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Abstract 
The biological and clinical impact of neoplastic and immune cell type ratios in the glioblastoma 
(GBM) tumour microenvironment is being realised. Characterising and quantifying cell types 
within GBMs at scale will facilitate a better understanding of the association between the 
cellular landscape and tumour phenotypes or clinical correlates. This study aimed to develop 
a tool that can deconvolute immune and neoplastic cells within the GBM tumour 
microenvironment from bulk RNA sequencing data. We developed an IDH wild-type (IDHwt) 
GBM specific single immune cell reference dataset, from four independent studies, consisting 
of B cells, T cells, NK cells, microglia, tumour associated macrophages, monocytes, mast and 
DC cells. We used this alongside an existing neoplastic single cell-type dataset consisting of 
astrocyte-like, oligodendrocyte- and neuronal-progenitor like and mesenchymal GBM cancer 
cells to create both marker and gene signature matrix-based deconvolution tools. We then 
applied single-cell resolution imaging mass cytometry (IMC) to ten IDHwt GBM samples, five 
paired primary and recurrent tumours, in parallel with these tools to determine which 
performed best. Marker based gene expression deconvolution using GBM tissue specific 
markers, which we have packaged as GBMdeconvoluteR, gave the most accurate results. 
The correlation between immune cell quantification by IMC and by GBMdeconvoluteR for 
primary IDHwt GBM samples was 0.52 (Pearson’s P=7.8x10-3) and between neoplastic cell 
quantification by IMC and by GBMdeconvoluteR was 0.75 (Pearson’s P=1.2x10-3). We applied 
GBMdeconvoluteR to bulk GBM RNAseq data from The Cancer Genome Atlas (TCGA) and 
were able to recapitulate recent findings from multi-omics single cell studies with regards 
associations between mesenchymal GBM cancer cells and both lymphoid and myeloid cells. 
Furthermore, we were able to expand upon this to show that these associations are stronger 
in patients with worse prognosis. GBMdeconvoluteR is accessible online at  
https://gbmdeconvoluter.leeds.ac.uk. 
 
Keywords  
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Key points  
GBMdeconvoluteR is a glioblastoma-specific cellular deconvolution tool. When applied to bulk 
GBM RNAseq data, it accurately quantifies the neoplastic and immune cells in that tumour. It 
is available online at https://gbmdeconvoluter.leeds.ac.uk  
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Glioblastoma (GBM) brain tumours consist of a multitude of different neoplastic and non-
neoplastic cell types[18]. The specific cancer cell subtypes within a GBM are directly 
influenced by the cellular composition of the microenvironment, which also has a role in 
shaping the progression of the tumour and its adaption to stressors including treatment[19, 
25, 33]. It is of paramount importance to accurately characterise the cellular make-up of GBM 
tumours. This will enable us to understand the phenotypes associated with changing cell 
landscapes within individual tumours, and to assess correlation between specific cell 
populations and the efficacy of new treatments, particularly immunotherapies. Whilst single 
cell and spatial- profiling approaches currently offer the highest resolution of cellular 
deconvolution, they are technically challenging, and prohibitively costly for larger sample 
numbers. 
 
Instead, approaches that propose to quantify cell types from bulk tissue RNA sequencing data 
have become increasingly popular[2, 4, 16, 20, 24]. These can be split into two main types: 
those that employ a full cell-type gene expression signature matrix; and those based on 
marker genes for specific cell types. A widely-adopted implementation of the former approach 
is CIBERSORTx[20], which was recently used to delineate pan-glioma cell types[33]. 
However, key studies have shown that the accuracy of any gene expression-based 
computational deconvolution tool is mostly derived from the signature matrix, or marker genes, 
underpinning it, which must be derived from the tissue of interest[3, 24, 29]. We, thus, decided 
to create a tool that can specifically quantify cancer cell types, as delineated by Neftel et al[19], 
and immune cell types from bulk IDHwt GBM tumour sequencing data. We developed this tool 
by amalgamating four independent single-cell GBM datasets to derive signature matrices for 
use with CIBERSORTx and marker genes for use with MCPcounter. The latter was chosen 
as it has been benchmarked as one of the most accurate marker-gene based tools available, 
giving consistently high correlation with ground truths across cell types[31]. We then compared 
results from these GBM-specific programmes to those from orthogonal cell quantification, 
using single cell-resolution imaging mass cytometry, on the same IDHwt GBM samples. We 
included both primary and recurrent GBM samples in our tool development and validation, to 
enable separate quantification of accuracy in longitudinal samples. We found that the 
MCPcounter based tool performed best at delineating both immune and neoplastic cancer cell 
populations and have made this publicly available as GBMdeconvoluteR: an online tool 
accessible via https://gbmdeconvoluter.leeds.ac.uk  
 
 
Materials and Methods  
  
All statistical analyses were carried out using the R statistical software package version 4.2.0. 
The name of each test used, and level of significance achieved, is included within the results 
where the finding from each hypothesis test is confirmed. Plotting was done using ggplot2 

(version 3.3.6). 
  
Dataset Selection  
Four single cell datasets were identified from literature searches (Table 1)[5, 23, 28, 35]. The 
inclusion criteria were single-cell or single-nuclei RNAseq expression data from human IDHwt 
glioblastoma samples. Data had to be available as raw counts.  
  
Single-cell RNA-seq Data Preprocessing  
The Seurat R package (version 4.1.1) was used for all pre-processing, integration, clustering, 
and annotation tasks[12]. Whilst GSE163120 has a single accession code, it contains data 
from primary and recurrent sample cells that were sequenced on different platforms so these 
were processed separately.  
 
Copy-number variant analysis to remove neoplastic cells 
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Single cell datasets were amalgamated. Neoplastic cells were filtered, as has been done 
previously, by inferring and removing those with large-scale copy number variations such as 
Chr. 7 amplification and Chr. 10 deletion using the inferCNV R package (version 1.3.3)[1, 21]. 
The inferCNV object was created using “CreateInfercnvObject()” taking the raw counts (stored 
in the “RNA” assay of the Seurat object) for each dataset. Annotations were not provided, 
instead each dataset was grouped according to sample (i.e. patient). The gene ordering file 
used was derived using the annotations from Ensembl Genes 91 for Human build 38 
(GRCh38), taking the gene name, chromosome, and gene span. The ”ref_group_names” 
argument was set to NULL, to average signal across all cells to define the baseline. The “run()” 
function was then used to perform InferCNV operations to reveal the copy number variation 
signal. A cut-off value of 1 was used for all the datasets apart from GSE163120, where a value 
of 0.1 was used as suggested by the documentation for InferCNV. 
  
Quality control filtering 
Each dataset underwent individual quality control (QC) in which metrics were used to filter out 
poor quality cells according to dataset-determined thresholds (Table S1): the number of reads, 
or unique molecular identifiers (nUMI_min); the number of non-zero count genes (nGene); the 
percentage of mitochondrial genes (mitochondial_ratio_min); the percentage of ribosomal 
genes; and the cell complexity (gene_complexity_min), which is a composite measure derived 
as log10(nGene)/log10(nUMI_min).  
 
Dataset normalization  
Post-filtering, each dataset was normalised individually using SCTransform, whilst regressing 
out dataset-specific confounding sources of variation such as ribosomal/mitochondrial ratio 
using the vars.to.regress function argument. Moreover, due to the disparity in the total number 
of cells in each dataset, a different number of variable features were passed to the 
variable.features.n function argument. The specific normalisation criteria for each dataset are 
in Table S2.  
 
Dataset Integration 
The FindIntegrationAnchors tool was applied to the list of SCTransform normalised datasets 
to identify cross-dataset pairs of cells that were in a matched biological state. These ‘anchors’ 
were then used with IntegrateData to merge all the datasets together[12]. The 
normalization.method argument was set as “SCT” for both FindIntegrationAnchors and 
IntegrateData. 
 
Clustering and Cell Type Assignment  
Dimensionally reduction was performed on the integrated datasets using principal component 
analysis (PCA) using RunPCA with default settings. This was followed by uniform manifold 
approximation and projection (UMAP) which was implemented using RunUMAP with custom 
parameters a=0.6 and b=0.75. Shared nearest-neighbour graphs were constructed based on 
Euclidean distance using FindNeighbours; taking the default k (k=20), the first 30 principal 
components and using the rann method for finding nearest neighbours. Clusters were 
identified using FindClusters, with the “smart local moving” (SLM) algorithm used for cluster 
optimization[34]. The resolution parameter, which sets the ‘granularity’ of the downstream 
clustering, with increased values leading to a greater number of clusters, was run over a range, 
in 0.1 increments, between 0.1 – 0.8. The maximum of 0.8 was determined by assessing the 
best user-defined maximum resolution parameter, based on cluster robustness and stability21. 
 
Cell type annotation  
Cell counts per cluster, for each clustering resolution parameter (0.1-0.8) were cross tabulated 
with immune cell type labels transferred from dataset GSE163120. The 0.7 resolution cross-
tabulation (Table S3) was used to assign cell-type annotation labels to clusters where the 
majority of cells had labels for either one distinct cell type or and/or where the cells were 
labelled were unknown. The T cell, NK cell and TAM labelled clusters could not be assigned 
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and were subclustered to further resolve them. This constituting isolation of these cells and 
repeat of the above methodology to separate cell types.  
 
Deriving GBM Immune and Neoplastic Cell Type Profiles  
Immune cell marker genes were identified from the integrated, clustered and annotated data 
using the scran R package (version 1.2.2)[17]. The findMarkers function was used to identify 
candidate marker genes by testing for those that were differentially expressed (DE) between 
pairs of clusters using both t-test and Wilcoxon rank sum tests. Both “all” and “any” pval.type 
arguments were used to identify genes which were DE between any two clusters and highly 
ranked/significantly upregulated genes for a given cluster (all) or significantly upregulated 
compared with all other clusters (any). The multiMarkerStats function was then used to 
combine multiple sets of marker statistics. Neoplastic GBM cell marker genes were taken 
directly from Neftel et al[19] but were filtered to remove non GBM tumour intrinsic genes, to 
negate the noise that would result from expression of these in the tumour 
microenvironment[37]. Marker genes for a variety of GBM neoplastic and non-neoplastic cell 
types have recently been made available as a resource entitled GBMap. We downloaded 
these directly from the supplementary data of the accompanying preprint for testing within 
MCPcounter (denoted MCPcounter_GBMap) [. The neoplastic cell markers from GBMap were 
also filtered to only include GBM tumour intrinsic genes. 
 
CIBERSORTx reference expression profile  
The single cell data used to derive the neoplastic expression profiles used with CIBERSORTx 
was obtained from the Gene Expression Omnibus (GEO: GSE131928). These data comprised 
~23,000 cells which were filtered to include only adult GBM samples. Each cell came with a 
score corresponding to 6 neoplastic cell states: these were converted to four states and then 
each cell was assigned to a neoplastic cell state or as a hybrid as described in Neftel et al2. 
The neoplastic single cell data was combined with the labelled immune single cells and then 
randomly down-sampled such that the total number of cells in the resulting reference matrix 
was 5075 and of roughly equal class type (Table 2)[30].  
 
Validation Samples 
Ten human GBM samples were used for validation via bulk RNA sequencing and imaging 
mass cytometry. These were de novo primary IDHwt GBM that had been stored in formalin-
fixed, paraffin-embedded blocks, and the matched locally recurrent sample following initial 
debulking surgery and treatment with radiation and Temozolomide chemotherapy.  
 
Ethics Statement 
Samples were from patients at the Walton Centre, UK, that provided informed consent in 
writing for the use of their tissue in research. The inclusion of these samples in this project 
was following approval by the UK National Health Service’s Research Ethics Service 
Committee South Central - Oxford A (Research Ethics Code: 13/SC/0509).  
  
Bulk RNA sequencing  
RNA was extracted from neuropathologist annotated regions containing >60% cancer cells 
using Qiagen kits (Qiagen, Sussex, UK). Paired end, 100bp strand-specific whole 
transcriptome libraries were prepared using the NEBNext Ultra Directional RNA Library Prep 
Kit for Illumina (New England BioLabs, Herfordshire, UK), following rRNA depletion with 
NEBNext rRNA Depletion Kit or Ribo-Zero Gold. Libraries were sequenced on an Illumina 
NextSeq2000. RNAseq data was processed as previously described[9].  
  
Imaging Mass Cytometry (IMC)  
Antibody Selection 
A panel of 33 antibodies for markers of neoplastic and immune cell subtypes in GBM was 
selected based on literature searches and manufacturer websites as collated in Table 3 and 
Table S4. Neoplastic GBM cell markers were selected based on an overlap of GBM cancer 
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cell delineators from three independent, single cell studies, including the Neftel et al. study 
that underpins the gene expression approach herein[7, 19, 35]. Antibody selection criteria 
was, in order of priority: available in pre-conjugated format for IMC and previously used in IMC 
of GBM or normal brain; previously used in IMC of GBM or normal brain via bespoke 
conjugation; available in carrier free format and had been validated for use in IHC or ICC in 
brain or GBM; available in carrier free format.   
A set of panel-wide control tissues was determined: spleen, brain, tonsil, prostate, bone 
marrow, skin and uterus. Control tissue samples from at least two individuals were 
amalgamated into a multi-tissue formalin fixed, paraffin embedded block. Multi-tissue block 
sections were used in IHC validation and testing of three antibody concentrations at, above 
and below those recommended by the manufacturer. Chosen antibody concentrations and 
control tissue(s) relevant to each antibody are in Table S4. Antibody conjugation and staining 
and IMC took place at the Flow Cytometry Core Facility at Newcastle University. Conjugation 
was performed using MaxPar metal labelling kits using X8 polymer according to standard 
manufacturers protocols (with the exception of Gd157 which was obtained by Trace Sciences 
International and was diluted to 0.1M prior to use with MaxPar reagents). Conjugations were 
validated by capture on Thermo AbC beads prior to acquisition on a helios mass cytometer.   
 
Sample Preparation and Mass Cytometry 
5µm sections, taken consecutively from the same blocks that underwent bulk RNA sequencing 
(see above), were stained with a cocktail of all 33 conjugated antibodies after dewaxing 
(Xylene) and HIER antigen retrieval in Tris-EDTA (pH9) with 0.5% Tween 20. Sections were 
incubated for 30 minutes in 0.3 uM irridum to counterstain the nuclei prior to air drying. A 
minimum of three 2mm2 regions of interest (ROI) were annotated per sample within the area 
corresponding to that from which RNA was extracted from the adjacent sections. Images were 
generated on the Hyperion Tissue Imaging cytometer by ablation of the ROI at a 200Hz 
frequency with a 1-micron diameter laser. Raw MCD files were created and exported as ome-
tiff from MCD Viewer software (Fluidigm).  
 
Image Pre-processing 
Following export, the raw data were converted from to ome-tiff format and segmented into 

single cells using the steinbock pipeline comprised of the following steps[38]. Pixel classification 

was done using Ilastik (version 1.3.3): Tiff stacks were generated for each of the proteins in 
the panel and pixels classified into two channels as either nuclear, or background. These were 
used to train a random forest classifier, which returned probability masks for each image. The 
generated probability maps were processed to create single-cell masks using the image 
analysis software CellProfiler (version 4.1.3). First, probabilities were histogram-equalized 
(256 bins and kernel size of 17), and then a Gaussian filter was applied to enhance contrast 
and smooth the probabilities. Subsequently, an Otsu two-class thresholding approach was 
used to segment nuclear masks. Cell masks were derived from an expansion of nuclear masks 
using a maximum expansion of 3 pixels. The CellProfiler single cell masks were ultimately 
overlaid onto the single-cell segmentation masks and single-channel tiff images of all 
measured channels to extract single-cell marker expression means. The single-cell data was 
read into R using read_steinbock from the imcRtools R package (version 1.2.3) and the 
expression counts were transformed using an inverse hyperbolic sine function (cofactor = 5). 
The expression counts were corrected for channel spillover using a non-negative least 
squares method as previously described[6]. Briefly, each metal-conjugated antibody was 
spotted on an agarose-coated slide, and this was ablated to generate a background signal 
which could be used for compensation using the R Bioconductor package CATALYST 
(version1.20.1).  
 
Image Analysis  
All downstream data visualisations, including Image and cell segmentation quality control were 
completed using the cytomapper (version 1.8.0) and dittoseq (version 1.8.1) R packages[10]. 
Batch effect correction of segmented cells was completed using harmony (version 0.1.0)[14]. 
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Cells were clustered based on their similarity in marker expression using the PhenoGraph 
clustering algorithm (k =45) implemented in Rphenograph (version 0.99.1)[15]. Cluster IDs 
were mapped on top of UMAP embeddings (n_neighbors = 40) derived using the uwot R 
package (version 0.1.11). Cell type classification was completed using marker enrichment 
modelling, implemented in the MEM R packages (version 2.0.0), selecting for markers with 
enrichment scores equal to or greater than 3 (display.thresh = 3)[8] for the first clustering, 
which defined immune cells. Further subclustering was required to annotate neoplastic cells 
with display.thresh relaxed to 2 (Table S5). 
 
Creating and Comparing the Cell Deconvolution Approaches  
MCPcounter was run via the R Package (version 1.2.0) in two modes: default mode(MCPdefault) 
used the universal set of 110 immune cell-type marker genes that come provided as standard, 
meaning no neoplastic cell populations were included; GBM mode (MCPGBM) used the GBM-
specific neoplastic and immune cell marker genes derived as outlined above.  
The ‘Create Signature Matrix’ module of CIBERSORTx was run with default parameters and 
quantile normalization disabled, to create a signature matrix using the single-cell-derived 
immune and neoplastic expression profiles detailed above. This signature matrix was then 
used to infer cell fractions of bulk RNA-Seq sample mixtures using the CIBERSORTx High-
Resolution docker container (https://hub.docker.com/r/cibersortx/hires). For all runs, the bulk 
RNAseq dataset was input as the ‘mixture’ file and the respective signature matrix was input 
as the ‘sigmatrix’ file. For all runs, the Batch correction was done in ‘S-mode’ by setting the 
‘rmbatchSmode’ parameter to TRUE and the input signature matrix’s respective 
CIBERSORTx-created “source gene expression profile” was input. Finally, absolute mode was 
set to FALSE for all runs. Cell population quantities inferred from the GBM sample RNAseq 
for all expression-based deconvolution approaches were compared with those from the IMC 
using the Pearson Correlation Coefficient.  
 
Application to TCGA data 
TGCA data was obtained from the Genomics Data Commons Data Portal 
(https://portal.gdc.cancer.gov/). The data were filtered on the “data_category” and “data_type” 
fields to only include "transcriptome profiling" and “Gene Expression Quantification” data, 
respectively. Further, only primary, IDH wild-type GBM cases treated with standard/non-
standard temozolomide chemoradiation were selected. The expression values for the 93 
samples that were obtained were unlogged, TPM normalised counts which were combined 
into an expression matrix that was then input to GBMdeconvoluteR run using our GBM specific 
marker genes. Outputted scores were used in correlation analysis using the cor() and cor.test() 
functions from base R stats package. The quartiles of overall survival (OS) were calculated 
and used to extract patients with a worse (OS less than the lower quartile of 8.55 months) or 
better (OS greater than the lower quartile of 20.55 months) prognosis. Plots were generated 
using the ggplot2 R package. 
  
Developing GBMdeconvoluteR  
GBMdeconvoluteR was developed as an interactive web application using the Shiny R 
package (version 1.7.1) and packaged as a portable container image using the 
rocker/shiny:latest base Docker image. The custom image was stored in the Azure Container 
Registry and deployed using the Azure App Service. All code can be found at 
https://github.com/GliomaGenomics/GBMDeconvoluteR.  
 
  
Results  
  
Identifying GBM Specific Cell Type Profiles  
Four independent single cell GBM datasets (Table 1) were used to derive marker genes, or 
signature gene expression matrices, for GBM tumour-infiltrating immune cells: B cells, T cells, 
natural killer (NK) cells, microglia, tumour associated macrophages (TAM), monocytes, mast 
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and dendritic cells (DC). Figure 1A outlines the process. Datasets underwent pre-processing 
independently to filter out poor quality cells and copy number analysis to remove neoplastic 
cells, before being amalgamated. There were significant batch effects owing to different 
sequencing platforms and originating centres but these were effectively removed using 
regularized negative binomial regression[11] (Figures 1B and S1A). One dataset 
(GSE163120) included the immune cell annotations determined by the original study. This 
information was used to guide clustering, with optimisation focused first on maximising cluster 
stability and then on the best separation of pre-annotated cell types[22]. Owing to the difficulty 
in separating immune types that are known to have similar and overlapping gene expression 
profiles (namely tumour associated macrophages [TAM] and microglia; and natural killer [NK] 
and T-cells) cells assigned to any of these groupings were isolated and further sub-clustered, 
resulting in definitive cluster annotations (Figure 1B and S1B).  
 
GBM-specific marker genes for each immune cell type were then derived by using differential 
expression analysis to highlight the top 25 genes, per annotated cluster, that were uniquely or 
predominantly expressed in that cluster, and visually checking these to identify specific cell 
type markers corresponding to each immune cell type (Figure 1C and Table S6). Marker 
genes for GBM cancer cell subtypes were adopted from Neftel et al[19]. In that study, four 
neoplastic GBM cell types were delineated from single cell data. We extracted the marker 
genes that Neftel et al. showed to delineate the four subtypes, but then removed those that 
are also expressed in the GBM tumour microenvironment, and would therefore confound the 
results of application to bulk tissue profiles[37] (Table S7).  
 
Single cell expression profiles for annotated GBM-associated immune cells, from our 
combined datasets, or for annotated GBM cancer cell subtypes, from Neftel et al., were 
amalgamated into a full gene expression matrix. This was then subsampled to produce a total 
of 5075 single cell gene expression profiles with roughly equal representation of each cell type 
(Table 2). 
  
Developing and Validating the Deconvolution Approach  
Two gene-expression based computational deconvolution approaches were investigated 
owing to previous benchmarking studies finding them to be the best full gene expression 
signature matrix-based approach (CIBERSORTx) and marker-gene based approach 
(MCPcounter) available[31]. The approaches are distinct and give results with different 
interpretations. Gene expression signature matrix methods such as CIBERSORTx attempt to 
quantify cell types in a single sample, enabling comparison of proportions of all cell types 
within and between samples. Marker gene based methods like MCPcounter instead score a 
single cell type for comparison of prevalence across samples; the score from cell type A 
cannot be compared with cell type B so within sample comparisons of different cell types is 
not possible. To ascertain the accuracy of these programmes and determine which performed 
best, we identified five primary and matched recurrent GBM samples on which to perform both 
gene expression-based and imaging mass cytometry (IMC)-based cell type deconvolution 
(Figure 2A and Figure S2). The latter is an approach that characterises cells, according to 
protein expression, at single cell resolution in tissues using up to 40 antibodies (Figure 2B). 
We assembled and validated a panel of antibodies known to distinguish tumour-infiltrating 
macrophages, microglia, monocytes, NK and T-cells (Tables 3 and S4).  
 
Immune Cell Proportions 
We first inspected the concordance between immune cell proportions predicted by 
CIBERSORTx and quantified by IMC, as the ground truth, for primary and recurrent GBM 
tumours separately and then all tumours together (Figure 2C). The performance in primary 
samples (Pearson’s r=0.15) was better than for recurrent samples (Pearson’s r=-0.2) but no 
results were significantly correlated (Pearson’s p<0.05) and even where positive, correlation 
coefficients remained low. 
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Immune Cell Prevalence 
MCPcounter can be used in default mode in which in-built canonical immune cells markers 
are employed. When running the programme in this mode it can only be used for immune cell 
estimation and we refer to it as MCPdefault. In contrast, the mode using the GBM-tissue specific 
immune and neoplastic cell markers listed in Tables S6 and S7 is denoted MCPGBM. In 
addition, at the time of preparing this manuscript a larger GBM-specific single cell resource, 
GBMap, was made available that amalgamated 26 single cell brain and GBM datasets [27]. 
We, thus, also ran MCPcounter using the GBMap marker genes, denoting this as MCPGBMap.  
We inspected the concordance between the relative cell type prevalence scores that resulted 
from each version of MCPcounter and the quantification by IMC (Figure 2D). All MCPcounter 
based approaches were more accurate than CIBERSORTx, with MCPGBM performing best 
over all samples (Pearson’s r and p-values are: 0.53 and 8.9x10-5 between MCPGBM and IMC; 
0.52 and 1.2x10-4 between MCPdefault and IMC; and 0.51 and 1.5x10-4 between MCPGBMap and 
IMC).  
 
Neoplastic Cell Quantification 
The four GBM cell types described by Neftel et al. are delineated by gene expression [19]. 
Recent studies have shown that such transcriptional cell-type markers often do not translate 
to protein level markers for use in approaches such as IMC[13, 32]. We set out to test this for 
the GBM neoplastic cell types, specifically. To that end, in our IMC panel we included 
antibodies against markers of the four neoplastic GBM cell types from Neftel et al., prioritising 
those that overlapped with markers of GBM cancer cell subsets identified in two independent 
studies: Wang et al.[35] and Couturier et al.[7] (Tables 3 and S4; Figure S3).  These studies 
also identified GBM cancer cell subsets that were labelled differently but showed good 
agreement with the Neftel et al. study.  
 
Results showed poor concordance over all samples for both gene-signature based (Figure 
2E; Pearson’s r and p-values are: -0.68 and 1.1x10-6 between CIBERSORTx and IMC;) and 
marker gene based approaches (Figure 2F; Pearson’s r and p-values are: -0.0056 and 0.97 
between MCPGBM and IMC; 0.22 and 0.18 between MCPGBMap and IMC). However, a closer 
inspection indicated that a single GBM cancer cell type, the astrocyte (AC)-like cells, were 
impacting the overall correlation between IMC and the gene expression-based approaches. 
Removing AC-like cells from the analysis (Figures 2G-H)  showed strong concordance 

between RNAseq and IMC for primary GBM samples for both marker based methods (r≧0.75, 

albeit with weaker concordance for recurrent samples. This suggests that AC-like cells were 
not being correctly quantified using transcriptionally-delineated markers for IMC, but the 
remaining three cancer cell types were. Based on this, we proceeded to evaluate the ability of 
each method to perform relative neoplastic GBM cell type quantification with AC cells 
removed. We found MCPGBM to be the most accurate over all samples (Figures 2G-H; 
Pearson’s r and p-values are: 0.59 and 6.3x10-4 between MCPGBM and IMC; 0.56 and 1.4x10-

3 between MCPGBMap and IMC).  
 
Application to TCGA data 
Our results show that MCPGBM is able to accurately quantify immune and neoplastic cells in 
GBM tissue bulk sequencing data. To show how this can be useful in gaining biological and 
clinical insights from large-scale studies, we applied MCPGBM to bulk RNAseq data from 93 
GBM samples from The Cancer Genomic Atlas (TCGA). This gave a score per cell type per 
sample, allowing us to quantify the correlation of cell type prevalence across patients (Figure 
3A). Recent spatial, multi-omics studies have suggested that different neoplastic GBM cell 
types associate with, and are programmed by, different environmental niches of GBM 
tumours[25]. A key finding was that mesenchymal (MES) cancer cells associate with both 
myeloid and lymphoid compartments, whereas the remaining neoplastic cell types (AC-, NPC- 
and OPC- like cells) are significantly depleted in immune-rich regions. Our results recapitulate 
these findings: we oberrved significant, high, positive correlations between MES and all 
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immune cells quantified, and significant negative correlations between the remaining 
neoplastic cell types. This phenomenon was more pronounced for non-MES neoplastic cells 
associated with neuronal development (NPC- and OPC- like cells) than for AC-like cells, also 
in keeping with the previous findings[25]. Based on the high numbers of samples in TCGA we 
were able to further separate patients using overall survival (OS) quartiles to extract worse 
prognosis (OS less than the lower-quartile of 8.55 months) and better prognosis (OS greater 
than the upper-quartile of 20.55 months) cohorts and compare score distributions (Figure 3B) 
and correlations (Figure 3C) in these patient subsets. The prevalence scores of cell types is 
not significantly different between worse or better prognosis patients (Figure 3B) but the 
correlations between cell-types are markedly different (Figure 3C). Patients with worse 
prognosis have higher and more significant correlations (both negative and positive) between 
neoplastic and immune cell types. The tumour microenvironment has been shown to shape 
the neoplastic cell landscape over time in GBM, with more aggressive tumours being linked to 
greater polarity and classification of neoplastic subtypes[25, 33, 36]. Our results suggest that, 
in worse prognosis tumours, neoplastic and immune cells are more tightly associated, 
potentially through more direct inter-cellular communications, which could be promising 
therapeutic targets. These preliminary results exemplify how our tool can be used to develop 
new insights and hypotheses, by being applicable to large scale datasets. 
 
 
Incorporating additional GBM cell types and Making Our Approach Available Via 
GBMdeconvoluteR  
To make MCPGBM available to the neuro-oncology community, we have packaged it into an 
online application called GBMdeconvoluteR. We also give the user the option to use the 
marker genes from GBMap[27] because, although these did not quantify cell types as 
accurately as MCPGBM, the GBMap reference set extends the range of GBM non-neoplastic 
cell types that can be quantified from bulk expression data. GBMdeconvoluteR is, thus, a web-
based application that enables users to upload bulk GBM expression profiles and output the 
relative proportion of immune and neoplastic GBM cells, or using GBMap markers genes as 
input, to also include normal brain and blood-vessel cells, across multiple samples. 
  
Discussion: 
We have developed the first publicly available GBM specific deconvolution tool that can infer 
both neoplastic and non-neoplastic cell population prevalence from bulk GBM tumour RNA 
sequencing data. This tool was developed by amalgamating four independent, human, single 
cell sequencing datasets to create tissue specific cell type gene expression reference profiles. 
The single cell data was from de novo IDHwt GBM either at initial diagnosis (primary) or upon 
recurrence. Recurrent GBMs have been shown to have altered transcriptional profiles which 
may impact on the accuracy of the deconvolution results[26, 33], so we included these 
samples in the tool development and validation. We found that our approach is suitable for 
deconvoluting recurrent GBM tumours but, in keeping with the aforementioned studies, 
neoplastic cell deconvolution is not as accurate at the longitudinal time point. Our study 
confirms, as shown elsewhere, that tissue specific reference datasets are necessary to 
achieve maximal accuracy in expression-based deconvolution[3, 24, 29].  
 
We used imaging mass cytometry (IMC) to ascertain the ground truth of cell type 
characterisation and quantification. We then compared this with the results from the gene-
expression-based approaches to determine which should underpin our tool, and to establish 
its accuracy. However, it must be noted that the regions that underwent IMC, whilst 
encompassed within, were substantially smaller than regions that underwent RNAseq 
(Figures 2A and S2), and that the GBM microenvironment is notoriously heterogeneous[25]. 
That, and the fact that IMC was performed on different, albeit, adjacent tissue sections, means 
that a deviation from perfect correlation is not just a result of gene expression deconvolution 
tool performance, but also in bona fide differences in cell proportions.  
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Our study is the first to evaluate whether the marker genes of the four GBM neoplastic cell 
types, determined by Neftel at al. from gene expression data, are preferentially expressed at 
the protein level. We found that for MES, NPC and OPC GBM cells there was a clear 
association between the protein levels of the selected markers and the gene expression-based 
quantification, but this was not the case for the markers chosen to proteomically identify AC-
like cancer cells (SLC1A3 and HOPX). This further highlights the need to validate cell type 
markers identified either at the protein or gene expression level, prior to use via the other 
modality. 
 
GBMdeconvoluteR is a publicly available webserver, enabling researchers to accurately 
determine the cell types and prevalence in GBM samples from bulk RNAseq data. The marker-
gene MCPcounter based method was the most accurate. It should be noted that marker-based 
deconvolution results in relative, rather than absolute, cell type quantification meaning 
comparison is possible within cell types across samples, rather than within samples across 
cell types. We applied GBMdeconvoluteR to data from TCGA and were able to confirm recent 
findings from single cell resolution multi-omics studies, regarding the specific enrichment of 
MES neoplastic cells in immune compartments, and depletion of other GBM cancer cell types. 
However, because our approach is easily applicable to large scale sequencing dataset, we 
could expand upon this further to show that this association is stronger in samples from 
patients with worst prognosis. This leads to the hypothesis that quantifying immune:neoplastic 
cell interactions could be prognostic, or that targeting them could be therapeutically beneficial, 
exemplifying the value in applying GBMdeconvoluteR to gain biological and clinical insights. 
 
In summary, GBMdeconvoluteR can be used to assess associations between cell type 
quantities and phenotypic, molecular or clinical characteristics with applications for target 
identification, gaining mechanistic insight or stratifying samples for retrospective therapeutic 
evaluation or prospective precision medicine approaches. 
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Figures 

 
Figure 1. A. The process adopted to amalgamate several independent single cell GBM 
datasets and create a GBM-specific immune cell reference signature gene expression matrix 
(for input to CIBERSORTx) or marker gene set (for input to MCPcounter). B. The inherent 
batch effects in the amalgamated data are evident in dimensionality reduction plots where 
clusters initially separated by originating datasets (far left), but were removed by normalisation 
(middle left and Figure S1A). Initial clustering and cell type assignment of the normalised data 
was unable to resolve TAM and microglia, and T- and NK-cells (middle right) but further sub-
clustering enabled these cell types to be further delineated (far right and Figure S1B). C. A dot 
plot showing the expression of chosen GBM-specific immune cell type markers (y-axis) in 
each cell type in the amalgamated single cell data (x-axis).  
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Figure 2. A. A schematic showing how patient samples were used for validation. Regions of 
formalin fixed tissue sections were annotated as high tumour cell content by a 
neuropathologist (marked in black) and were macro-dissected for RNA sequencing. At least 
three overlapping regions (blue squares) per sample were subjected to imaging mass 
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cytometry (IMC) on a consecutive section. B. Left: A representative image from the IMC for 
GBM sample 64 with three of the chosen protein markers annotated. Right: The UMAP 
projection of cell types assigned according to the expression of cell type protein markers 
quantified by IMC. C-H. Scatterplots of gold standard cell proportions quantified by IMC versus 
CIBERSORTx using a GBM-specific reference gene signature matrix for immune cells (C), 
and neoplastic cells with (E) and without (G) astrocyte-like GBM cells included. Scatterplots 
of cell proportions quantified by IMC versus the cell type relative prevalence score from 
MCPcounter using different maker gene sets  for immune cells (D), and neoplastic cells with 
(F) and without (H) astrocyte-like GBM cells included. Marker genes for MCPcounter were 
either default (MCPdefault), GBM-specific according to our research (MCPGBM) or  GBM-specific 
according to GBMap (MCPGBMap) Neoplastic cells are astrocyte-like (AC), oligodendrocyte 
progenitor-like (OPC), neuronal progenitor-like (OPC) or mesenchymal (MES). Pearson’s 
correlation coefficients (r) and p-values are indicated on each plot. 
 

 
Figure 3. MCPGBM was used to score cell types in bulk GBM RNAseq data from The Cancer 
Genome Atlas (TCGA). A. Heatmap of the correlations between cell type scores across all 
samples. B. Boxplots showing distribution of cell type scores for patients with worse or better 
prognosis (determined by the lower and upper quartile of overall survival, respectively). C. 
Heatmap of the correlations between cell type scores across samples from patients with worse 
(left) or better (right) prognosis. Significance is denoted by asterisks: *: p<0.05; **: p<0.01; ***: 
p<0.001; ****: p<0.0001.  
 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.11.19.517187doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.19.517187


 18 

Tables 
 
Table 1. Single-cell IDH1 wildtype GBM datasets used as a reference set for this project 

Accession Samples Platform Reference 

GSE141383 
Single cell RNAseq of ~18k cells 
from 5 primary IDHwt GBM 

Automated microwell array 
capture and full length 
mRNAseq 

[5] 

GSE163120 

Single cell RNAseq of ~21k cells 
from primary and ~43kcells 
from recurrent IDHwt GBMs  

10X Genomics GemCode 
capture and 3’ or 5’ mRNAseq [23] 

GSE135437 
Single cell RNAseq of 769 cells 
from 4 IDHwt GBMs 

Single cell sorting and 3’ 
mRNAseq 

[28] 

GSE138794 

Single-cell/nuclei RNA-
sequencing of ~11k single cells 
from 4 IDHwt primary GBMs. 

10X Genomics Chromium 
capture and 3’ mRNAseq [35] 

 

 
Table 2. Cell types and number of each single cell profile input to CIBERSORTx to 
develop the GBM specific signature matrix 

Cell Type Number of Cells 

AC 458 

B cells 458 

DC 458 

Mast cells 88 

MES 458 

Microglia 458 

Monocytes 458 

NK cells 458 

NPC 458 

OPC 407 

T cells 458 

TAM 458 

TOTAL 5075 
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Table 3. Antibodies used in IMC 

Marker/Target Cell Type Functional State/specifics Antibody clone(s) 

ANXA1 GBM cancer cells Hypoxia driven mesenchymal EPR19342/abcam 

ANXA2 GBM cancer cells Hypoxia driven mesenchymal MAB3928/RnD 

BCAN GBM cancer cells Neural progenitor like S294A-6/Thermo 

CD3 Immune cells T-cells Fluidigm/3170019D 

CD31 Normal brain cells Vasculature Fluidigm/EPR3094 

CD45 Immune cells Pan-immune marker Fluidigm/3152016D 

CD8 Immune cells T-cells SK1/Biolegend 

CHI3L1 GBM cancer cells Mesenchymal EPR19078-157/abcam 

DNA All cells Cell nucleus Fluidigm 

DLL3 GBM cancer cells Neural progenitor like EPR22592-18/abcam 

EZH2 All cells Chromatin remodeller EPR9307(2)/abcam 

GFAP Normal brain cells Astrocyte ab218309 /abcam 

HIF1A All cells Hypoxia 16H4L13/Thermo 

HOPX GBM cancer cells Astrocyte like ab230544 

IBA1 Immune cells Pan-macrophage EPR16588 /abcam  

JARID2 All cells Chromatin remodeller Developed in house 

JARID2 All cells Chromatin remodeller EPR6357/abcam 

Ki67 All cells Proliferating cells B56/Fluidigm 

MOG Normal brain cells Oligodendrocytes MA5-24644/Thermo  

NCAM (CD56) Normal brain cells Immature Neuron HCD56/Biolegend 

NeuN Normal brain cells Mature Neuron  1B7/Biolegend 

NKp46 Immune cells NK cells MAB1850/RnD systems 

OLIG1 GBM cancer cells Oligodendrocyte progenitor like MAB2417/R&D 

P2Y12R Immune cells Microglia EPR23511-72/abcam 

SCD5 GBM cancer cells Oligodendrocyte progenitor like PA5-59963/Thermo 

SLC1A3 GBM cancer cells Astrocyte like EPR12686/abcam 

SMA Normal brain cells Vasculature 1A4/R&D 

SNAI1 GBM cancer cells Epithelial to Mesenchymal Transition AF3639/R&D 

SOD2 GBM cancer cells Mesenchymal EPR2560Y/abcam 

SOX2 GBM cancer cells GBM stem-like cell O30-678/Fluidigm 

TGFbeta GBM cancer cells GBM stem-like cell TW4-6H10/Fluidigm 

TMEM119 Immune cells Microglia HPA051870/sigma 

TNC GBM cancer cells GBM stem-like cell MAB2138/R&D 
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