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Abstract 

To select the most promising screening hits from antibody and VHH display campaigns for 

subsequent in-depth profiling and optimization, it is highly desirable to assess and select 

sequences on properties beyond only their binding signals from the sorting process. In addition, 

developability risk criteria, sequence diversity and the anticipated complexity for sequence 

optimization are relevant attributes for hit selection and optimization. Here, we describe an 

approach for the in silico developability assessment of antibody and VHH sequences. This 

method not only allows for ranking and filtering multiple sequences with regard to their 

predicted developability properties and diversity, but also visualizes relevant sequence and 

structural features of potentially problematic regions and thereby provides rationales and 

starting points for multi-parameter sequence optimization.  

 

 

Key Words: VHH (variable domain of the heavy chain of heavy chain-only antibodies), 

Antibody, Developability, Humanization, Immunogenicity, Protein Engineering, in silico 
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1 Introduction 

Due to the nature and setup of antibody and VHH display campaigns, identified screening hits 

generally show high antigen-specific binding. Usually, such sequences need to be optimized to 

fulfill all required criteria with respect to the targeted developability profile. Typical aspects 

that need to be considered to convert an antigen-specific binder into a developable molecule 

include the assessment and reduction of the following risk factors: immunogenicity, chemical 

liabilities and post-translational modifications (PTMs), physical instabilities, viscosity, poly-

specificity or poor expression. These aspects may not only affect the pharmacodynamic and 

pharmacokinetic profile of the drug substance, but also hinder the manufacturing and 

development process of the drug product. Sometimes, the complexity of these different 

developability parameters might require multiple design cycles and in some cases it might not 

be even possible to optimize such hits towards a favorable overall profile [1]. Therefore, it 

would be highly desirable to select sequences obtained from display campaigns not only on the 

basis of their binding signals from the sorting process, but also based on their overall 

developability profiles and anticipated complexity for multi-parameter optimization. 

In recent years, progress has been made to implement high-throughput predictive experimental 

developability assays with low compound need and short cycle times that can be used for 

efficient early profiling and identification of potential developability risks [2–8]. However, 

these in vitro methods still require resources and are therefore not always suited to filter and 

rank large sequence sets that might physically not be available in sufficient amounts in the early 

hit finding and optimization phase.  

In analogy to Lipinski’s rule of five to prioritize the selection of small molecules for entry into 

clinical development [9], several metrices have been implemented for an in silico developability 

assessment of antibody sequences [10, 11]. One of the first structure-based approaches is the 

“spatial aggregation propensity” (SAP) [12] score, that was later combined with the antibodies 

net charge into the Developability Index [13]. Another approach, implemented as solubility 
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predictor, is CamSol [14], which was also used to design antibody variants towards an improved 

developability [15]. In recent years, further approaches that investigated the in silico property 

distribution of clinical or marketed antibodies to identify the most descriptive and informative 

properties have allowed to assess whether a sequence might be developable or not [16–18]. In 

those studies, three-dimensional (3D) models of the antibodies were generated and used as input 

for the calculation of different structure- or sequence-based descriptors. In each study, five 

different descriptors were identified that include combinations of hydrophobic and electrostatic 

descriptors. In detail, the Therapeutic Antibody Profiler (TAP) [18] provides CDR length, 

surface hydrophobicity in CDR vicinity, positive and negative charge patches in CDR vicinity 

and a structural Fv charge symmetry parameter as key in silico descriptors. An in-depth study 

of the intrinsic physicochemical profile of marketed antibodies from Boehringer Ingelheim [16] 

yielded the following nonredundant descriptors as potential developability criteria: surface area 

buried between the variable light (VL) and heavy (VH) domains, the isoelectric point (pI), ratio 

of dipole moment to hydrophobic moment, ratio of surface areas of charged to hydrophobic 

patches and a scale for hydrophobic imbalance. Recently, the Therapeutic Antibody 

Developability Analysis (TA-DA) [17] approach suggests the following scores to efficiently 

separate clinical antibodies from repertoire antibodies: AggScore [19] predictions of the light 

chain framework1 region, AggScore predictions of the framework region of the entire antibody, 

positive patches of the light chain CDRs, an atomic contact energy that reflects burial of 

hydrophobic residues and exposure of charged and polar atoms and TOP-IDP, a summed amino 

acid scale reflecting the propensity for intrinsic disorder. 

These in silico scores reflect general physical stability attributes of antibody sequences and 

seem well suited for filtering and ranking sequences in terms of their manufacturability and 

solution behavior, e.g. viscosity and colloidal stability. It was also found that the same 

hydrophobicity and electrostatic property descriptors are useful for identifying sequences, 

which might lead to fast in vivo clearance via different mechanisms as outlined below.   
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In addition to these physical stability aspects, chemical (e.g. deamidation, isomerization or 

oxidation) or post-translational modifications (PTMs, such as glycosylation) represent a further 

risk factor for developability [7, 20]. Such modifications could be introduced in the 

manufacturing process, during storage in the administration device or after in vivo 

administration and can result in species with reduced binding affinity or might even trigger an 

immunogenic response. Several in silico approaches have meanwhile been reported that allow 

to predict such chemically labile or post-translational modification sites, either based on the 

sequence or considering structural properties in addition [21–26]. 

Furthermore, it is well known that immunogenicity can also be triggered by the native antibody 

sequence itself. Non-human antibodies have been demonstrated to induce human immune 

responses, often resulting in neutralization of the administered antibody and causing enhanced 

clearance. Humanized and even fully human sequence-derived antibody molecules can still 

carry an immunological risk [27]. A common approach to reduce this risk is the framework-

based germline humanization of antibody sequences [28]. Moreover, a common practice for an 

early immunogenicity assessment of biotherapeutics is the in silico prediction, identification 

and de-immunization of potential non-self regions of the antibody sequence that can bind to the 

major histocompatibility complex (MHC) on antigen presenting cells. The main output from 

such in silico based risk assessment includes the predicted binding affinity of epitopes binding 

to MHC class II alleles and the promiscuity of MHC class II alleles that have high affinity 

epitopes predicted to bind [29, 30]. 

With these in silico approaches available in the public domain or in commercial software 

vendors, we aimed to implement a workflow that allows to provide a lean in silico assessment 

regarding the above-mentioned developability aspects for antibody or VHH sequences. This 

workflow, called SUMO (In Silico Sequence Assessment Using Multiple Optimization 

Parameters), automatically computes 3D models and uses different software packages to 

calculate a diverse set of more than 250 physico-chemical sequence- and structure-based in 
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silico properties. From these, four key properties (pI; Positive Patch Energy of the CDRs; 

AggScore of the variable region; and AggScore of CDR regions) were selected as electrostatics 

and hydrophobicity descriptors, based on their orthogonality (as described by Ahmed et al. 

[16]), general interpretability and since they reveal good direct correlation to several relevant 

experimental developability parameters. The pI, for example, has been shown to be a useful 

filter criterion regarding colloidal stability in standard formulations [5, 31] and non-specific 

binding that might lead to fast clearance [16, 32]. In addition, it was demonstrated in several 

studies that highly positively charged CDRs can contribute to fast clearance by different 

mechanisms [6, 33–42]. AggScore [19] penalizes clusters of surface-exposed hydrophobic 

atoms that do not have surrounding charge patches to mitigate inter-molecular hydrophobic-

hydrophobic interactions and has shown good predictivity to internal HIC (hydropbobic 

interaction chromatography) data. High hydrophobicity is known to be problematic for non-

specific binding (potentially leading to fast clearance), expression yields and solution behavior 

(viscosity, colloidal stability) in high concentration formulations. In addition to the computed 

AggScore for the entire Fv region, SUMO also reports the AggScore derived from the CDR 

regions, to indicate whether removal of such hydrophobicity/aggregation spots requires amino 

acid modifications in the CDRs. In addition to these electrostatic- and hydrophobicity-related 

parameters, the overview SUMO report provides information on: (i) the number of predicted 

chemical liabilities (deamidation, isomerization and methionine oxidation sites) and PTMs (N-

linked glycosylation sites) within the CDRs; (ii) sequence identities of the framework region 

and full-length variable regions compared to the most similar human germline sequences; and 

(iii) an in silico immunogenicity assessment indicating whether or not the strongest and most 

promiscuous 15-mer peptide of the antibody/VHH sequence is present in the human germline 

repertoire. Finally, for larger sets of sequences, clustering information is also provided (for 

different regions of the antibody), to assess sequence diversity. These in silico scores are 

summarized in an overview table (with one sequence per row) that includes a color coding 
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(green-yellow-red) to support straightforward visual assessment of the sequences based on their 

computed in silico developability profiles. 

Whereas this overview table (Figure 1) allows to compare and filter different sequences with 

regard to their computed developability profiles, SUMO also generates sequence views for each 

antibody or VHH with a detailed assessment for each residue along the amino acid sequence 

(Figure 2). This detailed assessment includes different antibody annotation schemes (IMGT, 

AHo, CCG, Chothia and Kabat), a sequence alignment to the most similar germline sequences, 

the information whether a residue is located in a key structural position (e.g., Vernier, VL/VH 

Interface), whether the residue is a sequence- or structure-based predicted liability or 

glycosylation site and the computed per-residue surface exposure, surface hydrophobicity, 

charge, solubility and aggregation scores (vide supra).  Furthermore, MHC-II binding scores of 

all 15-mer peptides along the amino acid sequence against a reference panel of 27 HLA alleles 

is provided. The scores are complemented with a color coding that allows to visually identify 

hot spot regions for each specific optimization parameter.   

Finally, SUMO also provides 3D visualizations of the computed properties on the automatically 

generated antibody/VHH models via PyMOL session files that can be accessed via PyMOL 

scenes for easy structural interpretation (Figure 3).  

 

The presented SUMO workflow has been automated and requires as input (only) a list of 

FASTA sequences of the variable region of antibodies or VHHs. This approach can provide a 

very early in silico developability risk assessment already at the sequence level for several 

parameters that can experimentally only be determined late in drug discovery programs, such 

as physical stability attributes, immunogenicity or pharmacokinetic properties. This early in 

silico assessment can be used to (i) support the selection of hit sequences from display 

campaigns in addition to the available experimental binding data, (ii) trigger and prioritize 

experimental testing of sequences in predictive in vitro developability assays based on the 
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identified in silico risks and (iii) to design sequences towards a favorable overall developability 

profile. Taken together, this early in silico sequence assessment has the potential to accelerate 

candidate selection and reduce risks and attrition rates in clinical development. 
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2 Materials  

1. FASTA files containing variable domain sequences of antibodies were provided as 

input. 

2. Molecular Operating Environment (MOE) [43] 2020.0901 by Chemical Computing 

Group  was used to build antibody and VHH models, in silico property calculation and 

antibody annotation.  

3. IgBLAST [44] was utilized to identify and align the most similar human germline 

sequences. 

4. Schrodinger/BioLuminate 4.6 [45] was used for antibody/VHH in silico property 

calculations. 

5. CamSol (version 2.1) [14] was used to predict the intrinsic solubility profile of 

sequences. 

6. An inhouse implementation of the Therapeutic Antibody Profiler scores (TAP-Scores, 

Raybould et al., 2019). 

7. The Immune Epitope Database and Analysis Resource (IEDB) software (version 

IEDB-3.1.6) [46] was used to predict MHC-II binding of antibody/VHH peptide 

fragments. 

8. IMGT/V-QUEST reference set was used to identify human versus non-human 

germline sequences [47–49]. 

9. Geneious Biologics [50] was used for sequence clustering of antibody/VHH 

sequences. 

10. PyMOL [51] was used for structural visualization. 

11. Several inhouse scripts were provided for analysis and post-processing of the 

workflows. 
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3 Methods 

3.1 Sequence annotation and calculation of in silico properties 

The first step includes the preparation of the variable domains of antibody or VHH sequences, 

the annotation according to different numbering scenes, the identification of the most similar 

human germline sequences, the generation of 3D models and the calculation of sequence- or 

structure-based global and per-residue descriptors using different software packages.  

1. Provide single FASTA files containing light and heavy variable region chains of 

antibodies or heavy variable region chains of VHHs. With these as input, the following 

steps are executed automatically by a pipeline of Python (version 3.8) and Scientific 

Vector Language (SVL) [43] scripts. 

2. FASTA file is split to create individual FASTA files per antibody 

3. FASTA files are imported into MOE along with user defined ForceField configuration 

to generate homology models using the Antibody Modeler. MOE project database is 

regularly updated to include internal antibody crystal structures data. To optimize the 

analysis time, the number of models is set to 1, when analyzing screening campaigns 

(see Note 1).  

4. Assignment of numbering schemes for each sequence (IMGT, AHo, CCG, Chothia and 

Kabat).  

5. Identification of most similar human germline sequences and calculation of sequence 

identities over the entire variable region and the framework regions based on the 

selected annotation scheme (by default: IMGT).  

6. Identification of sequence- and structure-based (default solvent exposure cutoff: 20%) 

liabilities or optionally sequence-only liabilities such as unpaired cysteines, methionine 

oxidation, deamidation, isomerization, N-linked glycosylation sites by MOE. 

7. Global and per-residue in silico property (descriptor) calculations. Three-dimensional 

(3D) homology models of the antibody or VHH variable domains are provided as input 
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to calculate a total of 251 global structure- and sequence-based descriptors within (i) 

MOE including BioMOE, (ii) Schrodinger/BioLuminate, (iii) CamSol or (iv) TAPscore. 

 

3.2 MHC-II Binding Predictions  

For an in silico immunogenicity assessment, the antibody or VHH sequence is automatically 

split into all possible 15-mer peptides along the amino acid sequence. For each peptide, (i) a 

binding score to a reference set of MHC class II alleles is computed (using the IEDB software) 

and (ii) its occurrence in the human germline repertoire is investigated. 

1. Provide the full amino acid sequences (including the constant regions) as FASTA file 

as input and run the IEDB MHC-II binding predictions using the following settings as 

input: IEDB recommended Prediction Method; Selected species/locus: Human, HLA-

DR; the IEDB-recommended reference panel of 27 alleles; peptide length: 15.  

2. Consider all 15-mer peptides among the top 5% in percentile rank as binders, among 

the top 2% as strong binders, and among the top 1% as very strong binders to MHC-II 

alleles.  

3. Identify for each 15-mer peptide whether it occurs in the human germline repertoire 

(labelled as “G”) or not (labelled as “N”) by comparing to a copy of IMGT/V-QUEST 

reference set.  

4. Generate an overview table that contains the predicted binding affinity of each 15-mer 

peptide against all considered MHC-II alleles. 

5. Identify the predicted strongest and most promiscuous 15-mer peptides. 

6. Peptides that are identified as strongest or most promiscuous MHC-II binders and do 

not occur in the human germline repertoire are considered as potential 

immunogenicity risk that might be subjected to sequence optimization towards de-

immunization (see Note 2).  
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3.3 Sequence Clustering 

To select sequences for hit evaluation not only based on their binding affinity and in silico 

developability profile, a list of sequences is subjected to sequence clustering. Considering 

sequence diversity as additional selection criterion increases the likelihood to identify hits that 

might bind to different epitopes.  

1. Provide sequences of the variable regions to Geneious Biologics. 

2. Perform sequence-identity based clustering using the following regions and 

thresholds: (i) H-CDR3, 50%, (ii) H-CDR3, 85%, (iii) H-VDJ, 85% and (iv) L-VJ, 

85% and extract the cluster ID for each region.  

 

3.4 Generation of an overview table on the in silico developability assessment of multiple 

antibody/VHH sequences 

For each sequence, the following information is provided. This information serves as first 

assessment criteria regarding the general developability for an antibody/VHH sequence. For 

more detailed information on specific developability criteria, a detailed view for each sequence 

is provided (Method 3.5).  

1. Report of (i) the most similar human germline sequence and sequence identity (ii) over 

the entire variable region and (iii) the framework regions only based on the selected 

annotation scheme (by default: IMGT).    

2. Number of sequence- and structure-based (default solvent exposure cutoff: 20%) 

liabilities within the CDR regions. 

3. From the set of 251 global structure- and sequence-based in silico descriptors, the 

following are reported: pI (of the variable domain), AggScore, CDR-Aggscore and CDR 

Positive Patch Energy. These scores are complemented with a green to yellow to red 

color coding (see Note 3). 
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4. From the computed MHC-II binding profile, provide a flag whether the strongest and 

most promiscuous binding peptide occurs in the human germline repertoire (G) or not 

(N) (see Note 2). 

5. Add the cluster IDs based on the computed clustering regions and cutoffs. The table is 

sorted by these cluster IDs, thereby providing a view that has similar sequence clusters 

among each other. 

6. A color coding is added (red to yellow to green) to the sequence identities vs the closest 

germline sequences that allows to assess and differentiate different sequences with 

regard to their human-likeness. 

7. Optionally, any relevant experimental data is added to this table to allow for a ranking 

and prioritization of sequences based on the overall in vitro and in silico profile. 

 

(Figure 1) 

 

3.5 Generation of a detailed view on specific relevant features of the variable antibody 

sequence  

In addition to this overview table, the SUMO workflow generates a detailed table for each 

specific sequence (see Figure 2). Inspection of this table is used for a specific assessment and 

evaluation of potential sequence liabilities and risks and serves as starting point for the design 

of variants towards sequence optimization, i.e., for humanization, de-immunization or 

elimination of liabilities or aggregation hot spots.  

1. Display of the amino acid sequence and residue numbering using different schemes 

(IMGT, AHo, CCG, Chothia and Kabat). Frameworks and CDRs are annotated and 

highlighted (CDRs in green, Fig.2). 

2. Display of sequence-aligned five most similar human germline sequences. Mutations, 

insertions/deletions are highlighted and summarized.  
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3. Information at the corresponding residue position, if this residue is located at a “key 

critical position” (Vernier, AHo, Interface, conserved cysteines). 

4. Display at the specific positions if a residue is a sequence- and structure-based (default 

solvent exposure cutoff: 20%) predicted potential liability or post-translational 

modification site (i.e., non-canonical cysteine, methionine oxidation, deamidation, 

isomerization or N-linked glycosylation). 

5. From the automatically generated antibody model (or x-ray structure, if available), the 

calculated per-residue (i) surface exposure, (ii) surface hydrophobicity, (iii) charge, 

(iv) CamSol predicted solubility and (v) Aggregation Score (AggScore) values are 

reported. To facilitate the identification of hot spots, these values are complemented 

with a red to yellow to green color coding. 

6. MHC-II binding predictions of all 15-mer peptides along the amino acid sequence 

against a reference panel of 27 HLA alleles. The predicted binding scores of each 15-

mer peptide (represented at the position of the central amino acid) are color coded 

(yellow to orange to red) by increased predicted binding strength. This visualization 

allows to identify all (non-germline) binders that are predicted to bind strongly to one 

or more MHC-II alleles and might be candidates for de-immunization.  

 

(Figure 2) 

 

3.6 Generation of PyMOL session files 

Finally, based on x-ray structures or automatically computed three-dimensional (3D) models, 

the SUMO workflow automatically generates visualizations of relevant molecular in silico 

properties that are considered for a final structural assessment of relevant risk features and for 

the overall potential for multi-parameter “optimizability” (see Figure 3). Specific visualizations 
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are stored as scenes in PyMOL session files and can be restored for visual inspection. For this 

purpose, a PyMOL script is automatically generated that performs the following steps: 

1. Loads the pdb file of the antibody/VHH model or x-ray structure 

2. Creates selections and specific-color codings for (i) CDR regions, (ii) predicted 

liabilities and PTMs, (iii) residues that are different from the closest germline 

sequence, (iv) key structural positions and (v) predicted strongest and most 

promiscuous MHC-II binding regions. 

3. Creates color maps based on the values of the per-residue in silico properties: 

AggScore, Camsol, charge, residue-surface-hydrophobicity 

4. Creates an Adaptive Poisson-Boltzmann Solver (APBS [52]) electrostatic surface map 

and a corresponding visualization for the CDR regions. 

5. Saves different visualizations as individual scenes in a PyMOL session file. 

 

(Figure 3) 
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4 Notes 

1. Antibody structures are currently modeled using MOE’s antibody modeler, generating 

by default one conformation as output. It has been recognized that several predicted 

physico-chemical properties of antibody or VHHs show better correlations to 

experimental data when considering conformational ensembles instead of static 

structures, e.g. ref [53]. Our overall workflow has been modularized and therefore 

principally allows to generate structural models with alternative software tools and the 

usage of conformational ensembles for descriptor calculations. 

2. Instead of reporting only the strongest and most promiscuous non-germline MHC-II 

binders, it is possible to provide alternative scores to assess the overall in silico 

immunogenicity risk, for example the number of (non-germline) MHC-II binders that 

are predicted to bind beyond a defined threshold score against any MHC-II allele. For a 

detailed assessment of the predicted MHC-II binding profile of specific antibody/VHH 

sequences, it is recommended to inspect the detailed overview table as described in 

Method 3.5. 

3. The identification of cutoff scores for the in silico descriptors was based on their average 

values and standard deviations over a list of 79 Fvs from 77 biotherapeutics approved 

for human use, following the same procedure as described in ref (Ahmed et al., 2021). 

For the predictions of AggScore, CDR AggScore and CDR Positive Patch Energy, 

scores within one standard deviation from the mean are colored green, scores above one 

standard deviation yellow and those above two standard deviations red. For the 

AggScore scores, these cutoffs were slightly adjusted based correlation analyses to 

internal experimental HIC data. For the computed pI, the same color coding was applied 

to upper and lower deviations from the mean. 
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Figures 

 

 

Figure 1. SUMO overview table over different antibody/VHH sequences. a) Multiple 

antibody sequences from a screening campaign with the following in silico properties 

reported for each sequence: (i) name of the most similar germline sequence and the sequence 

identify based on the entire variable chain or the framework (FW) region only, (ii) the total 

number of specific chemical liabilities and PTMs (non-canonical cysteines, methionine 

oxidation, deamidation or isomerization, N-glycosylation) in structurally exposed CDR 

residues, (iii) the structure-based pI and AggScore of the variable region, AggScore of CDR 

regions only and the Positive Patch Energy of the CDRs as physico-chemical developability 

descriptors and (iv) predicted MHC-II binding flags that indicate whether the strongest and 

most promiscuous 15-mer peptide epitopes occur in the human germline repertoire: G 

(Germline, green); N (Non-germline, red).  The sequences are sorted based on their cluster 
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IDs, thereby facilitating the selection of sequences based on computed in silico properties and 

diversity. These computed physico-chemical properties (iii) are complemented with a color 

coding as outlined in Note 3. b) Additional examples of marketed antibodies and VHHs 

(Nanobodies) to illustrate the applicability of SUMO regarding sequence and format diversity.  

 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.19.517175doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.19.517175


Figure 2. Detailed SUMO tables for variable light and heavy chains are generated for each 

sequence. a) Detailed view visualizing specific relevant features of the variable heavy chain 

sequence of Infliximab as an example. Each column is devoted to a residue in a sequence, 

which are aligned to the most similar human germline sequences, annotated and 

complemented with specific per-residue developability scores. b) Schematic explanation of in 

silico features (shown in rows) for each residue of the infliximab variable heavy chain: (i) 

Sequence numbers according to different numbering schemes. The positions of CDRs are 

highlighted in green. (ii) Residues of the most similar germline sequences with amino acid 

differences shown in gray. (iii) Information about “key structural positions” and sequence- as 

well as structure-based predicted liabilities and PTMs. (iv) Structure-derived per-residue 

surface exposure, surface hydrophobicity, CamSol predicted solubility, Aggregation Scores 

(AggScore) and charge, including a color coding. (v) predicted binding strength for each 15-

mer peptide along the amino acid sequence against a reference set of 27 MHC-II alleles. The 

central amino acid of the 15mer is highlighted in red, orange and yellow according to the 

predicted binding strength.  
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Figure 3. Illustration of different scenes in PyMOL session files automatically generated from 

SUMO tables and homology models. Visualization of specific molecular properties and 

potential risk factors that are relevant for sequence assessment and optimization in 3D is a 

powerful tool to visually analyze and assess the potential areas of concern. The scenes can be 

displayed interactively, views can be rotated, high resolution graphic views can be exported 

and shared with colleagues. 
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