et al., 2014a; Hull et al., 2017b;
King et al., 2019). This paper offers strong evidence that autism
is characterized by atypical large-scale brain functional connec-
tivity in both directions (Uhlhaas and Singer, 2012). Previous
human and model neuroimaging studies reported a variety of
functional architectures specific to ASD (Just et al., 2012b; An-
derson et al., 2012; Yahata et al., 2016). Most of them did
not directly allow the simultaneous observation of under- and
over-expressed connectivity of regions across the whole brain
in ASD individuals, both at the regional and lobe level and of
their evolution during development.

On the one hand, our results show that along with the devel-
opment of the functional connectivity over-expression pattern
in ASD patients include regions of the occipital cortex both
in children and in adolescents, as already observed in previ-
ous rs-fMRI studies (Keown et al., 2013; Nair et al., 2018).
According to the weak central coherence model (Frith, 2003;
Happé and Frith, 2006), overstimulated and underselective vi-
sual processing areas may dominate high-order cognitive pro-
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A) B)

Figure 4: (A) Hyper and hypo-integration of lobes in ASD subjects vs TD subjects for the two age groups. We select either hypo- or hyper-expressed edges in the
induced subgraphs corresponding to the various conditions and then coarse-grain the resulting networks to the lobe level to highlight the mesoscopic differences in
the integration patterns across groups. Positive/negative values imply stronger edges within/between lobes (by coarse graining over the corresponding regions) in
adolescent/children subjects. Overall, we find stronger interactions between occipital and temporal lobes in ASD for TD, larger differences within the cerebellar
areas, and –finally– between the cerebellum and the occipital lobe. (B) Age dependence of lobe self-strength in induced lobe graphs. Full dots represent quantities
for which the linear regression coefficients are significant (p ≤ 0.05), while crosses show results for quantities for which we find no significant trend. For most lobes,
we find a significant increase with the age of lobe-level self-strength for TS subjects. In contrast, ASD subjects only show significant increases in the temporal lobe
and cerebellum. .

A) B) C)

Figure 5: Association between lobe strengths and lobe interactions with phenotypes in ASD adolescents. We report i) the significant (p < 0.01) associations between
cerebellar (A)) and occipital (B) lobe strength, respectively, with intelligence scores, FIQ and VIQ; and ii) the significant association of the interaction strength
between occipital and temporal lobes (C) with social scores (ADOS Social and ADOS Stereo Behaviour)(Craddock et al., 2013).

cesses in autism. This can lead to the reduced ability in con-
textual information integration during the execution of com-
plex perceptual and executive tasks (Belmonte et al., 2004)
and can be related to the increased connectivity of visual cor-
tices (Groen et al., 2010; Shen et al., 2012; Jao Keehn et al.,
2017). We also find increased connectivity between visual re-
gions across hemispheres, suggesting enhanced perceptual pro-
cessing, as observed in (Barbeau et al., 2015; Clawson et al.,
2015; Jao Keehn et al., 2019) together with the intact inter-
hemispheric transfer of visual information.

On the other hand, we find differential hyper-connectivity
in children and adolescent patients. Specifically, while the
increased bilateral connectivity in children characterized re-
gions belonging to the parietal cortex, adolescent ASD patients
were characterized by increased integration of the cerebellum.
Hyper-connectivity found between superior parietal gyrus and
precuneus might reflect altered patterns of signal fluctuations
(Uddin et al., 2013) in the interaction between the networks
these regions originate from (fronto-parietal and default mode
network), that, in turn, may impair cognitive processing. In-
creased coordination with nonessential regions may introduce
low-level cross-talk and spoiling signal across primary net-
work components (Belmonte et al., 2004). These results, there-

fore, constitute a possible source of the widely observed de-
creased connectivity within the Default Mode Network (Lynch
et al., 2013; Washington et al., 2014; Padmanabhan et al., 2017;
Kotila et al., 2021), which may stem from the disturbing abnor-
mal connectivity that one of its hubs (precuneus) has with dif-
ferent and unrelated regions (bilateral superior frontal gyrus).

Remarkably, atypical visual exploration of both social and
nonsocial scenes is often reported in ASD patients with less
precise and longer saccades, potentially reflecting difficulties
in eyes movement control (Kovarski et al., 2019), exerted by
the cerebellar lobules VIII-X and uvula/nodulus (Vermis IX-
X) (Vahedi et al., 1995; Stoodley and Schmahmann, 2010).
The increased connectivity of the cerebellar lobules VIII-X
and Vermis IX-X observed in our study might relate to the
frequently reported reduction in gamma-aminobutyric acider-
gic (GABAergic) Purkinje cells in ASD (Bailey et al., 1998;
Rubenstein and Merzenich, 2003). These cerebellar neurons
send inhibitory projections to the deep cerebellar nuclei (the
output nuclei of the cerebellum) and the posterior lobe of the
Vermis. Loss of these neurons is thought to lead to disinhibi-
tion of the deep cerebellar nuclei and of the uvula/nodulus lob-
ules (Cerliani et al., 2015; Belmonte et al., 2004), which could
explain the observed increased cerebellar integration and con-
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sequent abnormal eyes movement control in ASD patients (Tri-
marco et al., 2021).

Patterns of regional hypo-connectivity in ASD have been
widely reported (Moseley et al., 2015; Roy and Uddin, 2021;
Cheng et al., 2015; Anderson et al., 2011; Nomi and Uddin,
2015). Accordingly. At the same time, children showed re-
duced connectivity in frontal and temporal regions, and adoles-
cent showed two heterogeneous patterns of hypo-connectivity:
one involving cerebellar-subcortical, cuneo-cerebellar, fronto-
cerebellar and fronto-parietal connectivity, the other involving
anterior cingulate cortical connectivity with the parietal (post-
central gyrus) and frontal regions. The developmental trajec-
tory of the illness across age is firstly characterized by the in-
creased complexity of the disconnection patterns. In fact, chil-
dren show a clear disgregation of the functional fronto-temporal
network, already associated with impaired working memory
processes (Urbain et al., 2016), language difficulties (Verly
et al., 2014) and diminished preferential attention to social cues
(Sperdin et al., 2018). In contrast, adolescents show functional
network disconnections organized in a mosaic of modules.

Fronto-temporal (Alaerts et al., 2014; Malaia et al., 2020)
and insular-limbic (Ebisch et al., 2011) dysconnectivity asso-
ciated with emotion deficits, posterior cingulate-cuneus (Nair
et al., 2020; Bathelt and Geurts, 2021) underconnectivity that
reflects a slow and delayed maturation of the Default Mode Net-
work associated with social impairments and cerebellar discon-
nections (Long et al., 2016; Van Overwalle et al., 2020) associ-
ated to a reduced social cognition, somatosensory and language
skills have been separately reported in literature. Once the re-
gions of interest were grouped in eight anatomical macroareas,
we calculated, subject by subject, the average correlation within
each one and tested the possible topology-phenotype covari-
ance. We found that cerebellar and occipital cortices integration
negatively correlated with standard measures of IQ (VIQ/FIQ)
in ASD adolescents only, while no significant correlation was
observed in children. Similarly, the increased connectivity of
occipital and temporal areas was significantly associated with
reduced social skills in ASD adolescents (ADOS Social, stereo-
typical behaviour scales). Besides the reduced sample size be-
cause of data homogeneity reasons, the absence of similar cor-
relations in children may also suggest a complex role of devel-
opmental reorganization during the development of cognitive
skills.

From a methodological perspective, it is important to high-
light the mesoscopic nature of our approach. This is grounded
in the optimization involved in extracting contrast subgraphs,
which, while acting locally at the level of the single edge con-
tribution (i.e. the difference in weight between the same edge
in the two groups), obtains global solutions because the opti-
mization takes into account the whole network. Conceptually,
this is similar to what is done, for example, for network mod-
ularity (Brandes et al., 2008): in that case, however, the focus
is on the modular density structure of a single network, not on
the most discriminating subgraph between graphs representing
two groups (or conditions). Crucially, and similarly to other
mesoscopic observables, such as network modules (Sporns and
Betzel, 2016; Esfahlani et al., 2021; Sigar et al., 2022) and holes

(Petri et al., 2014; Ibáñez-Marcelo et al., 2019; Lee et al., 2012;
Chung et al., 2019; Sizemore et al., 2018), the differences de-
tected by contrast subgraphs pertain to the level of coordination
among sets of nodes, rather than to the alteration of the integra-
tion patterns of specific nodes (Lin et al., 2014; Gallos et al.,
2012).

Despite the method’s novelty and results described here,
the contrast subgraph approach suffers from some limitations.
First, because the method is intrinsically mesoscopic, it can de-
tect localized differences between groups less. It should be
adopted in situations where mesoscopic changes rather than
specific regional ones are envisioned. Second, the method has
a resolution parameter, α, that has a clear algorithmic interpre-
tation, but that might be of difficult interpretation from a clini-
cal point of view. However, combined with principled thresh-
olding techniques, our bootstrapping approach can effectively
buffer this problem. Third, in the optimization, we considered
a simple difference between the summary graphs with a penalty
term that does not depend on the individual edges nor the statis-
tics of the graphs under comparison. This could be improved
by substituting the penalty with one obtained from a network-
generating model, e.g. a weighted configuration model Gar-
laschelli and Loffredo (2009); Voitalov et al. (2020).
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Appendix A. Supplementary Material

Appendix A.1. Participants

Table A.1 and Table A.2 report the information of the par-
ticipants considered for all of the analysis in this work. For
numerical variables, we report avg. value, standard deviation,
min-max values and t-test result between the two groups. For
categorical variables we report the absolute frequencies, and the
chi-square test result between the two groups.

Appendix A.2. Contrast subgraph extraction

We provide a generalized definition of the methodology em-
ployed in order to obtain the results reported in Section 3.

We consider a dataset D of observations, where the i-th ob-
servation corresponds to the pre-processed fMRI scan of the i-
th individual. From any observation ofD we are able to derive
the relative brain network Gi = (V, Ei). The set of vertices V
contains the brain regions, thus it is common to all the graphs,
while the edge set Ei represents connections between vertices
in the observation graph Gi. The dataset D is divided in two
groups: the condition group A = {GA

1 , . . . ,G
A
rA
} and the con-

trol group B = {GB
1 , . . . ,G

B
rB
}. We aggregate the information

in the groups A and B in two summary graphs GA = (V,wA)
and GB = (V,wB), respectively, as follows. Given a group of
networks A = {GA

1 , . . . ,G
A
rA
}, we define the summary graph

GA = (V,wA) to be an undirected and weighted graphs, where
wA : V × V → R+ is a weight functions assigning a value to
each pair of vertices. The role of GA and GB is to summa-
rize in a single network the informations contained respectively
in all the networks of A and B. In this work, we employ the
same weighting function of (Lanciano et al., 2020): given two
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Table A.1: Participants information for the children cohort.

Children
TD ASD Significance

N 17 15

Age 8.767±0.935
[6.47-10]

8.958±0.911
[7-9.95] t = -0.564, p = 0.577

Gender 17 M 15 M

IQ 111.088± 9.681
[98-129]

111.5± 23.574
[78.5-148] t = -0.064, p = 0.949

Mean FD 0.053± 0.019
[0.025-0.094]

0.052± 0.018
[0.026-0.083] t = 0.123, p = 0.903

Perc FD 1.327± 1.321
[0-3.98]

1.626± 1.325
[0-3.867] t = -0.617, p = 0.542

Handedness
9 R
1 L

1 Ambi

3 R
2 L

1 Ambi
chi = 2.039, p=0.361

Eyes Status 13 Open
4 Closed

13 Open
2 Closed chi = 0.08, p = 0.777

Site

1 MAX MUN
3 STANFORD

6 NYU
3 KKI

1 UM 1
3 YALE

0 MAX MUN
1 STANFORD

9 NYU
1 KKI

3 UM 1
1 YALE

chi = 5.496, p = 0.358

Comorbidities 0 Yes
17 No

8 Yes
7 No

Currently Medicated 11 No
0 Yes

9 No
5 Yes

ADOS Total /

11.182± 4.589
[7-21]
N=11

ADOS Comm /

3.273± 1.863
[0-7]
N=11

ADOS Social /

7.909± 3.26
[3-14]
N=11

ADOS Rrb /

3.385± 1.862
[1-7]
N=13

ADI R Social /

18.867± 5.188
[11-27]
N=15

ADI R Verbal /

16.333± 5.055
[8-23]
N=15

ADI R Rrb /

5.8± 2.4
[0-10]
N=15

SRS
14.111± 13.617

[2-50]
N=9

98.1± 21.366
[44-126]

N=10
t = -9.546, p = 0

Table A.2: Participants information for the adolescents cohort.

Adolescents
TD ASD Significance

N 63 42

Age 17.128± 1.444
[15-19.83]

17.062± 1.378
[15-20] t = 0.232, p = 0.817

Gender 63 M 42 M

IQ 110.92± 11.962
[81-129]

108.963± 18.005
[41-141] t = 1.285, p = 0.202

Mean FD 0.048± 0.018
[0.024-0.094]

0.055± 0.021
[0.018-0.098] t = -1.599, p = 0.113

Perc FD 1.036± 1.287
[0-4.972]

1.381± 1.378
[0-4.636] t = -1.295, p = 0.198

Handedness
40 R
6 L

1 Ambi

27 R
1 L

1 Ambi
chi = 1.939, p=0.379

Eyes Status 44 Open
19 Closed

34 Open
8 Closed chi = 1.099, p = 0.294

Site

2 PITT
8 UM 2
2 YALE
2 USM
5 SDSU

3 CALTECH
7 TRINITY

0 LEUVEN 1
14 NYU

5 LEUVEN 2
2 OLIN

13 UM 1

0 PITT
3 UM 2
2 YALE
4 USM
5 SDSU

1 CALTECH
6 TRINITY

5 LEUVEN 1
7 NYU

0 LEUVEN 2
3 OLIN
6 UM 1

chi = 17.634, p = 0.09

Comorbidities 0 Yes
63 No

4 Yes
38 No

Currently Medicated 48 No
1 Yes

22 No
13 Yes

ADOS Total
2± 1
[1-3]
N=2

11.038± 3.684
[4-19]
N=26

ADOS Comm
0.5± 0.5

[0-1]
N=2

4± 1.643
[0-7]
N=20

ADOS Social
1.5± 0.5

[1-2]
N=2

7.15± 3.336
[2-13]
N=20

ADOS Rrb
0

[0]
N=1

3± 1.592
[0-6]
N=15

ADI R Social /

19± 4.564
[11-28]
N=29

ADI R Verbal /

15.034± 4.537
[2-23]
N=29

ADI R Rrb /

5.621± 2.311
[2-12]
N=29

SRS
18.727± 11.993

[4-46]
N=11

87.857± 24.222
[42-123]

N=7
t = -7.583, p = 0
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vertices u and v in V , we define wA(u, v) to be the fraction of
graphs GA

i ∈ A in which u is incident to v, that is,

wA(u, v) =
1
rA

∣∣∣GA
i ∈ A s.t. (u, v) ∈ EA

i

∣∣∣ ,
and similarly for wB. Note that according to this weighting
function wA(u, v) ∈ [0, 1] with wA(u, v) = 0 denoting the case
in which there is no relationship (i.e., no edge) between u and v
in GA. Given a subset of vertices S ⊆ V , we define

eA(S ) =
∑
u,v∈S

wA(u, v)

the sum of edge weights in the subgraph of GA induced by the
vertex set S , i.e. the graph that is made by the vertices in S ,
and those edges that connect any pair of vertices (u, v) ∈ S .
Analogous definitions apply to GB.

The problem of extracting the contrast subgraph requires to
find a subset of vertices whose induced subgraph is dense (i.e.,
has an high number of edges) in a summary graph GA and
sparse (i.e., has a low number of edges) in summary graph GB.

Problem 1 (Contrast subgraph extraction). Given two sets
of observation graphs, i.e., the condition group A =

{GA
1 , . . . ,G

A
rA
} and the control group B = {GB

1 , . . . ,G
B
rB
}, and

corresponding summary graphs GA = (V,wA) and GB =
(V,wB), we seek to find a subset of vertices S ∗ ⊆ V that maxi-
mizes the contrast-subgraph objective

δ(S ) = eA(S ) − eB(S ) − α
(
|S |
2

)
=

∑
u,v∈S

(
wA(u, v) − wB(u, v) − α

)
,

where α ∈ R+ is a user-defined parameter.

The objective function δ(S ) is composed by two parts:
eA(S ) − eB(S ) represents the contrast, i.e., the difference in
terms of absolute number of edges inside the set of nodes be-
tween the 2 groups, while α

(
|S |
2

)
, is a regularization term pe-

nalizing solutions of large size: in fact, given that a graph of
size |S | can contain at most

(
|S |
2

)
edges, it assign to any single

edge included in the final solution a constant penalty α. In such
a way, the magnitude of contrast has to be stronger than the
penalty factor. Note that, to avoid the naı̈ve solution, S ∗ = ∅,
we have to ensure that 0 < α < maxu,v∈V

(
wA(u, v) − wB(u, v)

)
,

otherwise we would encounter the case in which every pair of
vertices is detrimental for the objective function.

To solve Problem 1 is possible to exploit an algorithmic result
by (Cadena et al., 2016) devised to solve the following problem.

Problem 2 (Generalized optimal quasi-clique). Given a
graph G = (V, E), and functions w(u, v) and α(u, v), for each
pair of vertices u, v ∈ V, find a subset of vertices S ⊆ V that
maximizes

f (S ) =
∑
u,v∈S

w(u, v) − α(u, v).

It is straightforward to see that, by setting α(u, v) = α and
w(u, v) = wA(u, v) − wB(u, v) for each pair of vertices u, v ∈ V ,
Problem 1 can be mapped to Problem 2. Therefore, solving
Problem 1 with GA and GB in input is equivalent to solve Prob-
lem 2 with GA−B in input. We call GA−B = (V,wA − wB) the
difference graph.

Cadena et al. prove that Problem 2 is NP-complete and NP-
hard to approximate within a factor O(|V |1/2−ϵ) (Cadena et al.,
2016, Theorem 1). Then they develop an algorithm using a
semidefinite-programming (SDP) based rounding to produce a
solution, which is then refined by the local-search procedure of
(Tsourakakis et al., 2013). Their algorithm provides a O(log n)
approximation guarantee, although in practice the approxima-
tion is shown to be much better. This is the algorithm we use in
the extraction of the contrast subgraph.

Appendix A.3. Computation of final solutions
The steps of our pipeline which lead to the final solutions are

summarized in Figure 2C and Figure 2D. We next provide the
technical details of these steps.
Bootstrap. Despite the classic setup of contrast subgraph prob-
lem aims to detect the one maximizing the contrast function,
it is possible that 2 graphs can share more than a single con-
trastive structure. For this reason, we implement a bootstrap
scheme in order to extract multiple solutions: this also helps us
in preventing the possible bias brought by the imbalance in the
groups. Therefore, we create 100 replications of the original
dataset, each one containing, in equal number, the less repre-
sented class and a sample of the most-populated class. Com-
puting the contrast subgraph in each of these datasets, we are
able to extract more information. The multiple structures that
we extract are finallky validated and reconciliated by means of a
frequent itemset mining algorithm, that will be discussed later.
Choice of α. We next discuss the choice of the parameter α,
necessary to compute the contrast subgraph according to the
algorithm of (Lanciano et al., 2020). In general, the effective
tuning of a parameter is a crucial aspect that comes out when
designing a model. In order to address this, we follow an ap-
proach proposed by (De Vico Fallani et al., 2017) for the prob-
lem of thresholding, i.e., the determination of edges that are not
significant or relevant, in a weighted graph.

(De Vico Fallani et al., 2017) introduces a density threshold
able to filter out the weakest edges, by maximizing a quality
function based on the ratio of the overall efficiency3 (Latora and
Marchiori, 2001) of a network and its density. The quality func-
tion is the following:

J =
Eg + El

ρ
,

where Eg represent the global efficiency, i.e. the average of the
efficiency computed over all pair of nodes in the graph, El is
the local-efficiency of a network, i.e., the average of the global-
efficiency computed over every induced ego-network by any

3The efficiency of a pair of nodes in a graph is computed as the multiplica-
tive inverse of the shortest path distance between the nodes.
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node in the graph and ρ is the density of the network. By defi-
nition, these three quantities are normalized in the range [0, 1],
and both the efficiency’s metrics are non-decreasing functions
of ρ. This means that by the maximization of this function, we
are able to output a solution that takes into account the natu-
ral trade-off generated by these quantities, and retain only those
edges in the network that make it also either efficient and dense
at the same time.

We find a strict connection between this framework and our
necessity, since the parameter α is a penalty that assign a nega-
tive contribution to any edge inside the final solution of a con-
trast subgraph. Therefore, any edge (u, v) for which w(u, v) < α
becomes a negative weighted edge that becomes detrimental for
the objective function of the contrast subgraph algorithm, and
we need to carefully choose the right value of α in order to not
limit the choice of the algorithm for contrast subgraph, nor to
make it shallow.

Statistical filtering. In the last step of the pipeline, we filter
and reconciliate the multiple contrast subgraphs obtained due to
the bootstrapping approach, using a filter based on the maximal
frequent itemset paradigm. In this classic data mining task Luna
et al. (2019), we are given a set of items I = {i1, ..., in}, a set of
transactions T = {t1, ..., tm} (ti ⊆ I ∀i ∈ {1, ...m}) and scalars
k and s, and we are required to find all the itemsets i ⊆ I s.t.
|i| = k such that s(i) > s, where s(i) is the support of the item i,
i.e. the number of transactions in which i is included.

In our setting, the given set of transactions are the con-
trast subgraphs, each one containing a set of different items
(nodes), and we want to detect those items who are frequently
co-occurring (those groups of ROIs that are often contrastive
between the 2 different classes). Therefore, considering the dif-
ferent solutions computed, we mine the most frequent contrast
subgraphs that are also statistically significant (such that False
Discovery Rate ≤ 0.01), exploiting the proposal of (Kirsch
et al., 2012), and retain only those that are maximals (i.e., sets
that are not the subset of any other set in the collection).

More in details, (Kirsch et al., 2012) proposes an algorithm
to perform a frequent itemset mining task with specific theo-
retical guarantees on the statistical significance of the output.
This algorithm extracts frequent k-itemsets that are also sta-
tistically significant with False Discovery Rate (FDR) upper
bounded by an input parameter β. This result relies on their
proof that the number of k-itemsets with minimum support smin

can be described with a Poisson distribution. Their algorithm
start with the setting of smin according to a Monte-Carlo simula-
tion that estimate a value for which for any support value above
smin their approximation result hold. Obtained the frequent k-
itemsets with support smin with any state-of-the-art algorithms,
the algorithm tests for any frequent itemset the hypothesis that
its support follows a Binomial distribution Bin(n, p), where n
is equal to the number of transactions, and p is the empirical
probability that the items appear together in a single transac-
tion. Finally, computed the p-value of all the tests, the algorithm
applies the multi-comparison test introduced by Benjamini and
Yekutieli (Benjamini and Yekutieli, 2001) that bound the FDR
given by the acceptance of the null hypothesis of multiple tests

performed to a given parameter β.
In our pipeline, we apply this algorithm by considering the

contrast subgraphs obtained in the boostrap procedure as the
transactions, ranging k in the interval [2,K], where K represents
the maximum size of a single transaction in the list, retaining
only the connections statistically significant with a FDR less
than 0.01.

Appendix A.4. Coarse-graining of subgraphs and statistical
selection of reduced edges

Consider a graph G defined on the node set of regions V and
with edges EG ⊂ V × V , and a set of lobes L = {Li}i, such that
each lobe, Li ∈ L is a subset of V , Li ∩ L j = ∅, and

⋃
L =⋃

i Li = V . We coarse-grain individual graphs to lobe-level
graphs by defining a new lob graph LG with node set L, and
edges ELG. Each edge e = (u, v) ∈ EG induces an edge in
elg = (Li, L j) ∈ ELG such that u ∈ Li, v ∈ L j. The weight of such
edge ωelg is the sum of the weight of the edges e that link the
corresponding lobes Li, L j, ωelg=(Li,L j) =

∑
e=(u,v)∈EG |u∈Li,v∈L j

ωe.
Note that it is possible for u and v to belong to the same lobe
Li = L j, and therefore the graph LG can have self-loops with
arbitrary weights. In fact, in the main text we use estensively the
node selfloop weight (named node self-strength or integration).

For the hypo- and hyper-expressed results reported in Figure
4a, we perform an additional step before coarse-graining from
regions to lobes. In particular, for each link e in the constrast
subgraph for ASD(TD) subjects we compute its average weight
ωAS D

e (ωT D
e ) in the two groups, we build the distribution over

the edges of the differences ∆e = ω
AS D
e − ωT D

e , and we keep
only the edges in with the top 10% largest difference. We con-
sider these edges hyper-expressed, and then coarse-grained the
resulting graph to lobe level. For the hypo-expressed we per-
form the same procedure keeping the edges corresponding to
the smallest 10% of differences.
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