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Abstract
AlphaFold2 revolutionized structural biology with the ability to predict protein structures with ex-
ceptionally high accuracy. Its implementation, however, lacks the code and data required to train
new models. These are necessary to (i) tackle new tasks, like protein-ligand complex structure pre-
diction, (ii) investigate the process by which the model learns, which remains poorly understood,
and (iii) assess the model’s generalization capacity to unseen regions of fold space. Here we report
OpenFold, a fast, memory-efficient, and trainable implementation of AlphaFold2, and OpenProtein-
Set, the largest public database of protein multiple sequence alignments. We use OpenProteinSet
to train OpenFold from scratch, fully matching the accuracy of AlphaFold2. Having established
parity, we assess OpenFold’s capacity to generalize across fold space by retraining it using carefully
designed datasets. We find that OpenFold is remarkably robust at generalizing despite extreme
reductions in training set size and diversity, including near-complete elisions of classes of secondary
structure elements. By analyzing intermediate structures produced by OpenFold during training,
we also gain surprising insights into the manner in which the model learns to fold proteins, dis-
covering that spatial dimensions are learned sequentially. Taken together, our studies demonstrate
the power and utility of OpenFold, which we believe will prove to be a crucial new resource for the
protein modeling community.
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1 Introduction
Predicting protein structure from sequence has been a defining challenge of biology for
decades (Anfinsen 1973, Dill et al. 2008). Building on a line of work applying deep learn-
ing to co-evolutionary information encoded in multiple sequence alignments (MSAs) (Jones
et al. 2015, Golkov et al. 2016, S. Wang et al. 2017, Liu et al. 2018, Senior et al. 2020, Xu
et al. 2021) and homologous structures (Šali and Blundell 1993, Roy et al. 2010), AlphaFold2
(Jumper et al. 2021) has arguably solved the problem for natural proteins with sufficiently
deep MSAs. The model has been made available to the public with DeepMind’s official
open-source implementation, which has been used to predict the structures of hundreds of
millions of proteins (Tunyasuvunakool et al. 2021, Varadi et al. 2021, Callaway 2022). This
implementation has enabled researchers to optimize AlphaFold2’s prediction procedure and
user experience (Mirdita, Schütze, et al. 2022) and to employ it as a module within novel
algorithms, including ones for protein complex prediction (Baek 2021), peptide-protein in-
teractions (Tsaban et al. 2022), structure ranking (Roney and Ovchinnikov 2022), and more
(e.g., Baltzis et al. 2022, Bryant et al. 2022, Wayment-Steele et al. 2022).

In spite of its outstanding utility, the official AlphaFold2 implementation omits code for
the model’s complex training procedure as well as the computationally expensive training
data required to run it. This makes it difficult to i) investigate AlphaFold2’s learning be-
havior and sensitivity to changes in data composition and model architecture and ii) create
variants of the model to tackle new tasks. Given the success of AlphaFold2, its many novel
components are likely to prove useful for tasks beyond protein structure prediction. For
instance, retraining AlphaFold2 using a dataset of protein-protein complexes resulted in Al-
phaFold2-Multimer (Evans et al. 2022), the state of the art model for predicting structures of
protein complexes. Until recently, however, this capability has been exclusive to DeepMind.

To address this shortcoming, we developed OpenFold, a trainable open-source implemen-
tation of AlphaFold2, and OpenProteinSet, a database of five million deep and diverse MSAs
that removes one of the most significant computational barriers—millions of CPU-hours—to
training new protein models at the scale of AlphaFold2. We trained OpenFold from scratch
using OpenProteinSet, matching AlphaFold2 in prediction quality. Apart from new training
code and data, OpenFold has several advantages over AlphaFold2: (i) it runs up to three
times faster on most proteins, (ii) it uses less memory, allowing prediction of extremely long
proteins and multi-protein complexes on a single GPU, and (iii) it is implemented in PyTorch
(Paszke et al. 2019), the most widely used machine learning framework (AlphaFold2 uses
Google’s JAX (Bradbury et al. 2018)). As such, OpenFold can be readily used by the widest
community of developers and interfaces with a rich ecosystem of existing machine learning
software (Rasley et al. 2020, Charlier et al. 2021, Falcon et al. 2019, Charlier et al. 2021,
Dao et al. 2022).

We used OpenFold to understand how the model learns to fold proteins, focusing on the
geometric characteristics of predicted structures during intermediate stages of training, and
identified multiple distinct phases of behavior. Specifically, by analyzing predicted structures
at multiple resolutions and decomposing them into secondary and tertiary elements, we found
that OpenFold learns spatial dimensions, secondary structure elements, and tertiary scales in
a staggered manner. Next, taking advantage of our discovery that ~90% of model accuracy
can be achieved in ~3% of training time, we retrained OpenFold multiple times on specially
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elided versions of the training set to quantify its ability to generalize to unseen protein folds.
Surprisingly, we found the model highly robust even to large elisions of fold space, but its
capacity to generalize varied based on the spatial extent of protein fragments and folds. We
observed even stronger performance when training the model on more diverse but smaller
datasets, some as small as 1,000 experimental structures. Taken together, these results yield
fundamental new insights into the learning behavior of AlphaFold2-type models and provide
new conceptual and practical tools for the development of biomolecular modeling algorithms.

2 Results

Newly trained OpenFold matches AlphaFold2 in accuracy
OpenFold reproduces the AlphaFold2 model architecture in full, without any modifications
that could alter its internal mathematical computations. This results in perfect interoper-
ability between OpenFold and AlphaFold2, enabling use of the original AlphaFold2 model
parameters within OpenFold and vice versa. To verify that our OpenFold implementation
recapitulates all aspects of AlphaFold2 training, we used it to train a new model from scratch.
OpenFold/AlphaFold2 training requires a collection of protein sequences, MSAs, and struc-
tures. As the AlphaFold2 MSA database has not been publicly released, we generated our
own database using the same MSA generation procedure described for AlphaFold2 but substi-
tuting newer versions of sequence databases, where available. Starting from approximately 15
million UniClust30 (Mirdita, Driesch, et al. 2017) MSAs, we selected approximately 270,000
diverse and deep MSAs to form a “self-distillation” set; such sets are used to augment exper-
imental training data with high-quality predictions. We predicted protein structures for all
MSAs in this set using AlphaFold2 and combined them with approximately 132,000 unique
(640,000 non-unique) experimental structures from the Protein Databank (wwPDB Con-
sortium 2018) to form the OpenFold training data set. During training on self-distillation
proteins, residues with a low AlphaFold2 confidence score (< 0.5 pLDDT) were masked.
Our validation set consisted of nearly 200 structures from CAMEO (Haas et al. 2018), an
online repository for continuous quality assessment of protein structure prediction models,
drawn over a three-month period ending on January 16, 2022. To facilitate future develop-
ment of protein modeling systems, we combined the ~400,000 MSAs in our training set with
~4.6 million deep MSAs we derived from UniClust30 and released them as OpenProtein-
Set, the largest collection of publicly available MSAs. For more details on OpenProteinSet
construction procedures, see Appendix B.

From our main training run, we selected seven snapshots to form a collection of distinct
(but related) models. During prediction time, these models can generate alternate struc-
tural hypotheses for the same protein. To further increase the diversity of this collection,
we fine-tuned a second set of models that we branched off from the main model. In this
second branch, we disabled the model’s template pipeline, similar to the procedure used for
AlphaFold2. Selected snapshots from this branch were added to the pool of final models,
resulting in a total of 10 distinct models. Full training details are provided in Appendix D.

We summarize the main results of our training experiment in Figure 1. Predictions made
by OpenFold and AlphaFold2 on the CAMEO validation set are assessed using the lDDT-Cα
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(Mariani et al. 2013) metric (Figure 1A) and show very high concordance between OpenFold
and AlphaFold2, demonstrating that OpenFold successfully reproduces AlphaFold2. Figure
1C provides a visual illustration of this concordance. Tracking prediction accuracy as a
function of training stage (Figure 1D) reveals the remarkable fact that OpenFold achieves
~90% of its final accuracy in just 1,500 GPU hours (~3% of training time) and ~95% in
2,500 GPU hours; total training time is approximately 50,000 GPU hours. This rapid rise
in accuracy suggests that training of new OpenFold variants can be accomplished with far
less compute than is necessary for full model training, facilitating rapid exploration of model
architectures. We take advantage of this fact in our data elision experiments.

AlphaFold2 training is broadly split into two phases, an initial training phase and a more
computationally intensive fine-tuning phase. In the latter, the size of protein fragments used
for training is increased to 384 residues and an additional loss function that penalizes struc-
tural violations (e.g. steric clashes) is enabled. By comparing predicted structures between
the initial and fine-tuning phases, we find that the second phase has only a modest effect on
overall structural quality metrics, even when considering only long proteins greater than 500
residues in length (see Appendix G.1). Instead, the primary utility of fine-tuning appears
to be to resolve violations of known chemical constraints. In our training experiments, this
occurs quickly after the beginning of fine-tuning, suggesting that elided fine-tuning runs can
be used with minimal impact on prediction quality.

In addition to prediction accuracy, we also tracked pLDDT as a function of training
stage. pLDDT is the model’s estimate of the lDDT-Cα of predicted structures and serves as
its primary confidence metric. We find that pLDDT is well correlated with true lDDT early
in training, albeit initially over-confident in its self-assessment and later entering a phase of
under-confidence (Figure 1B). It is notable that the model is capable of assessing the quality
of its own predictions early on in training, when its overall predictive capacity remains very
limited.

OpenFold learns spatial dimensions sequentially
Having established the equivalency of OpenFold and AlphaFold2, we next set out to under-
stand how these systems learn to fold proteins by analyzing structures predicted by OpenFold
as it progresses through training. We focus in particular on the first five thousand steps of
training, during which the model experiences rapid gains in accuracy. We find a remarkably
consistent progression in the spatial dimensionality of predicted structures, summarized in
Figure 2A and best visualized in animations we provide in the supplement1. At first, pre-
dictions are point-like and zero-dimensional, as the model is initialized to place all residues
at the origin (using the so-called “black hole” initialization). Early on, structures extend
along a single axis, remaining approximately one-dimensional. A few hundred training steps
later, these tubular predictions begin to stretch in an orthogonal dimension to resemble
curved, two-dimensional surfaces; a side view of one such structure is shown in Figure 2A.
In this stage, flattened secondary structure elements are often clearly visible. Once the two-
dimensional extent of the final structure is nearly fully realized, predicted structures begin

1Predicted structure animations for diverse validation proteins can be accessed [here]. Residues are color-
coded according to the 3-state secondary structure of the accompanying experimental fold.
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A B

C D

Figure 1: OpenFold matches the accuracy of AlphaFold2. (A) Scatter plot of
lDDT-Cα values of AlphaFold and OpenFold predictions on the CAMEO validation set. (B)
Average pLDDT vs lDDT-Cα of OpenFold predictions on the CAMEO set during the early
stage of training. OpenFold is initially overconfident but quickly becomes underconfident,
gradually converging to accurate confidence estimation. (C) Predictions by OpenFold and
AlphaFold2 overlayed with an experimental structure of S. tokunonesis TokK protein (Knox
et al. 2022; PDB accession code: 7KDX_A). (D) Average lDDT-Cα for OpenFold computed
over the training set during the course of training. The template-free branch is shown in
green, the template-utilizing one in orange, and the initial-training/fine-tuning boundary in
black. Template-free accuracy is initially poor because the exponential moving average of
the weights used for validation was being reinitialized.
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to inflate and acquire volume along a third orthogonal dimension, arriving at reasonably
accurate backbone structures. Finally, after global geometry stabilizes, secondary structure
elements begin to acquire precise shape and atomic detail. Subsequent epochs make largely
minor, local revisions to secondary structure elements, which we analyze in a later section.
We note that this progression differs markedly from that obtained when analyzing structures
predicted from intermediate layers of a fully trained model, which are all generally globular
and three-dimensional in nature with at least partially-formed secondary structure elements
(Jumper et al. 2021).

To formally quantify this sequential learning of spatial dimensions, we apply principal
component analysis (PCA) to the atomic coordinates of predicted structures during train-
ing. For each protein in our validation set, we predict its structures using partially trained
models between training steps 0 and 5,000, during the critical period of rapid early improve-
ment (for reference, full training continues for over 90,000 steps). We compute the principal
components of every predicted structure along with its associated eigenvalues, which roughly
quantify a structure’s flatness along each of its spatial dimensions. Intuitively, a perfectly
spherical structure would have three eigenvalues of approximately equal magnitude, while
a completely flat two-dimensional structure would have just two non-zero eigenvalues. We
visualize PCA eigenvalues as colorbars for a few sample proteins2 in Figure 2A, where the
intensities of the three colored panes shown beside each structure correspond to the mag-
nitudes of the three (sorted) eigenvalues of that structure. We observe that during the 1D
phase, the first eigenvalue is dominant, while in the 2D and 3D phases the second and third
eigenvalues become discernible, respectively.

To systematically analyze this process we plot the averages, across our entire validation
set, of the three eigenvalues of predicted structures in Figure 2B. We observe that the first
eigenvalue begins to rise around step 1,500, corresponding to expansion of the first dimension
and thus the 1D phase. By step 2,200, the first dimension has expanded substantially when
the second eigenvalue begins to increase in value, and quickly thereafter (step 2,400), the
third eigenvalue begins to rise while the second and first stabilize. Although it should
be noted that individual proteins enter the different phases at slightly different times, the
timeline is sufficiently consistent across proteins such that there are clearly visible points in
time where one eigenvalue dominates, and then momentarily two, and finally three.

Low-dimensional structures are partially formed PCA projections
During our analysis of structures predicted at intermediate stages of training, we observed
that predictions in the 2D phase contain patterns reminiscent of two-dimensional projections
of the secondary structure elements of the final globular structure. The alpha helices of PDB
structures 7DQ9_A and 7RDT_A, for example, appear as flat spirals; the beta sheets of
7LBU_A resemble wavy lines (Figure 2A). This fact contributes to a distinct impression that
predictions don’t simply undergo phases of dimensionality, but that during each phase they
“grow” predominantly along the new dimension corresponding to that phase. More precisely,
the model appears to learn to generate successive lower dimensional PCA projections of the

2PDB accession codes 7DQ9_A (Wei et al. 2021), 7RDT_A (Carroll et al. 2021), and 7LBU_A (Yu et al.
2021)
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A

Side view
B

Figure 2: Dimensional growth of OpenFold predictions. (A) Predicted structures of
three validation set proteins as training progresses from left to right. The dimensionality of
each prediction appears to grow in stages. Colors (red, green, blue; RGB) are used to index
different dimensions by computing RGB values for each residue as the dot product of the
residue’s coordinates with each of the prediction’s scaled principal components, respectively.
Secondary structure elements (SSE) appear to be refined only after an accurate backbone
has formed. Colorbars visualize the relative magnitudes of each structure’s three PCA eigen-
values from largest to smallest (top to bottom). (B) Mean sorted PCA eigenvalues for all
proteins in the CAMEO validation set as a function of OpenFold training step.
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true 3D structures, first learning a 1D PCA projection of the final structure, then a 2D PCA
projection, and finally the full 3D structure.

To investigate this learning hypothesis, we created 1D and 2D PCA projections of pre-
dicted structures at each timestep and compared them to the full 3D prediction at training
step 5,000, at the end of the rapid rise in accuracy, using the translationally- and rotationally-
invariant distance-based root mean square deviation (dRMSD) metric (Koehl 2001). Results
are shown in Figure 3A. Before the model exits the 1D and 2D prediction phases, the full
(non-projected) predictions (“3D”) and their lower dimensional projections (“1D” and “2D”)
are almost indistinguishable from each other, as expected; at these stages, as we previously
described, predicted structures are essentially one- or two-dimensional. Thereafter, as the
predictions gain dimensions, their dRMSDs to the final structure diverge from those of the
lower dimensional projections. Remarkably, much of the overall drop in dRMSD occurs be-
fore the 2D and 3D projections diverge, indicating that the model is improving its accuracy
in lower dimensions before moving on to higher dimensions. It does not perfect each pro-
jection before transitioning, however. Figure 3B shows a similar experiment to 3A except
low-dimensional projections for each training iteration are compared to corresponding low-
dimensional projections of the final prediction at step 5,000. In the extreme, if the model
were learning perfect low-dimensional PCA projections of the final 3D structure at the end
of each low-dimensional training phase, the 2D projections of the intermediate and final
predictions would match exactly at the end of the 2D phase. Additionally, since the 3D
prediction is essentially flat at the end of the 2D phase, its dRMSD with respect to the 3D
structure should be high. Such a separation is not visible in Figure 3B; instead, all three
projections converge to their final counterparts at nearly the same time. This suggests that
while the model learns crude approximations of low-dimensional PCA projections during
each phase, its learning is largely continuous, with all spatial dimensions continuing to be
refined until the end. However, the degree to which the dominant dimensions continue to be
refined diminishes over time relative to less dominant ones.

To better assess this phenomenon and gain a finer-grained view of the progress that
occurs during each phase, we analyzed the movement of atoms along the directions of the final
prediction’s principal components as a function of training step. Because predicted structures
and their associated principal components are in principle quite mobile over the course of
training, this movement is difficult to characterize precisely. Nonetheless, we devised the
following scheme to estimate it. Given 𝑛 predicted structures in chronological order, for
each 𝑖 in {𝑛−1, ..., 1}, we align the 𝑖th structure to the 𝑖+1th structure sequentially. Then,
for every pair of consecutive predictions, we compute the absolute value of the displacement
of each Cα atom along the directions of the three principal components of the final prediction.
In Figure 3C we sequentially plot these displacements for two CAMEO proteins. As before,
there is not a perfect separation between phases, and discernible motion occurs in all three
directions in every phase. This is compounded by the fact that predictions in the “2D
phase” are generally not flat two-dimensional sheets but instead exhibit some degree of
curvature and thus produce spurious movement in the third dimension. Nevertheless, both
proteins show clearly differentiated spikes in each phase corresponding to rapid expansion
in the phases’ respective dimensions. Furthermore, each protein nears its maximum spatial
extent in each principal direction during the corresponding phase. After the 1D phase, for
example, growth along the direction of the first principal component is greatly subdued.
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A B

C
7DQ9_A 7RDT_A

End of 1D phase

End of 2D phase

Figure 3: Early predictions crudely approximate lower-dimensional PCA pro-
jections. (A) Mean dRMSD, as a function of training step, between low-dimensional PCA
projections of predicted structures and the final 3D prediction at step 5,000 (denoted by *).
Averages are computed over the CAMEO validation set. Insets show idealized behavior cor-
responding to unstaggered, simultaneous growth in all dimensions and perfectly staggered
growth. Empirical training behavior more closely resembles the staggered scenario. (B)
Low-dimensional projections as in (A) compared to projections of the final predicted struc-
tures at step 5,000. (C) Mean displacement, as a function of training step, of Cα atoms
along the directions of their final structure’s PCA eigenvectors. Results are shown for two
individual proteins (PDB accession codes 7DQ9_A and 7RDT_A). Shaded regions corre-
spond loosely to the “1D,” “2D,” and “3D” phases of dimensionality.
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Intuitively, the model appears to exhaust the easiest gains in the most dominant dimensions
before proceeding to the less dominant ones, making relatively minor adjustments in previous
dimensions thereafter.

Learning of secondary structure is staggered and multi-scale
The preceding analysis suggests that secondary structure elements (SSEs) are learned sub-
sequent to tertiary structure. We next set out to formally confirm this observation and
chronicle the order in which distinct SSEs are learned. For every protein in our validation
set and every step of training, we used DSSP (Kabsch and Sander 1983) to identify residues
matching the eight recognized SSE states. We treat as ground truth DSSP assignments of
residues in the experimental structures, and compute F1 scores as a combined metric of the
recall and precision achieved by the model for every type of SSE at various training steps
(Figure 4A).

We observe a clear sequence in which SSEs are discovered: alpha helices are learned first,
followed by beta sheets, followed by less common SSEs. Unsurprisingly, this sequence roughly
corresponds to the relative frequencies of SSEs in proteins (Figure 4B), with the exception of
uncommon helix variants. As was previously evident, the model’s discovery of SSEs lags that
of accurate global structure. For instance, the F1 score for beta sheets (‘E’) only plateaus
hundreds of steps after global structural accuracy, as measured by GDT-TS (Zemla 2003).
This is also clearly visible in our animations of progressive training predictions; for each
protein, secondary structure is recognized and rendered properly only after global geometry
is essentially finalized.

To investigate the possibility that OpenFold is achieving high alpha helical F1 scores
by gradually learning small fragmentary helices, we binned predicted helices by the longest
contiguous fraction of the ground-truth helix they recover and plotted the resulting histogram
as a function of training step in Figure 4C. Evidently, little probability mass ever accumulates
between 0.0—helices that are not recovered at all—and 1.0—helices that are completely
recovered. This suggests that, at least from the perspective of DSSP, most helices become
correctly predicted essentially all at once. This sudden transition coincides with most of the
improvement in helix DSSP F1 scores in the early phase of training.

Based on the above observation, we reasoned that as training progresses, OpenFold may
first learn to predict smaller structural fragments before larger ones, and that this may
be evident on both the tertiary and secondary structure levels. Focusing first on tertiary
structure, we assessed the prediction quality, at each training step, of all non-overlapping
fragments of length 10, 20, and 50 residues in our validation set. Average GDT-TS values
are shown in Figure 5A. Unlike global GDT-TS (pink), which improves minimally in the
first 300-400 steps of training, fragment GDT-TS improves markedly during this phase, with
shorter fragments showing larger gains. By step 1,000, when the model reaches a temporary
plateau, it has learned to predict local structure far better than global structure (GDT-TS >
50 for 10-residue fragments vs GDT-TS < 10 for whole proteins). Soon after, at step 1,800,
the accuracy of all fragment lengths including global structure begin to rise rapidly. However,
the gains achieved by shorter fragments are smaller than those of longer fragments, such that
the gap between 10-residue fragments and whole proteins is much smaller at step 3,000 than
1,800 (GDT-TS ~90 for 10-residue fragments vs. GDT-TS ~70 for whole proteins). This
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B C

A

Figure 4: Secondary structure categories are learned in succession (A) F1 scores
for secondary structure categories over time. The corner pane depicts the same data using a
simplified 3-state assignment (details in Appendix G.3). GDT-TS and final values are also
provided. (B) Corresponding counts of individual secondary structure assignments. (C)
Contiguous fractions of individual helices recovered early in training.
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trend continues until the model is fully trained, where the gap between 10-residue fragments
and whole proteins shrinks to a mere 10 GDT-TS points. Thus, while the model ultimately
learns to predict global structure almost as well as local structure, it first learns to predict
the latter.

Turning to secondary structure, we investigated whether the same multi-scale learning
behavior is detectable when examining SSEs. As before, we treat as ground truth the DSSP
classifications of experimental structures in our validation set, focusing exclusively on alpha
helices and beta sheets. We bin both SSEs according to size, defined as number of residues
for alpha helices and number of strands for beta sheets. As uniform binnings would result
in highly imbalanced bins, we instead opt for a dynamic binning procedure. First, each
SSE is assigned to a (potentially imbalanced) bin that corresponds to its size. Bins are
then iteratively merged with adjacent bins, subject to the condition that no bin exceed a
maximum size (in this case, 200 for helices and 30 for sheets), until no further merges can
occur. Finally bins below a minimum bin size (20 for both) are unconditionally merged with
adjacent bins. We compute metrics averaged over each bin independently (Figure 5B).

Similar to what we observe for tertiary structure, short helices and narrow sheets are
better predicted during earlier phases of training than their longer and wider counterparts,
respectively. Improvement in SSE accuracy coincides with the rapid rise in tertiary structure
accuracy, albeit shifted, as we observed in Figure 4A. Notably, the final quality of predicted
SSEs is essentially independent of length/width despite the initially large spread in pre-
diction accuracies, suggesting that OpenFold ultimately becomes scale-independent in its
predictive capacity, at least for secondary structure. We note that the identification of SSEs
is performed by DSSP, which is sensitive to the details of their hydrogen bonding networks.
It is possible that in earlier phases of training, OpenFold has already recovered aspects of
secondary structure not recognized by DSSP on account of imprecise atom positioning.

OpenFold can achieve high accuracy using small training sets
AlphaFold2 was trained using ~132,000 protein structures from the PDB, the result of
decades of painstaking and expensive experimental structure determination efforts. For
other molecular systems for which AlphaFold2-style models may be developed, data is far
more sparse; e.g., the PDB contains only 1,664 RNA structures. We wondered whether the
high accuracy achieved by AlphaFold2 in fact depended on very large training sets, or if it
is possible to achieve comparable performance using less data. Were the latter to be true,
it would suggest broad applicability of the AlphaFold2 paradigm to molecular problems. To
investigate this possibility, we performed a series of OpenFold training runs in which we used
progressively less training data, assessing model accuracy as a function of training set size.

Our first set of tests randomly subsample the original training data to 17,000, 10,000,
5,000, 2,500, 2,000, and 1,000 protein chains. We used each subsampled set to train OpenFold
for at least 7,000 steps, through the initial rapid rise phase to early convergence. To avoid
information leakage from the full training set, we did not use self-distillation, putting the
newly trained models at a disadvantage relative to the original OpenFold. We trained models
with and without using structural templates. In all other regards, training was identical to
that of the standard OpenFold model. Model accuracy (assessed using lDDT-Cα) is plotted
as a function of training step in Figure 6A, with colors indicating size of training set used.
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A

B

Figure 5: Learning proceeds at multiple scales. (A) Mean GDT-TS and dRMSD-Cα
validation scores as a function of training step for non-overlapping protein fragments of vary-
ing lengths (colorbars indicate fragment length). (B) Average contact F1 score (8Å thresh-
old) and dRMSD for predicted alpha helices and beta sheets of varying lengths and number
of strands, respectively, as a function of training step. Colorbars indicate the weighted av-
erage of the lengths and widths of helices and sheets in each bin, respectively.
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Figure 6: OpenFold generalization capacity on elided training sets. (A) Valida-
tion set lDDT-Cα as a function of training step for models trained on elided training sets
(10k random split repeated 3x). (B) Same as (A) but for CATH-stratified dataset elisions.
Validation sets vary across stratifications and are not directly comparable. (C) Experimen-
tal structures (orange) and mainly alpha-trained (purple) and mainly beta-trained (green)
predictions of largely helical Lsi1 (top) and beta sheet-heavy TMED1 (bottom).
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We find that merely 10, 000 protein chains—about 7.6% of all training data (yellow
curves)—suffice to reach essentially the same initial lDDT-Cα as a model trained on the
full training set (pink curve). After 20,000 steps (not pictured), the full data model reaches
a peak lDDT-Cα of 0.83, while after 7,000 steps, the 10,000-sample model has already
exceeded 0.81 lDDT-Cα. Although performance gradually degrades as training set size
decreases further, we find that all models are surprisingly performant, even ones trained
on our smallest subsample of 1,000 protein chains, corresponding to just 0.76% of the full
training set. In fact, this model reaches an lDDT-Cα of 0.64, exceeding the median lDDT-
Cα of 0.62 achieved at CASP13 by the first AlphaFold, the best performing model at the
time.

Comparing the accuracies of models trained with and without templates, we find that
templates on average contribute little to prediction quality even in the low-data setting. This
is consistent with the original AlphaFold2 ablation studies which showed that templates have
a minimal effect except when MSAs are shallow or entirely absent.

OpenFold generalizes to unseen regions of fold space
Randomly subsampling the OpenFold training set, as in the preceding analysis, reduces the
quantity of the training data used but not necessarily its overall diversity. In molecular
modeling tasks, the data available for training often does not reflect the underlying diversity
of the molecular system being modeled, due to biases in the scientific questions pursued,
experimental assays available, etc. To assess OpenFold’s capacity to generalize to out-of-
distribution data, we subsample the training set in a structurally stratified manner such that
entire regions of fold space are excluded from training but retained for model assessment.
Multiple structural taxonomies for proteins exist, including the hierarchical CATH (Orengo
et al. 1997, Sillitoe et al. 2021) and SCOP (Andreeva et al. 2020) classification systems. For
this task we use CATH, which assigns protein domains—in increasing order of specificity—
to a (C)lass, (A)rchitecture, (T)opology, and (H)omologous superfamily. Domains with
the same homologous superfamily (H) classification may differ superficially but have highly
similar structural cores. Our preceding analysis can be considered to structurally stratify
data at the H level. For the present analysis, we stratify data further, holding out entire
topologies (T), architectures (A), and classes (C).

We start by filtering out protein domains that have not been classified by CATH, leaving
ourselves with ~440,000 domains spanning 1,385 topologies, 42 architectures, and 4 classes.
For the topology stratification, we randomly sample 100 topologies and remove all associated
chains from the training set. We construct a validation set from the held out topologies
by sampling one representative chain from each. We also construct successively smaller
training sets from shrinking fractions of the remaining topologies, including a training set
that encompasses all of them. We follow an analogous procedure for architectures except that
in this case, the validation set consists of 100 chains randomly selected from 5 architectures
(20 per architecture). For class-based stratification, the validation set comprises domains
that are neither in the mainly alpha nor mainly beta classes, hence enriching for domains
with high proportions of both SSEs. For training, we construct two sets, one corresponding
exclusively to the mainly alpha class and another to the mainly beta class—this enables us
to ascertain the capability of models trained largely on either alpha helices or beta sheets
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to generalize to proteins containing both. For all stratifications, we train OpenFold to early
convergence (~7,000 steps) from scratch. To prevent leakage of structural information from
held out categories, all runs are performed without templates. We plot model accuracies
as a function of training step in Figure 6B, with colors indicating the fraction of categories
retained during training for each respective level of the CATH hierarchy.

As expected, removing entire regions of fold space has a more dramatic effect on model
performance than merely reducing the size of the training set. For example, retaining 10%
of topologies for training (green curve in Figure 6B, topology split), which corresponds to
~6,400 unique chains, results in a model less performant than one containing 5,000 randomly
selected chains (green curve in Figure 6A, no templates). However, even in the most severe
elisions of training set diversity, absolute accuracies remain unexpectedly high. For instance,
the training set containing 5% of topologies (2,000 chains) still achieves an lDDT-Cα near
0.6, comparable again to the first AlphaFold, which was trained on over 100,000 protein
chains. Similarly, the training set for the smallest architecture-based stratification only
contains domains from one architecture (out of 42 that cover essentially the entirety of
the PDB), yet it peaks near 0.6 lDDT-Cα. Most surprisingly, the class-stratified models, in
which alpha helices or beta sheets are almost entirely absent from training, achieve very high
lDDT-Cα scores of >0.7 on domains containing both alpha helices and beta sheets. These
models likely benefit from the comparatively large number of unique chains in their training
sets—15,400 and 21,100 for alpha helix- and beta sheet-exclusive sets, respectively. It should
also be noted that the mainly alpha and mainly beta categories do contain small fractions
of beta sheets and alpha helices, respectively (see Supplementary Figure 8). Despite these
caveats, the model is being tasked with a very difficult out-of-distribution generalization
problem in which unfamiliar types of SSEs (from the perspective of the training set) have
to essentially be inferred with minimal quantities of corresponding training data. Taken
together, these results show that the AlphaFold2 architecture is capable of remarkable feats
of generalization.

To better understand the behavior of class-stratified models, we analyzed the structures of
two protein domains, one composed almost exclusively of alpha helices (rice Lsi1 aquaporin
domain (Saitoh et al. 2021)) and another of beta sheets (human TMED1 domain (Mota
et al. 2022)), as they are predicted by models trained on the mainly alpha or mainly beta
datasets. In the top row of Figure 6C, we show an experimental structure (orange) for Lsi13

along with predictions made by the mainly alpha-trained model (purple) and mainly beta-
trained model (green). In the bottom row we show similar figures for TMED14. Predictably,
the mainly alpha-trained model accurately predicts the alpha helices of Lsi1 but fails to
properly form beta sheets for TMED1 and incorrectly adopts a small alpha helix in part of
the structure. The mainly beta-trained model has the opposite problem: its Lsi1 prediction
contains poorly aligned helices and an erroneous beta sheet, but TMED1 is reasonably well
predicted. Notably, however, neither fails catastrophically. Regions corresponding to the
beta sheets of Lsi1 are predicted by the mainly alpha model with approximately the right
shape, except that their atomic coordinates are not sufficiently precise to enable DSSP to
classify them as beta sheets.

3PDB accession code 7CJS_B (Saitoh et al. 2021)
4PDB accession code 7RRM_C (Mota et al. 2022)
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Generalization capacity is scale-dependent
OpenFold’s surprising capacity for generalization across held out regions of fold space sug-
gests that it is somewhat indifferent to the diversity of the training set at the global fold level.
Instead, the model appears to learn how to predict protein structures from local patterns of
MSA/sequence-structure correlations—fragments, secondary structure elements, individual
residues, and so on—rather than from global fold patterns captured by CATH. This raises
the possibility that the model’s capacity for generalization depends on the spatial scale of
the prediction task. To directly test this hypothesis, we assessed model accuracy on protein
fragments of increasing length using both the GDT_TS and lDDT-Cα metrics as a function
of the fraction of the training set retained for topology- and architecture-stratified models
(Figure 7). Note that lDDT-Cα is less sensitive to global fit than GDT_TS. To make re-
sults directly comparable between different stratifications, we used a common validation set
derived from CAMEO. This validation set likely contains domains from all CATH categories
and may thus overestimate accuracies.

We observe that fragments of all lengths are better predicted when more data is used for
training. However, the relative gains seen by larger fragments and whole domains (pink) far
exceed those seen by smaller fragments (blue), consistent with the hypothesis that generaliza-
tion capacity is length-dependent. In particular, it indicates that local structure can in fact
be robustly learned from highly elided data sets, while global structure is more dependent
on broad representation of fold diversity in the training set.

OpenFold is more efficient and trains more stably than AlphaFold2
While the OpenFold model we used in all of the above experiments perfectly matches the
computational logic of AlphaFold2, we have additionally implemented a number of changes
that minimally alter model characteristics but improve ease of use and performance when
training new models and performing large-scale predictions.

First, we made several improvements to the data preprocessing and training procedure,
including a low-precision (“FP16”) training mode that facilitates model training on commer-
cially available GPUs. Second, we introduced a change to the primary structural loss, FAPE,
that enhances training stability. In the original model, FAPE is clamped—i.e., limited to
a fixed maximum value—in a large fraction of training batches. We find that in the dy-
namic early phase of training, this strategy is too aggressive, limiting the number of batches
with useful training signal and often preventing timely convergence. Rather than clamping
entire batches in this fashion, we instead clamp the equivalent fraction of samples within
each batch, ensuring that each batch contains at least some unclamped chains. In doing so,
we are able to substantially improve training stability and speed up model convergence (see
Figure 8 and Appendix C.2).

Third, we made optimizations that improve memory efficiency during training, when
model weights are continually updated to optimize model behavior for prediction, and infer-
ence, when the model is used to make new predictions. In AlphaFold2, the computational
characteristics of these two modes vary greatly. To save memory at training time, which re-
quires storing intermediate computations during the optimization procedure, AlphaFold2 and
OpenFold are evaluated on short protein fragments ranging in size from 256 to 384 residues.
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Figure 7: Reduced dataset diversity disproportionately affects global structure.
Mean GDT-TS and lDDT-Cα of non-overlapping protein fragments from CAMEO validation
set as a function of the percentage of CATH clusters in elided training sets. Data for both
topology and architecture elisions are included. Fragmenting procedure is the same as that
described in Figure 5A.
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Figure 8: Stability of new FAPE clamping protocol. lDDT-Cα and dRMSD-Cα on
CAMEO validation set as a function of training step for five independent training runs with
(orange) and without (blue) new FAPE clamping protocol. Runs using old protocol exhibit
substantial instability with two rapidly converging runs, two late converging runs, and one
non-converging run. In contrast, all 15 independent runs using the new protocol converge
rapidly. Runs using the new protocol also reach high accuracy faster.

At inference time, intermediate computations need not be stored, but input sequences can
be more than ten times longer than the longest fragments encountered during training. Since
the model’s memory usage naively grows cubically with input length, inference-time predic-
tion stresses modules that are not necessarily bottlenecks at training time. To satisfy both
sets of desiderata and enhance model efficiency, we implemented a number of training- and
inference-specific optimizations. These optimizations create trade-offs between memory con-
sumption and speed that can be tuned differently for training and inference. They include
advanced implementations of neural network attention mechanisms (Vaswani et al. 2017)
with favorable properties for unusually short and long sequences (Rabe and Staats 2021,
Dao et al. 2022), module refactoring for lower memory usage, optional approximations of
certain computations that reduce the memory burden, and specialized low-level code cus-
tomized for GPU hardware. For technical details see appendices F.1 and F.2.

Taken together, these optimizations result in a substantially more efficient implementa-
tion than AlphaFold2. We report OpenFold runtimes in Table 1. During inference, Open-
Fold is up to three times faster than AlphaFold2 for proteins shorter than 1,100 residues.
AlphaFold is faster than OpenFold for proteins between 1,100 and 2,400 residues in length,
but thereafter AlphaFold2 crashes on single GPUs due to memory constraints. OpenFold
runs successfully on longer proteins and complexes, with single-GPU predictions reaching up
to 4,700 residues. OpenFold training speed matches or improves upon that of AlphaFold2,
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as reported by other researchers using OpenFold (Cheng et al. 2022, Li et al. 2022).

3 Discussion
We have developed OpenFold, a complete open-source reimplementation of AlphaFold2 that
includes training code and data. By training OpenFold from scratch and matching the
accuracy of AlphaFold2, we have demonstrated the reproducibility of the AlphaFold2 model
for protein structure prediction. Furthermore, the OpenFold implementation introduces
technical advances over AlphaFold2, including markedly faster prediction speed. It is built
using PyTorch, the most widely used deep learning framework, facilitating incorporation of
OpenFold components in future machine learning models.

OpenFold immediately makes possible two broad areas of advances: (i) deeper analyses
of the strengths, weaknesses, and learning behavior of AlphaFold2-like models and (ii) devel-
opment of new (bio)molecular models that take advantage of AlphaFold2 modules. In this
work, we have focused on the former. First, by analyzing predicted structures of partially
trained models, we discovered that AlphaFold2-like models learn spatial dimensions sequen-
tially. This behavior has implications for the design of model architectures and training
regimens. For example, integrating physical priors into machine learning models is an area
of outstanding scientific interest (Karniadakis et al. 2021). Efforts at such syntheses have
had mixed results, and, indeed, AlphaFold2 serves as a seminal example of a highly success-
ful model that is almost entirely devoid of physical priors. Its learning behavior illustrates
why incorporating such priors would be difficult—during the collapsed 1D and 2D phases of
learning, all predicted structures exhibit gross violations of basic chemical laws with numer-
ous steric clashes. Forbidding such violations however would drastically alter AlphaFold2’s
learning behavior. In fact, in the original AlphaFold2 paper, it is observed without fur-
ther elaboration that enabling a violation loss to penalize steric clashes and non-physical
bond lengths destabilizes training. Our observation of the spatially collapsed learning phase
provides an explanation for this observation. The solution that AlphaFold2 adopts for this
problem, namely to penalize against physical violations only in later stages of training, sug-
gests a broader strategy to tackle the incorporation of physical priors: a curriculum learning
approach in which models are first free to extract information and learn from data, after
which more complex physical priors can be gradually introduced to boost the model’s ca-
pacity for generalization. Analyzing learning trajectories, as we have done for OpenFold,
provides a concrete timeline for when such priors can be injected into the training process.

Second, we observed that the spatially collapsed phases correspond to imperfect lower-
dimensional PCA projections of the final predicted structure. Why this occurs is not a priori
obvious, given that other end-to-end differentiable protein structure models do not exhibit
the same behavior (see e.g., AlQuraishi 2019). Although we do not have direct evidence, we
suspect that aspects of the AlphaFold2 architecture—specifically the FAPE loss function—
likely drive this phenomenon. We speculate that the PCA-like progression allows the model
to greedily minimize error by solving problems with the biggest payoff to the FAPE loss first,
which by definition lie along the largest principal component of the ground-truth structure.
Once solved, the model moves on to smaller problems lying along other, lower-dimensional
projections. Were this to be the case, the staggering of spatial dimensions during learning
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N OpenFold (s) AlphaFold (s) Speedup
100 2.8 8.8 3.14x
200 6.7 13.9 2.07x
300 13.0 21.9 1.68x
400 22.0 33.7 1.53x
500 34.7 50.8 1.46x
600 50.8 72.8 1.43x
700 71.0 102.5 1.44
800 96.4 135.4 1.40x
900 136.5 177.1 1.30x
1000 215.3 222.8 1.03x
1100 288.7 278.1 0.96x

...
1500 614.1 549.1 0.89x

...
2000 1251.2 1081.1 0.86x

...
2500 2223.9 OOM ∞

...
3000 3517.5 OOM ∞

...
3500 6509.1 OOM ∞

...
4000 10393.3 OOM ∞

...
4500 12507.7 OOM ∞

...
4700 13908.8 OOM ∞

Table 1: OpenFold vs. AlphaFold2 prediction speed. Prediction runtimes in seconds
on a single A100 NVIDIA GPU for OpenFold and AlphaFold2 on proteins of varying lengths.
OpenFold is faster than AlphaFold2 for proteins shorter than 1,100 residues and is able to
predict longer proteins than AlphaFold2 on the same hardware.
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would be contingent on the geometry of proteins in the training set. The extreme case of
a training set composed entirely of long, slim, tubular proteins would produce even more
dramatically staggered phases. Conversely, a training set composed of perfectly spherical
proteins would exhibit even growth along all spatial dimensions. This behavior would be
a function of the overall training set and would not necessarily get reflected in individual
proteins. For instance, the “sphere”-like type-A feruloyl esterase protein5 shown in Figure 2
undergoes staggered dimensional expansion, consistent with our training set being broadly
representative of protein fold space. Regardless, these observations suggest that it may
be possible to deliberately simplify other difficult problems in molecular modeling with a
learning curriculum in which “toy” models are first trained to predict lower-dimensional
projections of target molecules (or more generally, geometric objects) before being tasked to
predict their fully realized instantiations.

Third, we assessed OpenFold’s capacity to learn from training sets substantially reduced
in size. Remarkably, we found that even a 100-fold reduction in dataset size (0.76% models
in Figure 6A) results in models more performant than the first version of AlphaFold. Stated
differently, the architectural advances introduced in AlphaFold2 enable it to be 100x more
data efficient than its predecessor, which at the time of its introduction set a new state of
the art. These results demonstrate that architectural innovations can have a more profound
impact on model accuracy than larger datasets, particularly in domains where data acqui-
sition is costly or time-consuming, as is often the case in (bio)molecular systems. However,
it merits noting that AlphaFold2 in general learns MSA-structure, not sequence-structure,
relationships. MSAs implicitly encode a substantial amount of structural knowledge, as
evidenced by early co-evolution-based structure prediction methods which were entirely un-
supervised, making no use of experimental structural data (Marks et al. 2011, Sułkowska
et al. 2012). Hence, the applicability of the AlphaFold2 architecture to problems that do not
exhibit a co-evolutionary signal remains undemonstrated.

Our data elision results can be interpreted in light of recent work on large transformer-
based language models that has revealed broadly applicable “scaling laws” that predict
model accuracy as a simple function of model size, compute utilized, and training set size
(Kaplan et al. 2020, Hoffmann et al. 2022). When not constrained by any one of these three
pillars, models benefit from investments into the other two. These observations have largely
focused on transformer-based architectures, of which AlphaFold2 is an example, but more
recent work has revealed similar behavior for other architectures (Tay et al. 2022). Although
determining the precise scaling properties of AlphaFold2 is beyond the scope of the present
study, our results suggest that it is hardly constrained by the size or diversity of the PDB,
motivating potential development of larger instantiations of its architecture.

OpenFold lays the groundwork for future efforts aimed at improving the AlphaFold2
architecture and repurposing it for new molecular modeling problems. Since the release of
our codebase in November 2021, there have been multiple efforts to build upon and extend
OpenFold. These include the ESMFold method for protein structure prediction (Lin et al.
2022), which replaces MSAs with protein language models (Alley et al. 2019, Chowdhury et
al. 2022, Wu et al. 2022), and FastFold, a community effort that has implemented significant
improvements including fast model-parallel training and inference (Cheng et al. 2022). We

5PDB accession code 7DQ9_A (Wei et al. 2021)
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expect future work to go further by disassembling OpenFold to attack problems beyond pro-
tein structure prediction. For instance, the evoformer module is a general purpose primitive
for reasoning over evolutionarily related sequences. DNA and RNA sequences also exhibit
a co-evolutionary signal, with efforts aimed at predicting RNA structure from MSAs fast
materializing (e.g., Singh et al. 2022, Baek et al. 2022, Pearce et al. 2022). It is plausible
that even more basic questions in evolutionary biology, such as phylogenetic inference, may
prove amenable to evoformer-like architectures. Similarly, AlphaFold2’s structure module,
and in particular the invariant point attention mechanism, provide a general purpose ap-
proach for spatial reasoning over polymers, one that may be further extendable to arbitrary
molecules. We anticipate that as protein structures and other biomolecules shift from being
an output to be predicted to an input to be used, downstream tasks that rely on spatial
reasoning capabilities will become increasingly important (e.g., McPartlon, Lai, et al. 2022,
McPartlon and Xu 2022). We hope that OpenFold will play a key role in facilitating these
developments.
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Appendix

A Related work
We first released the trainable and PyTorch-based OpenFold codebase in November 2021.
In December 2021, UniFold (Li et al. 2022) released JAX-based AlphaFold2 training code,
and in August 2022, the same team released a PyTorch-based implementation derived from
OpenFold along with weights, training data, and new training code for AlphaFold-Multimer.
FastFold (Cheng et al. 2022), a modification of OpenFold that speeds up training and permits
inference across multiple GPUs, was released in March 2022. There have additionally been a
number of AlphaFold2 reimplementations using less widely used frameworks. MEGA-Protein
(MindSpore 2022) and HelixFold (G. Wang et al. 2022), both released in July 2022, are
implemented using MindSpore and PaddlePaddle (Ma et al. 2019), respectively. HelixFold
claims to reduce AlphaFold and OpenFold training times by approximately 40%. With the
exception of UniFold, none of the other projects have released model parameters or training
data. The version of OpenFold (v1.0.1) released with this manuscript contains new inference
and training optimizations that were previously unavailable.

B OpenProteinSet details
OpenProteinSet consists of nearly 5 million unique MSAs, making it the largest publicly
available MSA database. For ~400,000 of those entries, constituting the OpenFold train-
ing set, we provide additional MSAs—computed using Mgnify (Mitchell et al. 2020), Uni-
Clust30 (Mirdita, Driesch, et al. 2017), BFD (Jumper et al. 2021), and UniRef90 (Suzek
et al. 2013)—and template hits retrieved from PDB70 (Steinegger et al. 2019). These were
generated with multiple sequence databases and alignment tools, as in the AlphaFold2 pa-
per. JackHMMer (Johnson et al. 2010) was used to search MGnify and UniRef90; HHblits-v3
was used to search BFD and Uniclust30. Templates were computed using HHSearch (Rem-
mert et al. 2012) run on the UniRef90 MSA and then realigned, if necessary, using Kalign
(Lassmann et al. 2009).

As in the original AlphaFold2 procedure, we changed some of the default options for the
MSA generation tools. For JackHMMer, we used

-N 1 -E 0.0001 --incE 0.0001 --F1 0.0005 --F2 0.00005 --F3 0.0000005

For HHBlits, we used

-n 3 -e 0.001 -realign_max 100000 -min_prefilter_hits 1000
-maxfilt 100000 -maxseq 1000000

To generate MSAs for the ~270,000 protein chain self-distillation set, we performed an
all-against-all search on UniClust30 using HHblits-v3 with the same parameter settings as
before. This yielded approximately 15 million MSAs. Using the first sequence in each cluster
as a representative, we iteratively removed MSAs whose representative chains appeared in the
greatest number of other MSAs until each representative chain appeared only in its own MSA.
We then removed clusters whose representative sequences were longer than 1,024 residues or
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shorter than 200. Finally, we removed clusters whose corresponding MSAs contained fewer
than 200 sequences, leaving just 270,262 MSAs in total. Template hits were again computed
using HHsearch against PDB70. To speed up the expensive training process, we generated
structures for the self-distillation set using OpenFold run with AlphaFold2 weights rather
than a pretrained version of OpenFold.

The remainder of OpenProteinSet consists of ~4.85 million Uniclust30 MSAs with depth
>50 that were filtered from the core distillation set by this process.

C Differences between OpenFold and AlphaFold2
In this section we describe additions and improvements we made to OpenFold subject to the
constraint that the weights of the two models should be interchangeable. We also describe
our design decisions in the handful of cases where the AlphaFold2 paper was ambiguous.

C.1 Changes to the data pipeline

Template trick: During AlphaFold2 training, structural template hits undergo two suc-
cessive rounds of filtering. Between these two rounds, the dataloader parses the template
structure data. The top 20 template hits to pass both filters are shuffled uniformly at ran-
dom. Finally, the dataloader samples a number of templates uniformly at random in the
range [0, 4] and draws that many samples from the shuffled pool of valid hits. These are then
passed as inputs to the model. This subsampling process is intended to lower the average
quality of templates seen by the model during training. We note that preemptively parsing
structure files for each template hit during the filtering process is an expensive operation
and, for proteins with many hits, considerably slows training. For this reason, we replace
the original algorithm with an approximation. Instead of sampling hits from the top 20
template candidates from the pool of templates that pass both sets of filters, we use the
top 20 hits to pass the first filter. These are then shuffled and subsampled as before. Only
when a hit is drawn is it passed through the second filter; hits that fail to pass the second
filter at this point are discarded and replaced. If not enough hits in the initial 20-sample
pool pass the second filter, we continue drawing candidates from the top hits outside that
pool, without further shuffling. This procedure has the disadvantage that, if too many hits
pass the first filter but not the second, the hits used for the model are not shuffled. Even
in cases where only 𝑥 of the initial hits fail to pass the second filter, OpenFold effectively
only shuffles the top (20 − 𝑥) proteins to pass both filters, strictly increasing the expected
quality of template hits relative to those used by AlphaFold2. However, in most cases, this
approximation allows the dataloader to parse only as many structure files as are needed,
speeding up the process by a factor of at least 5. In practice, the vast majority of invalid
template hits are successfully detected by the first filter, suggesting that the difference in
final template quality between the two procedures is marginal.

Self-distillation training set filtering: The 270,262 MSAs yielded by our self-distillation
procedure is smaller than the 355,993 reported by DeepMind, despite having started with the
same database. We suspect that the discrepancy arises due to the first step of the filtering
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process, of which the description in the AlphaFold2 paper is somewhat ambiguous.

Zero-centering target structures: We find that centering target structures at the ori-
gin slightly improves the numerical stability of the model, especially during low-precision
training.

C.2 Plateaus and phase transitions

During training of the original version of OpenFold, we and third party developers observed
two distinct training behaviors. The large majority of training runs are almost identical
to the training curves shown in Figure 1; after a few thousand training steps, validation
lDDT-Cα rapidly rises to ~0.83 and improves only incrementally thereafter. Occasionally,
such runs exhibit a “double descent,” briefly improving and then degrading in accuracy
before finally converging in the same way. In a fraction of training runs, however, lDDT-Cα
plateaus between 0.30 and 0.35 on the same set (see Figure 8A). Anecdotally, these values
appear to be consistent across environments, OpenFold versions, architectural modifications,
and users. If the runs are allowed to continue long past the point where lDDT-Cα would
otherwise have stopped improving (>10k training steps), they eventually undergo a phase
transition, suddenly exceeding 0.8 lDDT-Cα and then continuing to improve much as normal
runs do. We have not been able to determine whether this phenomenon is the result of an
error in the OpenFold codebase or if it is a property of the AlphaFold2 algorithm.

Since running the experiments described in the main text of this paper, we have discov-
ered a workaround that deviates slightly from the original AlphaFold2 training procedure but
that appears to completely resolve early training instabilities. In the original training con-
figuration, for each AlphaFold2 batch, backbone FAPE loss, the model’s primary structural
loss, is clamped for all samples in the batch with probability 0.9. This practice is potentially
problematic during the volatile early phase of training, when FAPE values can be extremely
large and frequent clamping zeroes gradients for most of the residues in each crop. We find
that clamping each sample independently, i.e., clamping approximately 90% of the samples
in each batch rather than clamping 90% of all batches, eliminates training instability and
speeds up convergence to high accuracy by about 30%. We show before-and-after data in
Figure 8B.

D Training details
Our main OpenFold model was trained using the abridged training schedule outlined in Table
4 of the AlphaFold2 Supplementary Materials rather than the original training schedule in
Table 5. Specifically, it was trained for three rounds: the initial training phase, the fine-
tuning phase, and the predicted-TM (Zhang and Skolnick 2004) fine-tuning stage. During the
initial training phase, sequences were cropped to 256 residues, MSA depth was capped at 128,
and extra MSA depth was capped at 1,024. During fine-tuning, these values were increased
to 384, 512, and 5,120, respectively. The second phase also introduced the “violation” and
“experimentally resolved” losses, which respectively penalize non-physical steric clashes and
incorrect predictions of whether atomic coordinates are resolved in experimental structures.
Next, we ran a short third phase with the predicted TM score loss enabled. The three
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phases were run for 10 million, 1.5 million, and 0.5 million protein samples, respectively. We
trained the model with PyTorch v1.10, DeepSpeed (Rasley et al. 2020) v0.5.10, and stage
2 of the ZeRO redundancy optimizer (Rajbhandari et al. 2019). We used Adam (Kingma
and Ba 2015) with 𝛽1 = 0.9, 𝛽2 = 0.99, and 𝜖 = 10−6. We warmed up the learning
rate linearly over the first 1,000 iterations from 0 to 10−3. After approximately 7 million
samples, we marginally decreased the learning rate to 9.5 ∗ 10−4. This decrease had no
noticeable effect on model training. For the latter two phases, the learning rate was halved
to 5 ∗ 10−4. All model, data, and loss-related hyperparameters were identical to those used
during AlphaFold2 training. We also replicated all of the stochastic training-time dataset
augmentation, filtering, and resampling procedures described in the original paper.

During the initial fine-tuning and subsequent predicted-TM fine-tuning phases, we man-
ually sampled checkpoints at peaks in the validation lDDT-Cα (Mariani et al. 2013). These
checkpoints were added to the pool of model checkpoints used in the final model ensemble.

Training was run on a cluster of 44 NVIDIA A100 GPUs, each with 40GB of DRAM. The
model was trained in a data-parallel fashion, with one protein per GPU. In order to simulate
as closely as possible the batch size of 128 used in training AlphaFold2, we performed three-
way gradient accumulation to raise our effective batch size from 44 to 132. Supplementary
Figure 1 contains additional data from the training run.

As in the original paper, CAMEO chains longer than 700 residues were removed from
the validation set.

E Inference details
Runtime benchmarks were performed on a single 40GB A100 GPU. Times correspond to the
intensive ‘model_1_ptm’ config preset, which uses deep MSAs and the maximum number
of templates.

For proteins shorter than 1,000 residues, we take advantage of OpenFold’s TorchScript
tracing capability and FlashAttention. For longer proteins, both tools become unstable and
so we disable them. We plan to address this shortcoming in the future.

For runtime benchmarks we upgraded to PyTorch v1.12 for its improvements to Torch-
Script. AlphaFold was run with JAX v. 0.3.13.

For reference, we include the distribution of lengths of our 132,000 PDB chains in Sup-
plementary Figure 2.

F Additional model optimizations and features
F.1 Training-time optimizations and features

Despite its relatively small parameter count (~93M), AlphaFold2 manifests very large inter-
mediate activations during training, resulting in peak memory usage—along with floating
point operation counts—much greater than that of state-of-the-art transformer-based mod-
els from other domains (G. Wang et al. 2022). In AlphaFold2, peak memory usage during
training grows cubically as a function of input sequence length. As a result, during the
second phase of training when the inputs are longest, the model manifests individual tensors
as large as 12GB. Intermediate activation tensors stored for the backward pass are even
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Supplementary Figure 1: Mean correlation between lDDT-Cα and pLDDT over valida-
tion set chains as a function of training step in the early stage of training. Mean values for
both metrics are superimposed.

larger. This bottleneck is exacerbated by several limitations of the PyTorch framework.
First, PyTorch is run eagerly and doesn’t benefit from the efficient compiler used by JAX
models that improves runtime and reduces memory usage. Second, even on GPUs that in
principle have sufficient memory to store all intermediate tensors used during the forward
pass, suboptimal allocation patterns frequently result in memory fragmentation, preventing
the model from utilizing all available memory. For this reason, among others, a preliminary
version of OpenFold naively modeled after the official JAX-based implementation frequently
ran out of memory despite having allocated as little as 40% of total available memory. To
ameloriate these problems, we introduced several features that reduce peak memory con-
sumption during training.

In-place operations: We refactored the model by replacing element-wise tensor operations
with in-place equivalents wherever possible to prevent unnecessary allocation of large inter-
mediate tensors.

Custom CUDA kernels: We implemented custom CUDA kernels for the model’s “MSA
row attention” module, the multi-head attention operation where the aforementioned 12GB
tensor is allocated. Modified from optimized softmax kernels from FastFold (Cheng et al.
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Supplementary Figure 2: PDB sequence lengths are heavily concentrated in the
region where OpenFold has an inference-time advantage. Binned sequence lengths
of the 132,000 chains in the PDB training set.

2022), which are in turn derived from OneFlow kernels (Yuan et al. 2021), our kernels op-
erate entirely in-place. This is made possible partly by a fusion of the backward passes
of the softmax operation and the succeeding matrix multiplication. Overall, only a single
copy of the quadratic attention logit tensor is allocated, resulting in peak memory usage 5
and 4 times lower than equivalent native PyTorch code and the original FastFold kernels,
respectively.

DeepSpeed: OpenFold is trained using DeepSpeed. Using its ZeRO Redundancy optimizer
(Rajbhandari et al. 2019) in the “stage 2” configuration, the model partitions gradients and
optimizer states between GPUs during data-parallel training, further reducing peak memory
usage.

Half-precision training: By default, as a memory-saving measure, AlphaFold2 is trained
using bfloat16 floating point precision. This 16-bit format trades the large precision of
the classic half-precision format (FP16) for the complete numerical range of full-precision
floats (FP32), making it well-suited for training deep neural networks of the type used by
AlphaFold2, which is not compatible with FP16 training by default. However, unlike FP16,
bfloat16 hardware support is still limited to relatively recent NVIDIA GPUs (Ampere and
Hopper architectures), and so the format remains out of reach for academic labs with access
to older GPUs that are otherwise capable of training AlphaFold2 models (e.g., V100 GPUs).
We address this problem by implementing a stable FP16 training mode with more careful
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typecasting throughout the model pipeline, making OpenFold training broadly accessible.

F.2 Inference

We also introduce several inference-time optimizations to OpenFold. As previously men-
tioned, these features trade off memory usage for runtime, contributing to more versatile
inference on chains of diverse lengths.

FlashAttention: We incorporate FlashAttention (Dao et al. 2022), an efficient fused at-
tention implementation that tiles computation in order to reduce data movement between
different levels of GPU memory, greatly improving peak memory usage and runtime in the
process. We find it to be particularly effective for short sequences with 1,000 residues or less,
on which it contributes to an OpenFold speedup of up to 15% despite only being compatible
with a small number of the attention modules in the network.

Low-memory attention: Separately, OpenFold makes use of a recent attention algorithm
that uses a novel chunking technique to perform the entire operation in constant space (Rabe
and Staats 2021). Although enabling this feature marginally slows down the model, it nul-
lifies attention as a memory bottleneck during inference.

Refactored triangle multiplicative attention: A naive implementation of the triangle
multiplicative update manifests 5 concurrent tensors the size of the input pair representa-
tion. These pair representations grow quadratically with input length, such that during
inference on long sequences or complexes, they become the key bottleneck. We refactored
the operation to reduce its peak memory usage by 50%, requiring just 2.5 copies of the pair
representation.

Template averaging: AlphaFold2/OpenFold create separate pair embeddings for each
structural template passed to each model, then reduce them to a single embedding at the
end of the template pipeline with an attention module. For very long sequences, or very many
templates, this operation can become a memory bottleneck. AlphaFold-Multimer (Evans et
al. 2022) avoids this problem by computing a running average of template pair embeddings.
Although we trained OpenFold using the original AlphaFold2 (non-multimer) procedure, we
find that the newer approach can be adopted during inference without a noticeable decrease
in accuracy. We thus make it available as an optional inference-time memory-saving opti-
mization.

In-place operations: Without the requirement to store intermediate activations for the
backward pass, OpenFold is able to make more extensive use of in-place operations during
inference. We also actively remove unused tensors to mitigate crashes caused by memory
fragmentation.

Chunk size tuning: AlphaFold2 offsets extreme inference-time memory costs with a tech-
nique called “chunking,” which splits input tensors into “chunks” along designated, module-
specific sub-batch dimensions then runs those modules sequentially on each chunk. In Al-
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phaFold2’s case, the chunk size used in this procedure is a model-wide hyperparameter that
is manually tuned. OpenFold, on the other hand, dynamically adjusts chunk size values for
each module independently, taking into account the model’s configuration and the current
memory limitations of the system. Although the profiling runs introduced by this process
incur a small computational overhead, the modules do not need to be recompiled for each
run, unlike their AlphaFold2 equivalents, and said profiling runs are only necessary the first
time the model is run; once computed, the optimal chunk sizes are cached and reused until
conditions change. We find this to be a robust way to seamlessly improve runtimes in a
variety of settings.

Tensor offloading: Optionally, OpenFold can aggressively offload intermediate tensors to
CPU memory, temporarily freeing additional GPU memory for memory-intensive compu-
tations at the cost of a considerable slowdown. This feature is useful during inference on
extremely long sequences that would otherwise not be computable.

TorchScript tracing: Specially written PyTorch programs can be converted to Torch-
Script, a JIT-compiled variant of PyTorch. We use this feature during inference to speed
up parts of the Evoformer module. Although TorchScript tracing and compilation do intro-
duce some overhead at the beginning of model inference, and lock the model to a particular
sequence length similar to JAX compilation, we find that using TorchScript achieves overall
speedups of up to 15%, especially on sequences shorter than 1,000 residues. This feature is
particularly useful during batch inference, where sequences are grouped by length to avoid
repeated re-compilations and take maximal advantage of faster inference times.

AlphaFold-Gap implementation: OpenFold currently supports multimeric inference us-
ing AlphaFold-Gap (Baek 2021), a zero-shot hack that allows inference on protein complexes
using monomeric weights. Although it falls short of the accuracy of AlphaFold-Multimer6

it is a capable tool, especially for homomultimers. Since complexes manifest in the model
as long sequences, OpenFold-Gap in particular benefits from the memory optimizations dis-
cussed earlier.

G Extended analysis
G.1 Effect of fine-tuning on long proteins

In Supplementary Figure 3, we illustrate the effect of fine-tuning on the lDDT-Cα of long
chains. Though we observe a larger increase here than is seen for all proteins in Figure 1D,
it is still less than half a point.

G.2 Dimensionality of output structures

Here we provide additional analyses of the staged learning of dimensionality. First, sup-
plementary Figure 4 provides a visual aid for the projection operations used to produce

6For a comparison of the two techniques, see (Evans et al. 2022).
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Supplementary Figure 3: Fine-tuning does not materially improve prediction
accuracy on long proteins. Mean lDDT-Cα over validation proteins with at least 500
residues as a function of fine-tuning step.

Figure 3A and 3B. Second, because the precise timing of the phases of dimensionality dif-
fer slightly for individual proteins, we include for reference Supplementary Figure 5, which
shows individual eigenvalues for all proteins in the validation set.

Third, for an additional perspective on the low-dimensionality phenomenon, we consider
the radius of gyration, a popular measure of the compactness of a structure (Hinsen et al.
2013), given by

𝑅𝑔 =
√√√
⎷

1
2𝐾2

𝐾
∑
𝑖,𝑗=0

3
∑
𝑥=0

(𝑃𝑖𝑥 − 𝑃𝑗𝑥)2

where 𝐾 is the number of atoms in the protein and 𝑃 ∈ ℝ𝐾×3 is a coordinate vector.
Real proteins obey known protein-phase-specific radius scaling laws (see e.g. Krokhotin et al.
2012), and we wish to determine exactly how and when OpenFold begins to produce plausible
structures that do the same. To accomplish this, we compute the radius of gyration of each of
the experimental structures in our validation set and compare them to the radii of gyration
of model predictions as a function of training step. Results are shown in Supplementary
Figure 6.

The plots correspond approximately to the phases of dimensionality illustrated in 2.
In the first two panels, before the model enters the three-dimensional phase, the radii of
gyration of predicted structures are indeed systematically smaller than those of experimental
structures. Immediately thereafter, the radii of gyration are largely correct, and only minor
adjustments are made in the final panel.
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Supplementary Figure 4: A “2D vs. 3D” comparison (left, corresponding to Figure
3A) and a “2D vs. 2D” comparison (right, corresponding to Figure 3B). The blue, two-
dimensional structure on the right is the 2D PCA projection of the 3D structure on the left.
The red structure in both images is the same 2D PCA projection of a prediction from the
two-dimensional phase.

G.3 DSSP state reduction

We reduce the 8-state DSSP assignment to 3 states using the following mapping:

𝐻 → 𝐻
𝐺 → 𝐻
𝐸 → 𝐸
𝐵 → 𝐸
𝐼 → 𝐶
𝑇 → 𝐶
𝑆 → 𝐶
𝑃 → 𝐶

No assignment → 𝐶

where ‘C’ denotes “coil” and ‘E’ denotes “strand”.

G.4 Additional secondary structure data

In Supplementary Figure 7, we provide another view of the sheet data in Figure 5B by
distinguishing between small- (S: 6Å), medium- (M: 12Å) and long- (L: 24Å) range contacts,
as in e.g., (Xu et al. 2021).
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Supplementary Figure 5: Sorted PCA eigenvalues for all proteins in the CAMEO vali-
dation set as a function of OpenFold training step. The values shown were used to generate
Figure 2B.

G.5 Data elision validation using CAMEO

In order to properly assess the model’s generalization capacity, we evaluated each set of
CATH ablations on a corresponding validation set in the main text. I.e., the T ablations
were evaluated on held-out topologies, the A ablations on held-out architectures, and so on.
As a result, different data elision experiments cannot not be compared directly. For a more
consistent picture of the relative final accuracies of each set of data elision experiments, we
reevaluate the final checkpoints of each model on our standard CAMEO validation set in
Supplementary Table 1.

Note that a potential confounding factor is that CATH classifications are not yet available
for proteins in the CAMEO validation set, making it difficult to determine the degree of
overlap in fold space between the training set of each data elision and the validation set.
If the CAMEO validation set happens to contain chains with architectures in the training
sets of the smaller A ablations, for example, the values in Supplementary Table 1 would
overestimate the accuracies of the corresponding models.
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Supplementary Figure 6: Radius of gyration as an order parameter for learning
protein phase structure. Radii of gyration for proteins in the CAMEO validation set
(orange) as a function of sequence length over training time, plotted on a log-log scale
against experimental structures (blue). Legends show equations of best fit curves, computed
using non-linear least squares. The training steps chosen correspond loosely to the four
phases of dimensional growth.
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Supplementary Figure 7: Contact prediction for beta sheets at different ranges.
Binned contact F1 scores (8Å threshold) for beta sheets of various widths as a function of
training step at different residue-residue separation ranges (SMLR ≥ 6 residues apart; LR ≥
24 residues apart, as in Xu et al. 2021). Sheet widths are weighted averages of sheet thread
counts within each bin, as in Figure 5B.

G.6 Secondary structure recovery of class-stratified models

In Figure 6C, we show predictions of two class-stratified models for two CAMEO chains. For
a more comprehensive picture, we report mean reduced-state DSSP recall and F1 over the
entire CAMEO validation set for both models in Supplementary Table 2.

G.7 Characteristics of class-stratified training sets

We note in the main text that domains in the class used to train the “Mainly alpha” class
elision still contain some beta sheets, and vice versa. To quantify this, in Supplementary
Figure 8 we show the distribution of alpha helices and beta sheets of different sizes in the
two class elision training sets based on 1,000 randomly chosen samples.

H Known issues during training
During and after the primary OpenFold retraining experiment, we discovered a handful of
minor implementation errors that, given the prohibitive cost of retraining a full model from
scratch, could not be corrected. In this section, we describe these errata and the measures
that we have taken to mitigate them.
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Ablated CATH category Training set Mean CAMEO lDDT-Cα
(T)opology 100% avail. T 0.806

50% avail. T 0.786
10% avail. T 0.678
5% avail. T 0.567

(A)rchitecture 100% avail. A 0.795
50% avail. A 0.763
10% avail. A 0.627
5% avail. A 0.586

(C)lass Class 1 (“Mostly alpha”) 0.689
Class 2 (“Mostly beta”) 0.713

Supplementary Table 1: Data elision models evaluated on CAMEO validation
set. Rows correspond to CATH elisions reported in Figure 6, except evaluations reported
here are based on the CAMEO validation set.

Model Reduced S.S. Recall F1 score
“Mostly alpha” Helix 0.894 0.800

Strand 0.737 0.766
Coil 0.507 0.801

“Mostly beta” Helix 0.843 0.824
Strand 0.887 0.856
Coil 0.515 0.823

Supplementary Table 2: Secondary structure recovery by class-stratified models.
Recall and F1 scores for reduced secondary structure categories derived using DSSP. Results
are shown for the two class-stratified models from the final panel of Figure 6B, here evaluated
on the CAMEO validation set. The reduced secondary state scheme described in Appendix
G.3 is used.
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Supplementary Figure 8: The “Mostly alpha” CATH class contains some beta
sheets, and vice versa. Counts for alpha helices and beta sheets in the mostly alpha
and mostly beta CATH class-stratified training sets from Figure 6, based on 1,000 random
samples. Counts are binned by size, defined as the number of residues for alpha helices and
number of strands for beta sheets.
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H.1 Distillation template error

As described in the main text, OpenFold/AlphaFold2 training consists of three phases, of
which the first is the longest and most determinative of final model accuracy. During this
first phase of the main OpenFold training run, a bug in the dataloader caused distillation
templates to be filtered entirely, such that OpenFold was only presented with templates for
PDB chains, which constitute ~25% of training samples, and no self-distillation set chains.
The issue was corrected for later phases, which were run slightly longer than usual to com-
pensate.

Although the accuracy of the resulting OpenFold model matches that of the original
AlphaFold2 in holistic evaluations, certain downstream tasks that exploit the template stack
(Ovchinnikov 2022) do not perform as well as the original AlphaFold2. There is evidence,
for instance, that OpenFold disregards the amino acid sequence of input templates while
AlphaFold2 does not. However, after the bug was corrected, follow-up experiments involving
shorter training runs showed template-usage behavior at parity with AlphaFold2. Thus any
current and future OpenFold-based training runs will not be affected by this issue. Further-
more, OpenFold can be run with the original AlphaFold2 weights in cases where templates
are expected to be important, to take advantage of the new inference characteristics without
diminution of template-related performance.

H.2 Gradient clipping

OpenFold, unlike AlphaFold2, was trained using per-batch as opposed to per-sample gradient
clipping (first noted by the UniFold team (Li et al. 2022)). UniFold experiments show that
models trained using the latter clipping technique achieve slightly better accuracy.

H.3 Training instability

Our primary training run was performed before we introduced the changes described in
Appendix C.2. While we have no reason to believe that the instabilities we observed there
are a result of a bug in the OpenFold codebase, as opposed to an inherent limitation of
the AlphaFold2 architecture, the former remains a possibility. It is unclear how potential
issues of this kind may have affected runs that—like our primary training run—appeared to
converge at the expected rate.
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