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Abstract: Diffuse optical tomography (DOT) has been investigated for diagnosing malignant
breast lesions but its accuracy relies on model-based image reconstructions which in turn depends
on the accuracy of breast shape acquisition. In this work, we have developed a dual-camera
structured light imaging (SLI) breast shape acquisition system tailored for a mammography-like
compression setting. Illumination pattern intensity is dynamically adjusted to account for skin
tone differences while thickness-informed pattern masking reduces artifacts due to specular
reflections. This compact system is affixed to a rigid mount that can be installed into existing
mammography or parallel-plate DOT systems without the need for camera-projector re-calibration.
Our SLI system produces sub-millimeter resolution with a mean surface error of 0.26 mm.
This breast shape acquisition system results in more accurate surface recovery, with an average
1.6-fold reduction in surface estimation errors over a reference method via contour extrusion.
Such improvement translates to 25% to 50% reduction in mean squared error in the recovered
absorption coefficient for a series of simulated tumors 1-2 cm below the skin.

© 2022

1. Introduction

Breast cancer is the most commonly diagnosed cancer in women worldwide with an estimated
1,918,030 new cases in 2022 in the United States alone [1]. X-ray mammography is the primary
breast cancer screening technique [2] used for early detection to reduce mortality rates [3].
Despite its recommendation for screening, x-ray mammography suffers from a high false-positive
diagnostic rate [3,4]. The technique lacks both strong structural contrast between healthy and
tumor tissue and the ability to quantify tissue functions to assess benign versus malignancy [5].
These limitations have led researchers to investigate using diffuse optical tomography (DOT)
techniques to characterize the breast tumor’s physiology to lower false-positive diagnoses.

Unlike x-ray mammography, DOT is an imaging modality that uses non-ionizing near-infrared
(NIR) radiation to yield three-dimensional (3-D) maps of the optical properties of illuminated
tissue [6–9]. Biological tissues’ primary absorbers in the spectral window from around 600 to
1000 nm have relatively low absorption, allowing NIR light to penetrate through centimeters
of tissues [10]. This allows the quantification of physiological properties such as hemoglobin
concentration, blood volume, and blood oxygen saturation [5, 6]. Malignant tumors generally
demand a greater blood supply than their surrounding tissues, leading to increased light absorption
that can be delineated using spectroscopy and imaging methods, making DOT particularly useful
for breast cancer imaging diagnosis [11–15]. Additionally, the low spatial resolution of DOT [16]
can be improved by a multi-modal approach with x-ray mammography [17–20]. DOT images
are known for low spatial resolution largely caused by the high scattering properties of biological
tissues [6]. The high scattering present in the breast tissue redirects photons to traverse
large overlapping probing volumes before their detection, greatly reducing the locality of the
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measurements and resulting in blurry images. Mathematically, this is reflected as the severe
ill-posedness of the inverse problem. Parallel-plate compression of breast tissues has been used
in an x-ray mammography scan to minimize overlapping tissues and has also been explored
for a number of standalone [14,21] and multi-modal DOT breast imaging systems [20,22, 23].
Obtaining breast surface information to aid quantitative analysis of imaging data has garnered
interest from a number of applications, including digital breast tomosynthesis (DBT) [24] and
magnetic resonance imaging (MRI) scans [25, 26].

For multi-modal DOT systems, the 3-D shape of the breast can be estimated using the structural
imaging modality such as DBT [27] or MRI [28]. When a 3-D imaging modality is not available,
two-dimensional (2-D) mammography [19] has also been used to provide the shape information.
In such case, a simple way to recover a 3-D breast surface is to extrude the 2-D breast contour
along the compression axis [29, 30], or sweep the 2-D breast contour along the contour line
extracted from an orthogonal view [31]. These methods either rely on assumptions about the 3-D
location of certain features (e.g. mamilla position) or assume a constant curvature of the breast
along the sweeping direction. For more accurate reconstructions of tissue optical properties,
especially near the surface, measuring 3-D breast surface accurately can be greatly beneficial.
Accurately acquiring breast 3-D surface shapes has gained clinical acceptance due in large

part to the plastic and reconstructive surgery communities [32, 33]. The two prominent
techniques for 3-D breast surface imaging are stereophotogrammetry and laser scanning [34].
Stereophotogrammetry works by overlaying multiple images of an object taken from different
view angles and triangulating the location of the object based on matching features in the
multiple images [35–37]. In addition to requiring multiple cameras to increase accuracy [38], this
technique is also heavily influenced by lighting conditions since features need to be extracted from
multiple viewpoints [39]. Another limitation is the “ptosis error” seen during scanning of ptotic
or larger breasts [40]. This arises due to the small field of view of stereophotogrammetry systems,
leading to inaccuracies in breast surface and volume estimations due to the portions of the breast
that are not illuminated. Laser scanning is a surface imaging technique in which rays from a laser
beam are reflected off an object and detected by a detector [41]. Although laser-based acquisition
systems can produce more accurate surfaces [42], these systems tend to be expensive [43, 44]
and require the need for very precise setups [45]. Recently, the use of patterned-lasers and
orientation-sensitive detectors has led to an increase in portable 3-D laser scanning devices [46].
While low-cost laser-based depth sensors have been widely deployed in game consoles such as
Xbox or PlayStation, they are only designed to achieve relatively low spatial accuracy compared to
dedicated 3-D scanners. Still, patterned-laser-based surface acquisition systems generally require
a minimum scanner-to-target distance of 35 cm [47,48]. Additionally, their typical housing is
too large to fit between mammography compression plates [25, 48]. Bulky instrumentation and
long minimum working distance requirements make stereophotogrammetry and laser scanning
techniques infeasible in the confined, low-light mammography setting.

Another widely used 3-D surface acquisition technique is structured light imaging (SLI) [49,50].
SLI works by illuminating an object with two-dimensional spatially varying patterns with a
projector and capturing images from the illuminated object using cameras [51]. The distortion of
the specially designed patterns provides information regarding the shape of the object. Calibration
of the camera-projector system is easily done by capturing images of a known planar pattern
(e.g. a checkerboard). With the ability to use off-the-shelf components, a simple setup with
a single projector and camera, and a robust and simple calibration method, SLI is positioned
to provide accurate, fast, and cost-effective breast surface scanning [49]. However, similar to
most patterned-laser surface scanners, commercially available SLI systems have long minimal
working distance requirements and large assemblies that cannot readily fit within the confined
mammography compression plates [50, 52].

In this work, we have developed a low-profile dual-camera SLI breast shape acquisition system
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specifically tailed for use in the confined space between parallel breast compression plates. This
system can be incorporated with standalone DOT breast scanners or multi-modal DOT systems
combined with mammography or DBT, with a minimal scanner-to-target distance between 10
and 15 cm. In the following sections, we first describe the design of the SLI breast scanner and
detail the methods for adaptive illumination for subject-specific skin tones as well as approaches
to reduce specular reflection from the compression plates. We then compare several traditional
surface acquisition methods that leverage mammography images against our SLI-based breast
surface acquisition system and quantify the impact of improved breast surface acquisition on the
recovery of breast lesions using a series of simulations.

2. Methods

Here, we first briefly describe a mammography-mimicking parallel-plate transmission breast DOT
system, designed to be used as either a standalone DOT scan of a compressed breast or combined
with separately acquired mammography or DBT images in a multi-modality data analysis [18,53].
Then we elaborate on the SLI breast surface acquisition sub-system and surface data processing
pipeline. This custom SLI system is designed to be compact, low-cost, and specifically tailored
towards the low-light and space-confined mammography compression settings. Next, we compare
this approach with a number of alternative breast shape acquisition methods, including single-axis
and dual-axis contour-line extrusion methods, and create benchmarks to quantify the surface
accuracy improvement of the proposed method. Finally, we compare results from a series of
DOT image reconstructions based on simulated data with various surface acquisition methods to
further quantify the impact of breast surface accuracy, especially for the accurate recovery of
tumors embedded at various depths.

2.1. Wide-field parallel-plate transmission breast DOT system

A parallel-plate transmission optical tomography system with the capability of imaging a
breast with mammography-mimicking compression was built where the proposed SLI system
is embedded between the compression plate to provide accurate measurement of the breast
surface [Fig. 1(c)]. The breast is compressed by a pair of acrylic plates, with one plate mounted
at the stationary end of a linear stage (BiSlide, Velmex, Bloomfield, NY, USA). An acrylic
mammography compression paddle is mounted on the moving stage of the linear stage, allowing
for a plate separation ranging from 300 mm (fully released) to 0 mm (fully closed) using a 2-phase
stepper motor (Oriental Motors, Braintree, MA, USA). A linear encoder (ETI Systems, Carlsbad,
CA, USA) is connected between the pair of compression plates to measure their separation. The
entire breast compression assembly is mounted on a rotatory table (Lintech, Monrovia, CA,
USA), controlled by a foot paddle to permit mammography-like lateral-oblique compression.
This breast DOT design specifically enables registration of structural information from separately
acquired mammography scans with the DOT images using the methods detailed in our previous
studies [18]. The details of this breast DOT system will be described in a separate publication.

2.2. Dual-camera SLI breast surface scanning system

The main focus of this report is to characterize and evaluate the SLI-based breast surface
acquisition sub-system. This low-profile SLI scanner has a dimension of 30×10×4.8 cm3, and is
fixated on a stationary compression plate, on the side facing the patient’s breast [Fig. 2(a)]. It
consists of a central projector (P2-B DLP Pico Projector, AAXA Technologies, Irvine, CA, USA)
and two USB cameras (C525, Logitech, Lausanne, Switzerland) to reconstruct a 3-D surface of
the compressed breast. The SLI scanner is designed to have a relatively short scanner-to-target
distance, typically less than 15 cm, and a vertical profile of less than 3 cm to permit scanning
breasts with a wide range of sizes. A laptop is used to control the data acquisition, including
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Fig. 1. (a) Top-view of the breast compression compartment – upper: SLI system;
bottom: horizontal cross-section (orange line) of the compressed breast with blue circles
indicating the placement of the checkerboard used for system calibration. Numbers 1-5
indicate the 5 board orientations repeated at each location for calibration. (b) Side-view
of the breast compression plates, showing the linear translation stage (blue bar on the
right) and a linear encoder (in yellow), and (c) 3-D rendering of the SLI system, an
acrylic bottom plate and an acrylic compression paddle (top).

illumination pattern generation, projection, camera image acquisition, and translation stage
control via an interface written in MATLAB (R2017b, Mathworks, Natick, MA, USA).

Gray-code based binary patterns [54] are sequentially illuminated onto the breast surface and
captured using both USB cameras. These patterns are characterized by their pattern order, P. A
pattern set of P = 3 results in 3 sequences which are a reflected binary of the previous (“01”,
“0110”, and “01100110”). Four bar patterns are created for each sequence (a horizontal black
and white bar pattern, a vertical black and white bar pattern, and the complimentary pattern
of each) [55]. The digits correspond to the white (“1”) and black (“0”) bars. In addition, a
full-bright (white) and full-dark (black) pattern are added to each pattern set. Thus, a pattern
set of P = 3 results in 4 × P + 2 illumination bar patterns. Complimentary Gray-code based
illumination pattern sets are used due to their robustness to decoding errors [56]. The two USB
cameras have overlapping field-of-views and sequentially capture images of the breast during
each illumination pattern at an exposure time of 250 ms. Dual-camera simultaneous acquisition
allows the SLI system to capture the curved surface of breasts of varied sizes without moving
components.

2.2.1. Special data acquisition considerations

Skin tone differences are known to affect light-based surface reconstruction accuracy, especially
in low-light settings. To account for skin tone variations, the normalized illumination patterns
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Fig. 2. (a) Front-view photo of the SLI system. Cameras and projectors are embedded
in an acrylic mount to prevent the need for re-calibration. (b) Horizontal bar patterns
reflecting off the top compression plate and onto the breast show curved illumination
bar artifacts when the scaling factor α is set to 1. In (c), we show the same illumination
patternwith thickness-informedmasking eliminating the curved bar artifacts by cropping
the patterns exceeding the breast surface before projection. Additionally, the scaling
factor is automatically calculated to prevent camera saturation.

are multiplied by a scaling factor α ranging from 0 to 1 to prevent camera saturation. The scaling
factor for a camera is calculated prior to data acquisition by first illuminating a full-bright pattern
with α = 1 onto the breast and capturing a single image using the camera. If the maximum
pixel value of the captured image is above a preset threshold, α is decreased and the breast
is re-illuminated with a full-bright pattern multiplied by the new α value. This procedure is
repeated until the maximum pixel value of the captured image is less than 95% of the camera’s
maximum allowable pixel value. This entire procedure takes an estimated 8 seconds to complete
and is repeated for each camera.
Additionally, specular reflections from the acrylic compression plates, shown in Fig. 2(b),

can produce vertically mirrored breast surfaces. To minimize such specular reflection, we use
dynamic pattern masking based on real-time separation readings provided by a linear encoder.
By limiting the vertical span of the illumination patterns, the patterns are projected onto the
compressed breast surface without generating strong direct specular reflections from the top and
bottom compression plates, as shown in Fig. 2(c).

2.2.2. SLI system calibration and re-projection errors

A standard SLI camera-projector calibration is performed prior to image acquisition and is
described in detail in [56]. For each camera-projector pair, a checkerboard pattern is fully
illuminated in multiple positions and the corner locations are estimated in the projector’s default
coordinate system using a robust pixel classification algorithm [57]. The camera and projector’s
intrinsic parameters (optical center and focal lengths) are estimated using a calibration method
described in [58] by fixing a world coordinate system to the calibration checkerboard plane.
The projector’s extrinsic parameters (rotation and translation from camera to projector) are

calculated using a simple stereo camera calibration [59] that treats the projector as a secondary
camera. This results in a rotation matrix and a translation vector relating the camera’s coordinates
to the projector’s coordinates. Once the 3-D coordinates of all the corners of the checkerboard
are computed using the camera’s (and projector’s) intrinsic and extrinsic parameters, the corners
are “reprojected” onto all the images for which they appear. The re-projection error is defined as
the average distance between the re-projected corner locations and the actual corner location.

2.2.3. SLI system acquisition

The same acquisition procedures are used for both calibrating the system and acquiring breast shape
measurements (Fig. 3). A single acquisition refers to the image capture of all illumination patterns
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Fig. 3. Flow chart of image acquisition for both subject measurements and system
calibration. Subject measurements calculate a saturation scaling factor and mask the
illumination patterns prior to projecting patterns. System calibration measurements
do not mask the illumination patterns and project at full intensity. The calibration
loop (dashed lines) is repeated for each location and orientation of the calibration
checkerboard.

by both cameras. Camera-projector calibration requires an acquisition at each checkerboard
position. During breast measurements, the acquisition is preceded by the determination of the
saturation scaling factor α and masking of the patterns. Patterns during calibration are not
masked since the calibration is done with the system fully uncompressed.

2.3. Alternative breast surface reconstruction methods for assessing SLI surface
accuracy

To evaluate the accuracy of the SLI system, we compare its output against alternative surface
acquisition methods. Each method estimates the surface of a 3-D breast derived from a DBT
scan.

2.3.1. Reference breast phantom fabrication

Fig. 4 shows the process of creating surface meshes from DBT scans. Scans were obtained from
radiology data from The Cancer GenomeAtlas (TCGA) breast Invasive Carcinoma collection [60],
available freely through The Cancer Imaging Archive [61]. The scan (ID: TCGA-AO-A03M) was
chosen due to its large size and complex surface structure, allowing us to highlight the limitations
of low field-of-view acquisition methods and as well as traditional shape estimation methods
that simply sweep a single breast contour. Digital Imaging and Communications in Medicine
(DICOM) slices were segmented into breast and non-breast regions using ITK-SNAP [62].
Segmented slices were converted to a volumetric image and then into a 3-D mesh using a
MATLAB toolbox Iso2Mesh [53] [Fig. 5(a)].

2.3.2. Single and double contour sweep-based surfaces

Three alternative surface estimation methods are employed in addition to the SLI surface
acquisition method. These three methods use spline models of the DBT breast contours from
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Fig. 4. Generation of breast surface meshes using multiple acquisition methods. The
DBT volumetric mesh is created from segmented scans. The extrusion surface mesh
is created by extruding the top contour to the breast thickness. The top and side
contours of the DBT mesh are swept to create top and side surface meshes. The SLI
mesh is created by scanning a 3-D printed breast phantom and trimming the resulting
point-cloud using the linear encoder measurements. The surface estimation error is
calculated for each of the surface meshes by comparing the surface estimations to the
DBT mesh. All surface meshes are converted to volumetric meshes for validating the
effect of surface estimation methods on inclusion reconstruction.

two different planes (Fig. 1). The extrusion method creates a surface mesh by extruding the
x/y breast contour in the z direction to the thickness of the DBT breast measured by the linear
encoder [Fig. 5(b)]. The second and third methods utilize a curve-based sweep, in which a
profile (shape) follows a path (contour) to create a 3-D model. In the “top-sweep” method, the
x/y breast contour profile is swept along the y/z breast contour path [Fig. 5(c)]. Similarly, the
“side-sweep” method uses the y/z breast contour as the profile and the x/y breast contour as the
path [Fig. 5(d)]. In both sweep methods, the profile normal is kept constant.

2.3.3. Structured light imaging surface mesh generation

The SLI system estimates the surface of the compressed breast from the captured images
while the breast is illuminated with Gray-code sequence patterns. Each camera-projector pair’s
extrinsic parameters are used to generate a point-cloud in each camera’s reference frame using
Scan3d-Capture [63] [Fig. 5(e)]. The alignment of each camera-projector pair point-cloud is done
by a rigid transformation of each point-cloud to the projector’s coordinates. The point-clouds are
then down-sampled using a box grid filter and merged to a single point with normal properties
averaged [64]. Denoising is then performed to remove outliers [65]. The point-cloud is trimmed
in the z direction to the height of the DBT breast measured by the linear encoder [Fig. 5(f)].
The trimmed point-cloud is first converted to a mesh using a crust algorithm [66] prior to being
cropped by a bounding-box mesh with height matching the breast thickness to form a closed
surface mesh.
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Fig. 5. (a) Surface mesh of a digital breast tomosynthesis model obtained from The
Cancer Imaging Archive [61]. Blue cyan lines show the x/y and y/z breast contours
from the top and side views. (b) Estimate of the DBT surface using the extrusion
method in which the contour (cyan) is extruded to the thickness of the breast along the
z axis. (c) The top-sweep method uses the x/y contour as the profile (cyan) and the y/z
contour as the path to sweep (red). (d) The side-sweep method uses the y/z contour
as the profile (cyan) and the x/y contour as the path to sweep (red). (e) point-clouds
from both camera-projector pairs were generated by scanning a 3-D printed model of
the DBT breast using the SLI system. The green (Camera 1) and magenta (Camera
2) point-clouds are in the respective camera coordinates. (f) Merged and denoised
point-cloud in the projector’s coordinates.

2.3.4. Surface estimation error

The surface estimation error, Es , of each surface estimation method is computed by comparing
the nodes in each surface mesh to the nodes in the DBT mesh. The residual for each node in the
surface mesh is the shortest distance from that node to the DBT mesh. The SLI output mesh is
linearly translated (rotation and translation only) into the projector’s frame using the projector’s
extrinsic parameters prior to determining residuals. Es is defined as the average residual of all
nodes for a particular surface estimation method.

2.4. Evaluation of the impact of surface errors on DOT image reconstructions

Simulations were conducted to evaluate the impact of surface estimation accuracy on DOT
reconstruction accuracy for inclusions of various depths. Breast surface meshes were converted
to volumetric meshes with optical inclusions and the mean squared error of wide-field DOT
reconstructions was calculated for each estimation method.

2.4.1. Assessment of reconstruction accuracy

The effect of different surface estimations on lesion reconstructionwas quantified using simulations
of continuous wave (CW) pattern-illumination sources. A 5 mm radius spherical inclusion was
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added at the mid-plane of each volumetric mesh at distances of 5 to 45 mm away from the nipple.
The x and z coordinates of the inclusion were fixed at 68 and 22 mm, respectively. The forward
simulation was conducted on a ground truth volumetric mesh consisting of the DBT volumetric
mesh and a spherical inclusion. The non-linear image reconstruction of tissue properties was
calculated using an iterative Gauss-Newton method in which a series of corrective terms were
added to an initial guess [53]. The reconstruction resulted in distributions, µai , representing the
resulting 3-D absorption coefficient (µa) maps at the ith node for each simulated tumor location
and surface model.

2.4.2. Reconstruction error assessment

We use mean squared error, MSE, to determine the accuracy of the image reconstruction resulting
from each breast mesh. To compute the MSE, we first interpolate the reconstructed absorption
map, µa, to the DBT mesh, and then subtract the interpolated µa at each node i, with the
corresponding ground truth absorption value defined on the same node, expressed as

MSE =
1
N

N∑
i=1
(µai − µa0i)

2, (1)

where N is the total node number; µai and µa0i define the recovered and ground truth µa values,
respectively, at the ith node in the DBT mesh.

3. Results

In this section, we first report the projector and camera re-projection errors of our SLI calibration
using the calibration checkerboard. We then quantify the error of surface estimation methods in
estimating the surface shape of the DBT breast. Finally, we show the effect of different surface
estimation methods on optical property reconstruction using simulations of continuous wave
pattern-illumination sources.

3.1. Camera-projector calibration and surface acquisition

Our dual-camera SLI system was calibrated in a dark room using a checkerboard with 5×7
internal corners with 1×1 cm2 black and white squares. The calibration checkerboard was printed
and adhered to a black Delrin surface to ensure it remained planar. To account for varying
breast shapes and curvatures, the checkerboard was placed at 7 locations. At each location,
camera images were captured for 5 board orientations: 1) normal to the y-axis [see Fig. 1(a)], 2)
rotated left and 3) rotated right by 30 degrees relative to the x-axis, and 4) tilted forward and 5)
tilted backward by 30 degrees in the y/z plane [Fig. 1(b)]. This results in a total of 7 × 5 = 35
checkerboard positions within the camera and projector field-of-views (Fig. 1). Each rotation and
tilt was measured manually using a printed protractor. The projector’s resolution is 1280×720
pixels and the resolution of the cameras is 1600×896 pixels. Using a Gray-code of bit-length
P = 9, we acquire P × 4 + 2 = 38 images (see Section 2.2) at each board orientation/position
placement. An exposure time of 0.25 seconds per image per camera results in a total one-time
calibration time of 38 × 7 × 5 × 2 × 0.25 = 665 seconds. The first camera-projector pair (Camera
1 with projector) resulted in a camera and projector re-projection error of 0.4089 and 0.2282
pixels, respectively. The second camera-projector pair resulted in a camera re-projection error of
0.4368 pixels and a projector re-projection error of 0.2889 pixels.
A re-calibration is only necessary when the relative position of the cameras and projector

is changed. Once calibrated, the SLI system can acquire a surface scan in about 35 seconds,
including 16 seconds for adaptively adjusting the intensity scaling factor α for both cameras (see
Section 2.2.1 for details) and 19 seconds for image acquisition (38 × 2 × 0.25 = 19 s).
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3.2. Surface estimation errors

Table 1. Mean and standard deviation of the residuals of each point in a surface
estimation mesh compared to the original DBT breast mesh.

Extrusion Top-Sweep Side-Sweep SLI

Surface estimation error, Es [mm] 6.8353 0.3772 0.4726 0.2543

Standard deviation [mm] 2.8671 0.3029 0.3370 0.2723

The DBT breast model was 3-D printed (Ender 5, Creality, China) with a 0.1 mm layer
height using white polylactic acid (PLA) filament. The 3-D printed DBT breast was placed in
between the compression plates, compressed to the thickness of the printed DBT phantom, and
scanned using the dual-camera SLI system. The saturation scaling factors α were automatically
determined using twenty iterations, resulting in a α = 0.8 for both cameras. The two point-clouds
from each camera-projector pair were transformed to the projector’s coordinates, down-sampled,
and merged prior to being denoised with the number of nearest neighbor points set to four and
the outlier threshold set to one standard deviation from the mean of the average distance to those
four neighboring points. The resulting point-cloud from the SLI system scan has 35,256 points.

Table 1 shows the mean and standard deviation of the residual of all the nodes in the estimated
breast surface mesh. The z-extrusion method (EXT) results in the largest error (Es) of all
compared methods. While the top-sweep, side-sweep, and SLI methods all had similar standard
deviations, the SLI method resulted in the smallest Es .

3.3. Mean square error of optical property reconstruction

DOT reconstructions were performed using our in-house data analysis toolbox, Redbird-m [67].
An L-curve analysis is used to determine the regularization parameter as 3.16 × 10−10, which is
fixed over 10 Gauss-Newton iterations. The absorption coefficient of the spherical inclusion was
set to be twice (µa = 0.016/mm) that of the background tissue (µa = 0.008/mm). The reduced
scattering coefficient µ′s was set to 1 mm−1 for both breast and inclusion tissues. A set of 32
(16 vertical, 16 horizontal) moving-bar source patterns [68] covering an area of 40×40 mm2

was centered at the spherical inclusion. Iso2Mesh was used to interpolate nodal values from
the reconstructed mesh to the ground truth mesh based on linear interpolation in order for all
reconstructed meshes to have the same number of nodes.

The MSE errors from these reconstructed images are summarized in Fig. 6, showing the effect
of different surface estimation methods on the accuracy of optical property recovery. Overall,
surface mesh accuracy appears to have a notable impact on relatively shallow tumors, with a
depth of less than 25 mm. MSE values obtained using the SLI method closely follow those using
the ground truth DBT mesh for most inclusion depths. The top- and side-sweep-based meshes
followed similar trends, however, reporting higher errors compared to SLI especially when the
tumor is relatively shallow. The maximum MSE value for the SLI mesh at a distance of 5 mm
from the surface (4.89 × 10−7 mm2) was 23% higher than the maximum MSE value for the DBT
mesh (4.35 × 10−7 mm2). In contrast, the single-axis-extrusion method (EXT) MSE was nearly
twice higher (8.62 × 10−7 mm2) than that from the DBT mesh. Although the DBT and SLI mesh
MSEs plateau to their minimum around 15 mm from the surface, top-, side-, and extrusion-based
mesh MSEs continue to decrease until a depth of 25 mm. Beyond the depth of 25 mm, the errors
between different methods become minimal.
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Fig. 6. A comparison between the mean squared error (MSE) of the reconstructed
absorption map using 4 estimated surfaces (EXT - z-axis extrusion, TOP - sweeping
x/y contour along y/z contour, SIDE – sweeping y/z contour along x/y contour, and
SLI – surface acquired from our SLI system) as well as the ground truth surface (DBT).
A 1 cm diameter spherical inclusion is moved away from the breast surface at various
depths between 5 and 45 mm in 1 mm increments. Image slices (in x/y plane) of the
reconstructed absorption coefficient (µa in mm−1) (top-row) and the ground truth µa
(bottom-right) are shown as insets.

4. Discussion

The camera and projector re-projection errors in Section 3.1 represent an average error of less
than 0.5 pixels in estimating the corner locations of a calibration checkerboard placed between
50 and 250 mm away [Fig. 1(b)] from the projector for all 35 checkerboard positions. Although
the same illumination patterns and calibration checkerboard positions were used to calibrate each
camera-projector pair, we find a slightly better calibration accuracy when the projector is paired
with Camera 1 since Camera 1 is closer to the projector’s lens (Fig. 1). The discrepancy in the
re-projection errors of the two pairs is due in part to the asymmetry of the dual-camera setup.
The asymmetry arises from the projector offset relative to its housing, making one camera closer
to the projector than the other [Fig. 1(a)].

From Table 1, the single-axis extrusion method resulted in the highest surface error because it
does not account for the curvature of the breast in the y/z plane [Fig. 5(b)]. Table 1 indicates that,
on average, points in the extrusion-method-derived surface estimation mesh are approximately
6.84 mm away from the DBT mesh. The top- and side-sweep methods decrease the surface
estimation error by incorporating a second breast contour from the y/z plane [Figs. 5(c) and 5(d)].
Both methods improve the accuracy of surface estimations by approximating the 3-D curvature
of the breast. We want to point out that both top-sweep and side-sweep methods require an
additional camera to obtain two orthogonal views of the breast [69], which does not necessarily
lead to simplified hardware compared to the SLI setup considering the mounting space constraints
and lighting conditions [52]. While also requiring two cameras, our mammography-tailored SLI
system can produce sub-millimeter resolution of the surface compared to the reference DBT
breast model based on Table 1.
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Our results also demonstrated that the improvement in surface estimation accuracy can lead to
improved DOT reconstruction accuracy. Fig. 6 shows using breast surfaces derived from SLI can
accurately recover the absorption profile compared to those recovered using the ground-truth
(DBT) mesh at most tested tumor depths. For superficial/shallow (< 10 mm) tumors, the top- and
side-sweep surface estimation methods followed similar trends to each other, reporting MSEs
about 50% higher compared to those from using ground-truth (DBT) surface models, and about
30% higher than those from using SLI surfaces. As expected, the effect of the surface accuracy
decreases as the inclusion is moving further away (> 25 mm) from the skin.
Despite the ability to produce sub-millimeter resolution of breast surfaces in poorly lit and

confined mammography-like settings, both our SLI system and our analysis have limitations.
Firstly, the span of the output point-cloud from our SLI system is limited to the area of the breast
that is well-illuminated by the projector. As a result, tissue boundaries near the chest wall or those
in direct contact with the compression plate may not be well covered due to the limited angles of
the projector/camera line-of-sight. Still, for DOT of a compressed breast, capturing a significant
portion of the front-facing breast tissue as our system does, provides quantitative differences
in reconstructions, as shown above. Future improvement of this system should consider using
more compact, wide-angle projectors, higher resolution cameras, and patterns with higher order
binary codes to both expand the field-of-view and increase the point-cloud resolution. Secondly,
a 3-D printed breast model was used to experimentally compare different shape acquisition
methods. Different choices of extruder sizes, filament colors, and printing techniques could
impact the surface texture of the printed phantom and slightly alter the surface estimation errors.
Finally, the quantification of reconstruction errors was based on simulations using a single set
of pre-determined breast models, tumor size and shape, tumor contrast, and wide-field pattern
size. An experimental validation using heterogeneous phantoms may produce more realistic
comparisons.

5. Conclusion

In summary, we have developed and validated a low-profile, low-cost, and robust SLI-based
breast surface acquisition system that can be used in confined low-light mammography-like
settings to obtain 3-D breast surfaces. Once calibrated, our SLI system can achieve sub-millimeter
accuracy with a data acquisition time of less than 40 seconds. We quantified the impact of
breast surface estimation methods on DOT optical property reconstruction accuracy of inclusions
embedded at various depths and found that obtaining accurate breast surfaces is important for DOT
reconstructions of shallow lesions with a depth less than 25 mm. While contour-extrusion based
approaches are relatively simple and produce acceptable reconstructions for deeply embedded
tumors, they can result in 30% to 100% higher errors when reconstructing shallow tumors. We
want to particularly mention that a compact breast shape acquisition system that can fit between
mammography compression plates can not only help improve parallel-plate breast DOT image
reconstructions but can also be incorporated into standard x-ray based DBT scanners to help
improve 3-D DBT image reconstructions. Currently, clinical DBT image reconstructions are
performed without considering the actual breast shape [70] and often result in an inaccurate
cylindrical quasi-3D breast shape [67]. Explicitly capturing and considering breast 3-D shapes
are expected to lead to improved image quality in DBT and other model-based breast imaging
modalities.
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