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Abstract  

 

Dysregulation of cell signaling in bone cells, such as osteocytes, osteoblasts, osteoclasts, and 

chondrocytes, and elevated burden of senescent cells in bone and cartilage, are implicated in 

osteoarthritis (OA). Mass spectrometric analyses provides a crucial molecular tool-kit to 

understand complex signaling relationships in age-related diseases, such as OA. Here we 

introduce a novel mass spectrometric workflow to promote proteomic studies of bone and 

cartilage. This workflow uses highly specialized steps, including extensive overnight 

demineralization, pulverization, and incubation for 72 h in 6 M guanidine hydrochloride and 

EDTA, followed by proteolytic digestion. Analysis on a high-resolution Orbitrap Eclipse and 

Orbitrap Exploris 480 mass spectrometer using Data-Independent Acquisition (DIA) provides 

deep coverage of the bone proteome, and preserves post-translational modifications, such as 

hydroxyproline. A spectral library-free quantification strategy, directDIA, identified and 

quantified over 2,000 protein groups (with ≥ 2 unique peptides) from calcium-rich bone matrices. 

Key components identified were proteins of the extracellular matrix (ECM), bone-specific 

proteins (e.g., bone sialoprotein 2, IBSP), and signaling proteins (e.g., transforming growth factor 

beta-2, TGFB2) and lysyl oxidase homolog 2 (LOXL2), an important protein in collagen 

crosslinking. Post-translational modifications (PTMs) were identified without the need for 

specific enrichment. This includes collagen hydroxyproline modifications, chemical modifications 

for collagen self-assembly and network formation. Multiple senescence factors were identified, 

such as C3 protein of the complement system and many matrix metalloproteinases, that might 

be monitored during age-related bone disease progression. Our innovative workflow yields in-

depth protein coverage and quantification strategies to discover underlying biological 

mechanisms of bone aging and to provide tools to monitor therapeutic interventions.  
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Introduction 

Age-related bone fragility typically results from the decline of both bone mass and bone 

quality over the lifetime of an organism (1, 2) and leads to bone and joint diseases, such as 

osteoporosis and osteoarthritis (OA). As these pathologies are tightly correlated with increasing 

age, their impact is more drastic in aging populations, and case rates are rising worldwide as 

individual lifespans increase. Indeed, global OA case rates have risen by about 10% between 1990 

and 2017, and case rates in the United States of America have increased by 23% in that same 

time. Currently, OA prevalence in the USA is over 6,000 cases per 100,000 people as reported in 

2020 (3). Unfortunately, the link between OA or osteoporosis and aging and neurodegeneration 

(4), is poorly understood, despite clinical and molecular evidence for their relationship (4-6). 

Clinically relevant assays and biomarkers are crucially needed to diversify treatment options and 

to monitor treatment efficacy.  

Skeletal biology is a complex and multi-faceted ecosystem of cell types, including bone-

building osteoblasts and bone-resorbing osteoclasts. Most importantly, the bone matrix is 

supported and nourished by osteocytes embedded within the calcified structure of the bone, and 

chondrocytes reside within and maintain articular cartilage. Osteocytes represent 90–95% of all 

cell types within the bone, and signal and communicate directly via dendritic processes and 

through secretion of proteins that can influence the formation and activity of osteoblasts and 

osteoclasts. Aging and increased cellular senescence burden impact all cell types within bone, 

alter their natural function, and lead to tissue degeneration (Figure 1) (2, 7, 8).  

With age, the balance between osteoblast regulated bone deposition and osteoclast 

mediated bone resorption is disrupted: bone resorption begins to outpace bone deposition, 

leading to lost bone mass (2, 9). Osteocyte dendritic processes typically decrease significantly 

with age (10), and other mechanisms that maintain bone tissue material properties decline (11, 

12). Thus, aging in the skeleton is associated with both osteopenia and osteoporosis, clinical 

conditions of low bone mass, that lead to increased rates of fracture in aged-populations and 

fragility fractures in individuals with clinically normal bone mass (13, 14). Additionally, joint 

disease progression, such as OA, is associated with advancing age as the cellular and material 

regulatory mechanisms maintaining cartilage decline (15, 16). Temporal alterations to skeletal 
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cell behavior, including a shift of homeostatic mechanisms towards more inflammatory 

phenotypes, also contribute to the breakdown of skeletal tissues and lead to age-related 

diseases.  

One cellular mechanism associated with both inflammation and aging is cellular 

senescence. During senescence, homeostatic cells exit their normal cell cycles and adopt a 

senescence-associated secretory phenotype (SASP) that is characterized by a host of 

inflammatory secreted factors (17-19). The role that the SASP and senescence play in bone health 

is well documented (20, 21), but also understudied on a molecular level. Recent efforts examined 

biomarkers of senescence and senescence burden in multiple disease pathologies, including OA 

(22, 23). Skeletal tissue is especially susceptible to damage via the SASP as secreted factors may 

not only alter skeletal cell behavior but directly damage skeletal tissues that enable locomotion 

(20, 24). While the SASP contains a broad range of factors, several of the most well identified 

markers include matrix metalloproteinases, other proteolytic enzymes, and ATPase ion pumps 

that regulate intracellular and pericellular pH (18, 25). These factors are normally well regulated 

by skeletal cells, and are used to maintain tissue quality, but with age their unchecked action can 

directly damage skeletal tissues leading to age-related skeletal disease. In addition, many of the 

intricate and well-regulated molecular signaling pathways that maintain balanced bone 

deposition and resorption can be members of, or targeted by, SASP. For instance, both sclerostin 

(SOST) and receptor activator of NF-κβ ligand (RANKL) are secreted proteins produced by 

osteocytes that increase in serum with age. These factors are linked to senescence within bone 

cells and directly shift bone remodeling towards bone resorption by suppressing osteoblast bone 

formation and increasing osteoclastic bone resorption, respectively (26-30). Dysregulation of 

signaling in skeletal cells and an elevated senescent burden are implicated in bone aging and in 

progressive loss of mechanical function that leads to bone frailty, osteoporosis, and osteoarthritis 

(1, 31). With the important roles of secreted proteins in both skeletal tissue remodeling and 

managing skeletal cell type function, along with their altered behavior in age and senescence, 

there is a dire need to develop molecular tools that directly measure protein presence and 

quantitative regulation in the context of age-related skeletal diseases.  
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Large-scale unbiased analytical techniques, such as transcriptomics, proteomics, 

metabolomics, and lipidomics, are powerful methods that are often used to gain comprehensive 

insights into complex biological systems and their changes in aging and diseases. Several 

successful transcriptomics and single-cell-sequencing efforts have been undertaken in bones (32-

34), but few quantitative bone proteomic studies have been published (35-40). Given the 

structural relevance of extracellular matrix (ECM) proteins and signaling peptides within the 

skeleton, analyzing bone proteome profiles during aging and age-related skeletal biology will be 

highly beneficial and insightful. Proteomic studies appear to be limited in skeletal tissues, possibly 

due to the complex, dense and mineralized matrix, and overall analytical challenges of efficient 

protein extraction using existing protocols. The mineralized ECM of bone contains large amounts 

of calcium in the form of matrix-bound hydroxyapatite, Ca10(PO4)6(OH)2, that is embedded within 

and around collagen fibrils. These hydroxyapatite minerals cause nonspecific interactions 

between positively charged amino acids with phosphate groups and carboxyl residue complexes 

with calcium (41), and thus, conventional protein lysis extractions often fail or are inefficient. 

Protein extraction techniques that disrupt nonspecific interactions and carboxyl residue 

complexes between proteins and hydroxyapatite are critically needed for efficient and 

comprehensive protein coverage in bone. 

The protein compositions within bone and other skeletal tissues are highly specialized in 

form and function. Uniquely, post-translation modifications of individual pro-collagen molecules 

through proline oxidation are required to stabilize the triple-helix structure of collagen itself 

through stereo-electric effects or water-bridged hydrogen bonding (42). Genetic disorders, such 

as osteogenesis imperfecta (43) and others that interrupt hydroxyproline modifications are 

phenotypically characterized by brittle bones in young patients (44) and resemble some age-

related pathologies. Capturing post-translational modifications (PTMs) and their interactions 

among structural proteins within the skeleton is critical for assessing bone health, and proteomic 

methods that preserve these alterations are crucial for studying skeletal tissues.  

With this study, we present a novel proteomic workflow to globally study osteoarthritis, 

osteoporosis, and other age-related skeletal pathologies by examining the changes within the 

proteomic landscape between bone and cartilage. Deep protein coverage and quantification are 
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achieved with our novel robust and reproducible proteomics protocol to efficiently extract 

proteins from the complex bone matrix and the subsequent combination with modern 

quantitative mass spectrometric strategies. We adapted and improved steps from a reported 

method that extracted proteins from bones (45), as well as from cystinuric bladder stones (46). 

When paired with data-independent acquisition (DIA) mass spectrometry (MS) (47-49), this novel 

workflow profiles and quantifies both dynamic changes in protein composition, as well as PTM 

signaling to investigate bone aging and diseases. The application of quantitative proteomics to 

further understand bone cell signaling dynamics in the context of aging and cellular senescence 

is expected to lead to the discovery of novel biomarkers and to discover new therapeutic targets 

for the treatments of age-related bone diseases.  

 

Results 

Reproducible protein extraction from mouse bones and proteomic analysis 

Our novel workflow comprises highly-specialized steps, including collection of femur bones from 

C57/BL6 mice, removing and flushing the bone marrow, followed by extensive demineralization 

overnight, pulverization, incubation for 72 h in 6 M guanidine hydrochloride and EDTA to extract 

proteins, a buffer exchange to remove the guanidine hydrochloride and, finally, proteolytic 

digestion of the extracted protein lysates (see Figure 2). Protein concentrations were initially 

determined with a bicinchoninic acid assay, as a first step of quality control and to demonstrate 

successful protein extraction. Subsequently, bone protein lysates were prepared for LC–MS/MS 

analysis. Pooled samples from four bone groups were proteolytically digested with trypsin, and 

peptides were analyzed on an Orbitrap Exploris 480 and an Orbitrap Eclipse Tribrid (Thermo). 

Briefly, we used a label-free, highly quantitative DIA-MS approach, in which the sequential 

selection of MS1 precursor ion windows (or m/z segments) for MS/MS enable that the entire 

MS1 mass range was subjected to fragmentation within each scan cycle throughout the entire 

gradient (47, 49). This comprehensive acquisition utilized a precursor ion isolation scheme that 

consisted of 26 variable windows and covered an m/z range of 350–1,650 with an overlap of 1 

m/z per each DIA window (50). Data files were processed using a spectral library-free strategy, 

referred to as directDIA within the Spectronaut algorithm (Biognosys) (51, 52).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 20, 2022. ; https://doi.org/10.1101/2022.11.20.517228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.20.517228


Acquisitions were assessed for quality control by displaying their retention time 

regressions plotting the indexed retention time in relation to the observed retention time with a 

representative graph shown in Figure 3a. Each point along the curve represents a measured 

precursor ion and its retention regression. These indexed retention time regressions were 

normalized for slight variations in measured retention times from acquisition to acquisition, and 

thus improve the quantification accuracy. DIA-MS acquisitions assayed reproducibility by 

measuring coefficients of variation (CV). Figure 3b visualizes the precursor ion CV distribution 

correlating the precursor ion CV values against the respective measured peak area abundances 

and indicating very high reproducibility. As expected, very low abundant analytes appear to be 

more variable. However, across five MS replicates, a median CV of 8.7% was reported for 

precursor ions, and 85% of precursor ions featured a CV that was smaller than 20% (Figure 3c-d 

and Supplemental Table S1).  

 

In-depth Coverage of Extracellular Matrix (ECM) Proteins from Mouse Femurs  

In a separate study, we next assessed observed protein pathways and deep protein coverage 

within mouse femoral bones. A cohort of five C57/B6J wild-type (WT) mice was utilized to isolate 

femurs, followed by our optimized workflow for protein extraction and proteolytic digestion. 

Mass spectrometric DIA analysis of the digested protein lysates on an Orbitrap Eclipse (Thermo) 

from this independent cohort of mice resulted in the confident identification and quantification 

of 2,108 protein groups, identified with ≥2 unique peptides (Supplemental Table S2 Excel).  

We performed various Gene Ontology (GO) analyses to determine which cellular 

compartments and biological processes were enriched in this bone-derived protein dataset. GO 

cellular compartments, such as the cytoplasm, nucleus, plasma membrane, and the extracellular 

region, presented most of the annotated identifications and showed that a variety of proteins 

were included in this proteome analysis (Figure 4a). In addition, a biological process GO analysis 

showed broad enrichment for diverse cellular processes: both intercellular and extracellular 

processes (e.g., oxidative phosphorylation, tricarboxylic acid cycle, and collagen metabolic 

processes) and mechanical processes (e.g., collagen fibril organization, collagen catabolism, 

endochondral bone growth, and musculoskeletal movement) as shown in Figure 4b and 
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Supplemental Table S3. These results highlight a major strength of the sample preparation 

process, because capturing diverse protein profiles that include highly abundant ECM 

components, such as collagens and proteoglycans, and metabolic or signaling proteins, such as 

TGF beta, is incredibly valuable to bone biology. To more completely interrogate bone-specific 

proteins, we assessed protein coverage and peak quality for secreted protein acidic and cysteine 

rich (SPARC), a protein typically secreted by osteoblasts during bone formation (53).  

 

Detection of Functionally Diverse Collagens and Formation of Structural Networks  

We next examined the coverage of collagens identified using this novel bone proteomics 

methodology. Collagens are a diverse family of proteins that are important for bone biology (54). 

Robust analytical assays that detect most collagens, efficiently monitor, and accurately quantify 

them are important for the study of bone or cartilage (55). In our analysis, we identified major 

functional types of collagens, including a majority of fibrillar collagens (e.g., collagens type I, II, 

III, and V) and multiple chains of collagen IV, which forms beaded filament assemblies. 

Additionally, we confidently identified multiple “fibril-associated collagens with interrupted 

triple helices” (FACITs), including collagen types IX, XII, XIV, XVI, and XXII. Over 75% of the 

identified collagens belonged to the fibrillar functional family with the largest majority (48%) 

being Collagen type I (Figure 5). The second most abundant functional family identified was the 

FACIT family (~10% of total collagens), interestingly we identified multiple members of the 

thrombospondin family (Thbs1-4), including Thbs1 which is the major protein involved in 

structural assembly and  FACIT biology (56).  

 

Preservation of Hydroxyproline Modifications  

PTMs are biologically relevant for many tissue types (57). In bone, we analyzed hydroxyproline 

modifications, including the determination of proline PTM site-localization within the measured 

peptides and proteins. Hydroxyproline is an important PTM, specifically in collagens, that helps 

stabilize 3-dimensional protein-protein interactions among different collagen chains (42, 54). To 

confidently identify and site-localize hydroxyproline modifications (+ 15.99 Da), we initially 

processed our samples using data-dependent acquisition (DDA), where precursor ions are 
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isolated in ‘tight’ windows (1 m/z), and are then subjected to MS/MS, providing less complex and 

highly specific MS/MS spectra. To generate true quantitative assays and to query these 

modifications using quantitative DIA acquisitions, we generated a spectral library that included 

the 1,382 DDA-identified hydroxyproline-containing peptides using Spectronaut. Importantly, we 

determined that hydroxyproline modifications are not significantly degraded in our sample 

preparation and can be subjected to these new quantitative assays generated.  This search 

resulted in 1,186 hydroxyproline modified peptides with 85% site probability, corresponding to 

75 modified proteins (Supplemental Table S4B). In fact, our novel MS workflow allowed the 

identification of a hydroxyproline modified residue Pro-707 (in bold below), a previously reported 

(58), structurally relevant site on collagen alpha-1(I) chain. The modified peptide is shown 

(GDTGAPoxGAPoxGSQGAPoxGLQGMPoxGER, Col1a1), featuring both the MS/MS and the 

extracted ion chromatogram (XIC) (Figure 6a). In this example we confirmed the presence of 4 

hydroxyproline residues with direct and indirect ion evidence including the y4, y5, y10, y16, and y19
 

ions. In addition, we determined that Pro-533 (GLTGSPoxGSPGPDGK, Col1a1) was modified and 

displayed a nearly complete fragment ion series that provided accurate mapping of the hydroxy 

modification using differentiating ions like y4, y6, and y9
 (Figure 6b). These results exhibit the 

power of this analysis to confidently capture and localize biologically relevant PTMs with no prior 

sample enrichment that is commonly required for PTM studies.  

 

Quantification of biologically relevant ECM components and senescence markers 

This dataset was initially compared to the core matrisome published by Naba et al. (59-61) to 

determine the level of coverage, compared to this rich proteomic dataset. We found that 42% of 

bone proteins overlapped with the known murine core matrisome (Supplemental Table S5a), 

suggesting that extracted bone proteins are largely composed of ECM and ECM-related proteins. 

Specifically, our dataset was compared to each component of the core matrisome, such as 

glycoproteins, collagens, proteoglycans, ECM affiliated proteins, ECM regulator proteins, and 

secreted proteins (Figure 7a). Specifically, we identified 70 glycoproteins and 71 ECM regulators 

that are part of the core matrisome. In addition to the matrisome data base, we analyzed our 

results in reference to a proteomic analysis of the Senescence Associated Secretory Phenotype 
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(SASP) published by Basisty et al. (18). In the latter publication our group outlined commonly 

identified proteins in the SASP using multiple inducers of senescence, considering them the Core 

SASP. The results from this comparison showed that 131 Core SASP factors are identified in this 

analysis. These common identifications include ECM organizing proteins, such as matrix 

metalloproteinases (MMP2), lysyl oxidase-like 2, biglycan, TIMP metallopeptidase inhibitor 2 

(TIMP2), and serpin H1. Additionally, insulin signaling proteins, including multiple insulin-like 

growth factors, and certain members of the immune system, such as macrophage migration 

inhibitory factor (MIF) and high mobility group box 1 (HMGB1), were identified (Figure 7b). 

Indeed, many of the Core SASP proteins have been quantified here, and the comparisons 

presented described the relevance and depth of this proteomic workflow.  

 

Discussion 

A novel demineralization and extraction protocol was developed to obtain deep proteomic 

profiles for bones to study age-related bone conditions, such as OA. Proteins were extracted and 

digested, and proteolytic peptides were analyzed using DIA-MS for identification and 

quantification of relevant molecular signatures in bone. Many bone-specific proteins and 

proteins important to skeletal biology were identified, including important ECM proteins, 

collagen-specific PTMs that influence collagen structural assembly, and potential 

senescence/SASP factors. Additionally, proteins identifying specific bone cell types, such as 

osteopontin/bone sialoprotein 1 (Opn/Bsp-1) for osteoblasts, matrix extracellular 

phosphoglycoprotein (Mepe) for osteocytes, and tartrate-resistant acid phosphatase type 

5(TRAP) for osteoclasts, were found and confirmed bone cellular identity in our analysis. 

This proteomic protocol was optimized to overcome challenges in the bone matrix that 

interfere with accurate protein identification and quantification. The initial demineralization step 

was crucial and greatly helped to preprocess the lysates by removing calcium phosphate deposits 

while leaving ECM proteins intact in the organic matrix that remained. The other protocol steps 

were designed to provide an extremely efficient and reproducible workflow using S-trap columns 

for purification and digestion of the samples and HLB cartridges for desalting of the proteolytic 

peptides.  
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The samples were then acquired in DIA mode and processed using directDIA 

(Spectronaut). Searching the acquisitions in this spectral library-free fashion saves sample 

amounts and instrument acquisition time. This resulted in a comprehensive bone proteome 

profile featuring tissue-specific, and potentially disease-relevant protein candidates. To enhance 

our study at the post-translational level, we investigated bone samples with DDA, and identifed 

PTM-containing proteolytic peptides. Subsequently we built custom PTM spectral libraries and 

were able to use these to extract hydroxyproline containing peptides from our DIA data, 

especially focusing on collagen I. Additionally, senescence markers relevant to OA progression, 

such as matrix altering proteins, such as metalloproteinase 2 (MMP2), metalloproteinase 

inhibitors 1 and 2 (TIMP1 and 2, and signaling proteins, were also identified. Identification of 

well-characterized SASP factors, including HMGB1, illustrated the potential to use proteomics to 

assay bone senescence. Indeed, the effects of cellular senescence in other related tissues, such 

as cartilage, have been implicated but not characterized with rigorous proteomics, especially 

after proposed treatments for OA, senolytics, or other cartilage rejuvenation therapeutics. The 

ECM greatly influences cell signaling and cell function and is a significant determinant of cell fate 

by sensing mechanical stimuli from the stroma (62-64).  

We presented that the bone, as a tissue, is robustly composed of ECM and therefore 

changes in the ECM will be at the forefront of its biology. These results will provide insight to 

other tissues where the ECM or mechano-sensing pathways could be more important than 

previously described, such as in the muscle, cartilage, breast, and ovary. Proteomics studies are 

uniquely positioned to capture relevant information about collagen ratios, senescence markers, 

and disease contributors in the bone microenvironment using a highly confident and quantitative 

mass spectrometric analysis. 

 This new integrated proteomic workflow combining the thorough bone protein extraction 

protocol with a comprehensive DIA-MS analysis will allow us to analyze human and other 

mammalian bone samples, specifically in the context of osteoarthritis.  We will be able to 

dynamically monitor disease progression, and potentially discover new biomarkers and provide 

tools to monitor therapeutic interventions.  
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Materials and Methods 

 

Reagents and Standards. HPLC solvents (e.g., acetonitrile and water) were obtained from Burdick 

& Jackson (Muskegon, MI). Reagents for protein chemistry (e.g., iodoacetamide, dithiothreitol, 

guanidine hydrochloride, EDTA, and formic acid) were purchased from Sigma Aldrich (St. Louis, 

MO). Proteomics grade trypsin was from Promega (Madison WI). HLB Oasis SPE cartridges were 

purchased from Waters (Milford, MA). 

 

Protein Extraction from Bones. The long bones from C57/B6J (WT) mice at age 16 weeks were 

stripped of any muscle or cartilage, and the marrow was removed to reduce sample complexity. 

Bones were demineralized overnight by adding 1 mL of 1.2 M HCl and rotating them overnight at 

4 °C (45).The demineralized bones were subsequently transferred to a new Eppendorf tube and 

kept on dry ice until pulverization. All components of the homogenizer, including sample tubes 

and homogenizing plates, were cooled with liquid nitrogen. Frozen bones were subsequently 

pulverized with the SPEX SamplePrep 1600 MiniG tissue homogenizer in polycarbonate tubes 

with a 9.5-mm steel grinding ball for 2 minutes at 1500 strokes/minute. After the first 2 minutes, 

the samples were removed from the homogenizer, allowed to cool in liquid nitrogen for 3 

minutes, and homogenized for another 2 minutes at 1500 strokes/minute. Pulverized samples 

were transferred into a fresh Eppendorf tube using 800 µL of extraction buffer (6 M guanidine 

hydrochloride, 10 mM Tris-HCl, 50 mM EDTA) and incubated by rotating at 4 °C for 72 hours (65). 

Subsequently, the samples were spun for 3 minutes at 15,000 x g to separate bone matrix and 

the supernatants. Supernatants containing the soluble proteins were buffer exchanged to 

remove guanidine hydrochloride with Amicon 3 kDa Centrifugal Filters. Samples were spun 

through the filter at 12,000 x g for 20 minutes and resuspended in 500 µL of 10 mM Tris-HCl (pH 

7). This wash was spun down at 12,000 x g for 20 minutes, and the procedure was repeated 2 

more times for a total of three washes with 10 mM Tris-HCl. The final addition of 10 mM Tris-HCl 

was spun as described above until the samples were reduced to 20 µL. Extracted proteins in 10 

mM HCl were quantified using a bicinchoninic acid assay.  
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Proteolytic Digestion. For each individual bone sample, 20 µg of protein lysate was brought up to 

4% SDS using a 10% SDS solution. Samples were then reduced using 20 mM dithiothreitol in 50 

mM triethylammonium bicarbonate buffer (TEAB, pH 7) at 50 °C for 10 minutes, cooled to room 

temperature (RT) and held at RT for 10 minutes, and alkylated using 40 mM iodoacetamide in 50 

mM TEAB (pH 7) at RT in the dark for 30 minutes. Samples were acidified with 12% phosphoric 

acid to obtain a final concentration of 1.2% phosphoric acid. S-Trap buffer (90% methanol in 100 

mM TEAB at pH ~7.1) was added, and samples were loaded onto the S-Trap mini spin columns 

(Protifi, Farmingdale, NY). The entire sample volume was spun through the S-Trap mini spin 

columns at 4,000 x g at RT, binding the proteins to the mini spin columns. Subsequently, S-Trap 

mini spin columns were washed twice with S-Trap buffer at 4,000 x g at RT and placed into clean 

elution tubes. Samples were incubated for 1 hour at 47oC with sequencing grade trypsin 

(Promega, San Luis Obispo, CA) dissolved in 50 mM TEAB (pH 7) at a 1:25 (w:w) enzyme:protein 

ratio. Finally, additional trypsin solution was added at the same w:w ratio, and proteins were 

digested overnight at 37oC. Peptides were sequentially eluted from the mini S-Trap spin columns 

with 50 mM TEAB, 0.5% formic acid (FA) in water, and 50% acetonitrile (ACN) in 0.5% FA. After 

centrifugal evaporation, samples were resuspended in 0.2% FA in water and desalted with Oasis 

10 mg Sorbent Cartridges (Waters, Milford, MA). The desalted elutions were subjected to 

centrifugal evaporation, and they were re-suspended in 0.2% FA in water at a final concentration 

of 1 µg/µL. Finally, indexed Retention Time Standards (iRT, Biognosys, Schlieren, Switzerland) 

were added to each sample, according to manufacturer’s instructions (66).  

 

Mass Spectrometric Analysis using Data-Independent Acquisition (DIA) and Data-Dependent 

Acquisition (DDA). Reverse-phase HPLC-MS/MS analyses were performed in DIA mode on a 

Dionex UltiMate 3000 system coupled online to an Orbitrap Eclipse Tribrid (Thermo Fisher 

Scientific, San Jose, CA). The solvent system consisted of 2% ACN, 0.1% FA in water (solvent A) 

and 98% ACN, 0.1% FA in water (solvent B). For the DIA acquisitions, digested peptides (200 ng) 

were loaded onto an Acclaim PepMap 100 C18 trap column (0.1 x 20 mm, 5-µm particle size; 

Thermo Fisher Scientific) over 5 minutes at 5 µL/minutes with 100% solvent A. Peptides were 

eluted on to an Acclaim PepMap 100 C18 analytical column (75 µm x 50 cm, 3-µm particle size; 
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Thermo Fisher Scientific) at 300 nL/minutes using the following gradient (indicated the % of 

solvent B): 2% B for 5 minutes, linear from 2% to 20% B in 95 minutes, linear from 20% to 32% B 

in 20 minutes, increase to 80% B in 1 minute, hold at 80% B for 9 minutes, and back to 2% B in 1 

minute. The column was re-equilibrated for 29 minutes with 2% of solvent B/98% solvent A, and 

the total gradient length was 160 minutes. Each of the samples was acquired in DIA mode (47, 

49, 50) in technical duplicates and in DDA mode. For DIA, survey MS1 spectra were collected at 

120,000 resolution (Automatic Gain Control (AGC) target: 3e6 ions, maximum injection time: 60 

ms, 350–1,650 m/z), and MS2 spectra at 30,000 resolution (AGC target: 3e6 ions, maximum 

injection time: Auto, Normalized Collision Energy: 27, fixed first mass 200 m/z). The DIA isolation 

scheme consisted of 26 variable windows covering the 350–1,650 m/z range with an overlap of 

1 m/z per each window (Supplemental Table S6). For the DDA acquisitions, digested peptides 

(200 ng) were loaded onto an Acclaim PepMap 100 C18 trap column (0.1 x 20 mm, 3-µm particle 

size; Thermo Fisher Scientific) over 10 minutes at 2 µL/minutes with 100% solvent A. Peptides 

were eluted on to an Acclaim PepMap 100 C18 analytical column (75 µm x 50 cm, 3-µm particle 

size; Thermo Fisher Scientific) at 300 nL/minutes using the following gradient (indicated the % of 

solvent B): 2% B for 10 minutes, linear from 2% to 20% B in 95 minutes, linear from 20% to 32% 

B in 20 minutes, increase to 80% B in 1 minute, hold at 80% B for 9 minutes, and back to 2% B in 

1 minute. The column was re-equilibrated for 29 minutes with 2% of solvent B/98% solvent A, 

and the total gradient length was 165 minutes. For DDA, survey MS1 spectra were collected at 

240,000 resolution (AGC target: 1.2e6 ions, maximum injection time: Auto, 350–1,500 m/z). 

Precursor ions with a charge state 2–5+ and an intensity above 2e4 were automatically selected 

for HCD fragmentation at NCE 27 in the orbitrap for a cycle time of 3 s. MS2 spectra were 

collected at 30,000 resolution (AGC target: 1e5 ions, maximum injection time: Auto, fixed first 

mass 200 m/z). Dynamic exclusion was set to 60 s. 

 

Data-Independent Acquisition (DIA) Data Processing. DIA data files were processed in 

Spectronaut v16 (Biognosys) using directDIA. Data were searched against the Mus musculus 

reference proteome with 58,430 entries (UniProtKB-TrEMBL), accessed on 01/31/2018. Data 

extraction parameters were set as dynamic, and non-linear iRT calibration with precision iRT was 
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selected. Trypsin/P was set as the digestion enzyme, and two missed cleavages were allowed. 

Cysteine carbamidomethylation was set as a fixed modification, and methionine oxidation and 

protein N-terminus acetylation were set as dynamic modifications. For the protein level, 

identification was performed requiring a 1% q-value cutoff on the precursor ion and protein 

levels. Unique protein groups were reported with at least two unique peptide identifications. The 

protein level quantification was based on the peak areas of extracted ion chromatograms (XICs) 

of 3–6 MS2 fragment ions, specifically b- and y-ions, with local normalization and q-value sparse 

data filtering applied. In addition, iRT profiling was selected.  

DDA Spectral Library Generation and DIA Quantification for Hydroxyproline-containing Peptide 

Level Analysis. A DDA spectral library was generated in Spectronaut v16 using slightly modified 

BGS settings and the same Mus musculus database. Briefly, for the Pulsar search, trypsin/P was 

set as the digestion enzyme and two missed cleavages were allowed. Cysteine 

carbamidomethylation was set as fixed modification, and proline oxidation, methionine 

oxidation, and protein N-terminus acetylation were set as variable modifications. Identifications 

were validated using 1% false discovery rate (FDR) at the peptide spectrum match (PSM), peptide 

and protein levels, and finally the best 3–6 fragments per peptide were kept. The spectral library 

contains 20,705 peptides and 2,372 protein groups, including 1,382 hydroxyproline-containing 

peptides corresponding to 85 hydroxyproline-containing protein groups (Supplemental Table 

S7). Identification was performed requiring a 1% q-value cutoff on the precursor ion and protein 

levels. The PTM site localization score was selected with a probability cutoff of 0.75. For PTM 

analysis, DIA data were processed in Spectronaut v16, using the generated DDA spectral library 

(described above). Quantification was based on XICs of 3 – 6 MS2 fragment ions, specifically b- 

and y-ions, without normalization and data filtering using q-value sparse. Grouping and 

quantitation of PTM peptides were accomplished using the following criteria: minor grouping by 

modified sequence and minor group quantity by mean precursor quantity.  

 

Pathway Analysis. Over-representation analysis was performed using Consensus Path DB-mouse 

(Release MM11, 14.10.2021), developed by the bioinformatics group at the Max Planck Institute 

for Molecular Genetics (Berlin, Germany) (67, 68). The list of quantifiable proteins was used to 
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evaluate which gene ontology terms, including biological processes, molecular functions, and 

cellular components, were significantly enriched in these samples. Gene ontology terms 

identified from the over-representation analysis were subjected to the following filters: q-value 

< 1.0e-6, term category = b (biological processes), and term level ≥ 3. Dot plots were generated 

using the ggplot2 package (69) in R (version 4.0.5; RStudio, version 1.4.1106) to visualize 

significantly enriched biological processes from each comparison (Supplemental Table S3). 
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Associated Data: Raw data and complete MS data sets have been uploaded to the Center for 

Computational Mass Spectrometry, to the MassIVE repository at UCSD, and can be downloaded 

using the following link: 

http://massive.ucsd.edu/ProteoSAFe/status.jsp?task=e01a701fe54e4fdd9f8f96b040395b99 

 (MassIVE ID number: MSV000090737; ProteomeXchange ID: PXD038207). [Note to the 

reviewers: To access the data repository MassIVE (UCSD) for MS data, please use: Username: 

MSV000090737_reviewer; Password: winter]. 
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Figure Legends 

 

Figure 1. Comparison of bone microenvironments in healthy and aged/diseased states. As 

bones age and the senescence burden increases, the bone microenvironment changes, which 

leads to bone fragility and degradation of cartilage. Additionally, osteocyte networks become less 

integrated, and chondrocytes become hypertrophic.  

 

Figure 2. Sample workflow and strategy for Mass Spectrometry analysis. Femurs from wild-type 

mice were demineralized overnight using 1.2 M HCl and pulverized, and proteins were extracted 

for 72 hours at 4° C. The extracted protein lysates were digested and analyzed by MS in DIA mode 

for an in-depth proteome analysis. 

 

Figure 3. Quality assessment of one bone sample workup injected in five technical replicates. 

Data acquisitions were assessed using A) precursor retention time regressions to illustrate 

acquisition to acquisition reproducibility and RT normalization, B) coefficient of variation (CV) vs 

abundance to determine precursor confidence, C) precursor %CV density to visualize precursor 

variability, and D) precursor CV distribution to quantify precursor reproducibility.  

 

Figure 4. Proteomic results and Gene Ontology analysis for five wild-type femurs. Proteins 

identified in wild-type mouse femurs were analyzed using GO for both A) “cellular compartment” 

and B) “biological processes.” Sequence coverage for SPARC, an osteoblast marker, is highlighted 

in C) where green sections of the sequence are confidently identified in the proteomics. The 

spectrum analysis shown in D) displays the fragment ion series and fragment peaks for the 

peptide LEAGDHPVELLAR. 

 

Figure 5. Overview of collagen subtypes identified in five wild-type mouse femurs. A bar graph 

showing the individual collagen genes confidently identified in the analysis and their respective 

quantities. Additionally, collagen structural families are quantified and denoted in A-F with their 

percent total represented in the bar graph.  
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Figure 6. Analysis of hydroxyproline modifications on collagen I alpha chain I. Two tryptic 

peptides of collagen 1 alpha chain 1 with highly-confident hydroxyproline site localizations due 

to specific and comprehensive fragmentation. A) Representative spectrum displaying the ion 

series for GDTGAPoxGAPoxGSQGAPoxGLQGMPoxGER. Fragmentation series provides site 

localization evidence to confirm modified prolines. B) Spectrum quantifying the intensity of 

precursor and fragment ions for the selected peptide. C) Similar representative spectrum 

displaying the near complete series of precursor and fragment ions for GLTGSPoxGSPGPDGK. D) 

Spectrum quantifying the intensity of precursor and fragment ions for the selected peptide. 

 

Figure 7. Comparison of five wild-type mouse femurs to the core matrisome database and the 

Core SASP. A) Proteins identified from wild-type mouse femurs were compared to components 

of the core matrisome showing most representation of glycoproteins and ECM regulating 

proteins. B) Additional comparisons to the Core SASP show 131 overlapping identifications and 

only 19 unique core SASP proteins.  

 

Supplemental Figure 1. Protein coverage for markers of major bone cell types with tryptic 

peptides in the sequence shown in green. Q05117: Tartrate-resistant acid phosphatase type 5 

is a common marker to identify Osteoclasts showing a 42% peptide coverage. P07214: SPARC is 

a common marker to identify Osteoblasts showing a 51% peptide coverage. P70669: 

Phosphate-regulating neutral endopeptidase (PHEX) a common marker to identify Osteocytes 

showing a 39% peptide coverage. 
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