Abstract
Bacterial leaf blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), threatens global food security and the livelihood of small-scale rice producers. Analyses of Xoo collections from Asia, Africa and the Americas demonstrated surprising continental segregation, despite robust global rice trade. Here, we report unprecedented BB outbreaks in Tanzania. The causative strains, unlike endemic Xoo, carry Asian-type TAL effectors targeting the sucrose transporter SWEET11a and suppressing Xa1. Phylogenomics clustered these strains with Xoo strains from China. African rice varieties do not carry suitable resistance genes. To protect African rice production against this emerging threat, we developed a hybrid CRISPR-Cas9/Cpf1 system to edit six TALe-binding elements in three SWEET promoters of the East African elite variety Komboka. The edited lines show broad-spectrum resistance against Asian and African strains of Xoo, including strains recently discovered in Tanzania. This strategy could help to protect global rice crops from BB pandemics.
Competing Interest Statement
The authors have declared no competing interest.