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Abstract 

Motivation: The heterogeneous nature of cancers with multiple subtypes makes them 

challenging to treat. However, multi-omics data can be used to identify new therapeutic targets 

and we established a computational strategy to improve data mining. 

Results: Using our approach we identified genes and pathways specific to cancer subtypes that 

can serve as biomarkers and therapeutic targets. Using a TCGA breast cancer dataset we applied 

the ExtraTreesClassifier dimensionality reduction along with logistic regression to select a subset 

of genes for model training. Applying hyperparameter tuning, increased the model accuracy up 

to 92%. Finally, we identified 20 significant genes using differential expression. These targetable 

genes are associated with various cellular processes that impact cancer progression. We then 

applied our approach to a glioma dataset and again identified subtype specific targetable genes. 

Conclusion: Our research indicates a broader applicability of our strategy to identify specific 

cancer subtypes and targetable pathways for various cancers. 
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1. Introduction 

 

Cancer is one of leading causes of death. Approximately 39.5% of women and men will be 

diagnosed with cancer at some point during their lifetimes. Over 10 million people are estimated 

to die from the various forms of cancer in the world each year, as stated by source. Within the 

United States, in 2022 alone, there will be an estimate of 1.9 million new cancer cases diagnosed 

and 609,360 deaths will occur due to cancer (Cancer Facts & Figures 2022). Current treatment of 

cancer involves nonspecific methods such as chemotherapy and radiotherapy, which cause an 

equivalent amount of damage to the patient's healthy cells as they do to the cancer cells. However, 

there is much evidence suggests that precision therapy or personalized medicine for cancer patients 

could potentially reduce the side effects and toxicity caused of chemotherapy and radiotherapy 

(Kenneth and Cho, 2022; Manrriquez, et al., 2022; Ronquillo and Lester, 2022). Therefore, recent 

efforts have been made to implement precision therapy for cancer treatment(Krzyszczyk, et al., 

2018; Mateo, et al., 2022). For this, new biomarkers and drug targets need to be identified. The 

influx of ground-breaking whole-genome DNA sequencing and gene expression technologies has 

allowed for an increase in the characterization of the cancer genome and transcriptome, allowing 

for the discovery of new genetic biomarkers (Cancer Genome Atlas Research, et al., 2013; Zhang 

and Wang, 2015). However, the rapid processing of this vast amount of data for the identification 

of the most significant and functionally relevant changes has been a challenge for cancer 

identification and treatments. Therefore, new high-throughput strategies have to be proposed and 

implemented, such as the use of Machine Learning.  

 

 

Machine Learning approaches can be used to prioritize the most significant genes associated with 

specific disease subtypes to determine their clinical significance (Alabi, et al., 2021; Arjmand, et 

al., 2022; Cai, et al., 2022; Chung, et al., 2022; Guo, et al., 2022; Tian, et al., 2021; Tsai, et al., 

2022). Recently, strides have been made to incorporate machine learning approaches into cancer 

therapy (Malebary and Khan, 2021). However, there are limited approaches which are focused on 

the identification of subtype specific gene signatures tailored for therapeutic implications. Our goal 

is to develop a machine learning-based pipeline that can identify novel cancer subtype-specific 

therapeutic targets based on gene expression data.  

 

In this study, we focused on developing and applying the machine learning approaches for the 

identification of breast cancer subtypes. Additionally, we developed a workflow to identify the 

associated signaling mechanisms and therapeutic targets that are specific to each breast cancer 

subtype. Breast cancer is the most frequently diagnosed cancer and the second cause of cancer 

deaths in women. In 2022, 287,850 women were estimated to have been diagnosed with invasive 

breast cancer in the United States and approximately 43,250 women were estimated to have died 

of their disease (Cancer Facts & Figures 2022). Men can also have breast cancer, although male 

breast cancer is rare. Despite of all the efforts these estimated numbers are significantly higher 

than the cases diagnosed in prior years (Cancer Genome Atlas, 2012; Ciriello, et al., 2015; Jiang, 

et al., 2016; Kalecky, et al., 2020). Therefore, existing methods for therapeutic target identification 

demand improvement.  

  

Further, we utilized a gliomas dataset to validate our pipeline. Gliomas are some of the most 

aggressive and mostly lethal forms of brain cancer. They typically affect people above the age of 

50 and the standard therapy includes surgery, chemotherapy, and radiotherapy. However, the 
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average survival rate is 14 to 15 months, following the standard therapy. Therefore, better markers 

and treatments to improve patient outcomes are needed. Our glioma dataset contained three 

molecular subtypes. Two of the subtypes were low-grade gliomas: oligodendrogliomas and 

astrocytomas. The third subtype was glioblastomas, which is the most severe form of brain cancer 

and has a poor prognosis (Zhang, et al., 2019). Here we developed a ML approach that can be used 

to identify specific subtypes of cancers using breast cancer and gliomas dataset. 

 

 

2. Materials and methods 

2.1 Expression dataset. We utilized Pan-TCGA data (The Cancer Genome Atlas). The dataset 

included the expression values of over 8000 genes, 6900 cell samples, and 20 different cancers. 

The goal was to create a pipeline that would allow for the identification of novel subtype-specific 

target genes for a given cancer. For a proof of concept, cancer with the highest number of samples, 

breast cancer, was utilized to train the model and develop the pipeline. This pipeline is then applied 

to the glioma dataset. 

2.2 Normalization and encoding of expression dataset. The data was encoded and normalized, so 

a logistic model could be trained on it. For our data specifically, the x-matrix, gene expressions, 

was normalized, and the y-matrix, subtype classifications, was encoded with a nominal encoder. 

For the x-matrix dataset the scikit-learn normalizer was utilized (Bac, et al., 2021) and it allowed 

for all the gene expression values to be within the range of 0.0 and 1.0 since that is the format the 

input features need to be for logistic regression (Matplotlib 3.5.1). Furthermore, the y-matrix had 

to be encoded from strings to numbers, since the y-matrix contained the subtypes, which were 

stored as such, [“Luminal A”, “Luminal B”, “Triple negative (Basal)”, “HER2+”] (Niklaus, et al., 

2021; Romero-Cordoba, et al., 2021). This was thus encoded using an ordinal encoder allowing 

the strings to be expressed as numbers demonstrated in Figure 1A. Once all the data was 

normalized and encoded it served as input for the logistic regression model. 

 

2.3 Machine learning analysis. A logistic regression model was utilized for this dataset (Yuan, et 

al., 2022). There were two different approaches made to train the model. One model was trained 

without the use of a feature selection method and the other model was trained with the use of a 

feature selection method, ExtraTreesClassifier (ETC) (Lage, et al., 2022; Lee, et al., 2020).  

Without the use of the ETC, all 8000 genes were used as input features to train the model; however, 

once the ETC was implemented the input feature number was brought down to 500 allowing for a 

much more precise model. The overall model accuracy increased by 7 percent after implementing 

ETC. Moreover, the precision for predicting each individual subtype after reducing the input 

features from 8000 to 500 was improved. [RK1] Additionally, to improve model accuracy and 

ensure the validity of our model, we performed GridsearchCV hyperparameter tuning. 

GridsearchCV works by splitting the training data into K folds (K=5) and then trains a logistic 

regression model with hyperparameters defined in an inputted grid on each fold. After training K 

models for each combination of hyperparameters, the algorithm uses various metrics, such as 

penalty, solver, C-value, and maximum iterations, to assess the model and hyperparameters, 

selecting the best ones, therefore optimizing the model. Once the ideal parameters are identified 

they can be set for the logistic regression model and it can be trained on the data. After the model 

was trained, the gene's significance was ranked based on the coefficients they were assigned by 

the model. 
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2.4 Differential expression. From the 500 input features used to train the model, the top 200 were 

selected based on the highest coefficients which were assigned by the model based on how 

predictive the genes were of disease. From those 200 genes, differential expression analysis was 

used to calculate the p-values and impact factors of all the genes. Having access to these 

calculations then allowed us to create a comprehensive list of the top 20 most predictive genes for 

each molecular subtype. All of these genes were then taken and plotted onto a heatmap allowing 

for relationships to be seen, and the heatmap also allowed for the visualization of the genes that 

were the distinguishing factors between the different molecular subtypes. 

 

 

2.5 Pathway analysis for gene interaction and associated functions. The protein-protein 

interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting 

Genes (STRING) database (Szklarczyk, et al., 2015).  The STRING tool performs network 

analysis based on experimental and knowledge-based evidence. The same tool was used to perform 

functional enrichment analysis of the differentially expressed genes (DEGs), the corresponding 

biological processes (BP), cell components (CC), and molecular functions (MF) were identified 

using Gene Ontology (GO), and the signaling pathways involved were identified using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) for the p adjusted value < 0.05. Pathway strength 

is defined as the percentage of genes represented in our dataset for a given pathway (Figure 1B). 

 

 

3. Results 

3.1 A hyper-tuned machine learning approach using logistic regression combined with 

ExtraTreesClassifier (ETC) has better accuracy for cancer subtype prediction than just a 

logistic regression model. Two different machine learning approaches were applied to train the 

model. One model was trained using logistic regression without the use of a feature selection and 

the other model was trained with the use of a feature selection method, ETC, a dimensionality 

reduction technique. The overall model accuracy increased by 7 percent (79% to 86%) after 

implementing ETC. The precision for predicting each individual subtype after reducing the input 

features from 8000 to 500 is improved except for the Triple-Negative subtype (Figure 2). 

However, after conducting hyperparameter tuning the overall predictive accuracy of the model 

increased to 92%. Additionally, the predictive accuracy for Triple-Negative also increased. 

Furthermore, throughout the entire model development process, the HER2+ subtype was the most 

difficult for the model to predict due to the limited number of samples in the data. Overall, the 

model has very high accuracy, figure 2 also indicates that false positives of Luminal A and B were 

very rare and only occurrences for HER2+ and Triple-Negative. This makes sense because those 

two subtypes are molecularly challenging to identify. 

 

3.2 Differential expression analysis identified the similarities and differences in each cancer 

subtype. After the models were optimized, differential expression analysis was used for each breast 

cancer subtype. From the top 200 genes that were retrieved from the model, 20 genes that had the 

highest differential expression values were selected. Using these genes, we identified that luminal 

A and luminal B are closely related while HER2+ and Triple-Negative breast cancer subtypes are 

most distinct (Figure 3A). Furthermore, differential expression allowed for the driving genes to 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.20.517258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.20.517258


be identified, which could then be further analyzed using protein libraries to examine protein 

pathways and protein-protein interactions. 

 

 

3.3 Each breast cancer subtype is associated with a distinct gene signature. Analysis of the top 

20 differentially expressed genes for each breast cancer subtype identified a distinct gene signature 

for all 4 subtypes including Luminal A, Luminal B, HER2+, and Triple-negative (BASAL) 

subtypes. Cross overlap of these genes across these 4 subtypes indicates that there are 15 unique 

genes associated with Luminal A, 12 unique genes with Luminal B, 11 unique genes with HER2+, 

and 16 unique genes are associated with Triple-negative breast cancer subtype (Figure 3B).  

 

 

 

 

3.4 Protein-protein network analysis of genes and therapeutic implications. The network 

analysis of 20 differentially expressed genes for each breast cancer subtype were analyzed by the 

STRING pathway analysis for protein-protein interactions. The string analysis curates interactions 

based on existing experimental and knowledge-based evidence (Figure 4A). These 20 genes are 

associated with various cellular and molecular processes that have high significance. Each breast 

cancer subtype shows a network cluster specific to the cancer subtype (Figure 4B). Luminal A 

shows a network of LEMD1, CA9, LY6D, KCNG1, DDC, PSAT1, GSDMC, CDCA7, ULBP3, 

UGT8, MCM10, TMCC2, FERMT1, KIF14, CDC25A, E2F8, ORC1, FAM72D, KLK6, and 3-

Sep genes. These genes are associated with the enrichment of cell cycle,  proliferation, and DNA 

damage response pathway. Luminal B shows a network similar to Luminal A but still distinct 

(LY6D, LEMD1, KLK8, KLK6, SOSTDC1, KRT16, BBOX1, OSR1, CXCL1, FERMT1, 

SERPINB5, KRT5, FOXC1, KRT14, TRIM29, CNTNAP3B, PTPRZ1, KRT17, GABRP, 

KCNG1). These genes are enriched in migration, papillomas, keratosis, and cancer development. 

HER2 network is distinct from both Luminal A and B and only have a few overlapping nodes with 

Luminal B including OSR1, LEMD1, FERMT1, PTPRZ1, and CNNAP3B. Finally, the network 

of Triple-negative subtypes is also distinct with only a few similarities with other subtypes 

including AGR3, ESR1, AFF3, and KCNK15. Additionally, HER2 positive and Triple negative 

breast cancer subtypes have enrichment of pathways associated with mammary gland development 

and epithelial cell proliferation (Figure 4A).  After the identification of network clusters, we 

performed a literature search to identify if any of these networks are also targetable using small 

molecules. Interestingly, we identified that for Luminal A, MCM5 (Mini-chromosome 

maintenance protein complex) can serve as a potential therapeutic target and can be targeted using 

micro-RNAs (noncoding RNAs that can suppress gene expression) such as miRNA-214 (Wang, 

et al., 2022). MCM5 is one of the essential components of the pre-replicative complex and forms 

a helicase together with other proteins to unwind the DNA duplex in S phase. Thus is critical for 

DNA replication and DNA damage response. For Luminal B, KRT5 (Keratin 5) can be targeted 

using miR-601(Du, et al., 2019). For HER2 positive, NTRK2 (Neurotrophic Receptor Tyrosine 

Kinase 2) and IGF1R (insulin-like growth factor type I receptor) are targetable. Both NTRK2 and 

IGF1R are tyrosine kinase and have role in cell growth and differentiation in cancer and other 

diseases. NTRK2 can be targeted using entrectinib, which is currently in clinical trial (Wang et al., 

2020), and IGF1R can be targated using BMS-754807 and OSI-906 (linsitinib) (Murakami, et al., 

2016) (Fuentes-Baile, et al., 2020). Finally, the most aggressive type of breast cancer Triple-

negative can be targeted using FOXA1 combination with IGF1R inhibitor (Calissi, et al., 2021) 

(Calissi et al., 2021) (Figure 4B). Overall, our work identified a specific target for each breast 
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cancer subtype. However, more work is needed to validate the function of each target in these 

cancer subtypes and validate the efficacy of these small molecules. 

 

 

3.5 Validation of Computational Pipeline Using Gliomas Dataset. To validate the accuracy of 

the computational pipeline, a gliomas dataset from TCGA was utilized. Using a logistic regression 

model with tuned hyperparameters, and ETC, we were able to achieve a subtype predictive 

accuracy of 96% (Figure 5A). From this model, the top 200 genes for each subtype were further 

analyzed with differential expression analysis. Through differential expression, we identified the 

top 20 genes for each subtype (Figure 5B-C), which were then further analyzed using StringDB 

pathway analysis (Figure 5D). Through the pathway analysis, we identified matrix 

metalloproteinases (MMP3) can potentially be targeted in glioblastomas (GBM).  MMP3 over-

expression has been associated with cancer metastasis and tumor growth in various cancers 

including breast cancer (Liang, et al., 2021). However, targeted therapies to block MMP3 signaling 

are currently in development. Further, we discovered two targetable genes with current on the 

market drugs. PSEN1 can be targeted using miR-193a for oligodendrogliomas (Pan et al., 2021). 

Similarly, KDM1A (LSD1) can be targeted with ladademstat to potentially treat astrocytoma (Lu, 

et al., 2018; Wang, et al., 2022). PSEN1 and KDM1A (LSD1) have both been associated with 

cancer previously. These results validate our computational pipeline to identify novel target genes. 

 

 

 

4. Discussion 

 

Cancer is characterized as a heterogeneous disease genetically and phenotypically with many 

different subtypes. Rapid diagnosis and accurate identification of cancer subtypes is necessary for 

disease monitoring and precise treatment options for the patients.  For cancer subtyping biomedical 

researchers have been collecting complex molecular, genetics and clinical data. Integration of 

these complex omics data demands application of bioinformatics approaches (ref). Recent studies 

suggest that the application of machine learning (ML) methods could be helpful in expediting these 

approaches. ML approaches also allows to detect key features from complex datasets reveals their 

importance. So far a variety of bioinformatics approaches have been applied including Artificial 

Neural Networks (ANNs), Bayesian Networks (BNs), Support Vector Machines (SVMs) and 

Decision Trees (DTs) in cancer research for the development of predictive models ((Kourou, et 

al., 2021). Here we developed a novel machine learning (ML) approach that can predict cancer 

subtypes high accuracy.  

 

We used TCGA gene expression data to develop a new ML approach to establish gene signature 

for cancer subtypes. Briefly, we used two different ML approaches to train the model. One model 

was trained using logistic regression without the use of a feature selection and the other model was 

trained with the use of a feature selection method, ExtraTreesClassifier (ETC). The overall model 

accuracy increased by 7 percent (79% to 86%) after implementing ETC for breast cancer subtypes. 

Further, after conducting hyperparameter tuning the overall predictive accuracy of the model 

increased to 92%.  In order to validate our pipeline, we performed the analysis upon a gliomas 

dataset (506 patients, 3 subtypes). The model was able to predict the cancer subtype with 96% 

accuracy. We were able to achieve a subtype predictive accuracy of 96% for gliomas. Thus, our 

new method that combines logistic regression, hyperparameter tuning, and ExtraTreesClassifier 

provides high predictive accuracy for cancer subtypes. 
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Using this approach, we identified that NTRK2, IGF1R, FOXA1, MCM5, and KRT5 are potential 

targets for breast cancer. These genes have been previously associated with cancers. Additionally, 

many identified genes have inhibitors currently available commercially, such as linsitinib targeting 

IGF1R (Murakami, et al., 2016) and entrectinib targeting NTRK2 can possibly be used to inhibit 

the growth of HER2 Positive (Wang, et al., 2020). FOXA1 can possibly be targeted to inhibit the 

growth of  Triple negative breast cancer (Calissi, et al., 2021). miRNA-214 can be used to target 

MCM5 and potentially inhibit the growth of Luminal A (Wang, et al., 2022) and miR-601 can be 

used to target KRT5 to inhibit Luminal B progression (Du et al., 2019). These genes can potentially 

serve as biomarkers for cancer subtype identification and treatments for personalized therapy. 

Upon further validation, these targets can lead to new treatment options for aggressive breast 

cancer subtypes such as Triple negative breast cancer. Similarly, many identified genes, such as 

KDM1A in astrocytoma, MMP3 (Bufu, et al., 2018) in glioblastoma, and PSEN1 in 

oligodendroglioma, have previously been correlated with cancer (Feng, et al., 2022; Xu, et al., 

2018; Zhang, et al., 2022). These 3 genes also have inhibitors available, such as ladademstat, which 

can potentially target KDM1A (LSD1) (Salamero, et al., 2020), thus can be used to inhibit the 

growth of astrocytoma glioma.  Similarly, miR-193a can target PSEN1 (Pan, et al., 2021), which 

can potentially be used to inhibit the growth of oligodendrogliomas. Further, inhibitors for MMP3 

are still being tested in cancer (Winer, et al., 2018). In the future, our approach is amenable to 

incorporate other features such as mutations and drug response and will potentially be applicable 

to any cancer types.  Overall, our approach can also result in an effective and accurate decision 

making. Even though it is evident that the use of ML methods can improve our understanding of 

cancer progression, an appropriate level of experimental validation is needed in order for these 

methods to be considered in the routine clinical practice. 

 

Data availability: All original data is available through TCGA, and data codes are available 

through GitHub: https://github.com/vhparikh/TCGA_Pipeline.git. 
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Figure 1. Schematic describing the methods. The work flow describing (A) data extraction, data transformation, 
and feature selection for machine learning analysis and (B) gene selection, gene prioritization, and pathway 
analysis 
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Figure 2. Integrating ExtraTreesClassifier (ETC) and Hyperparameter tuning had improved model accuracy for all the 
breast cancer subtypes. (A) Confusion Matrix for each breast cancer subtype showing distribution of predictions 
between subtypes for Logistic Regression alone, Logistic Regression + ETC, and Logistic Regression + ETC + 
Hyperparameter tuning. (B) Tables showing the precision for each breast cancer subtype for breast cancer with logistic 
regression alone, Logistic Regression + ETC, and Logistic Regression + ETC + Hyperparameter tuning. The numbers 
showed include the showing number of trained samples for predicted versus actual subtypes. 
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Figure 3.  Differentially expressed genes across subtypes of breast cancer. (A) The heatmap analysis of differentially 
expressed genes showing top 200 differentially expressed genes (left panel) and 20 genes per subtype (66 total genes, 
right panel) selected using logistic regression and ExtraTreesClassifier for each breast cancer subtype. (B) Top 20 
differentially expressed genes for each breast cancer subtype. Genes which have the highest impact factor and are most 
significant (less than 0.05 p value) were selected. Impact factor for each gene is defined by the ratio of gene expression 
(log10) for each cancer subtype over gene expression (log10) for normal breast cancer subtype as defined by Cancer 
Genome Atlas (TCGA). 
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Figure 4. (A) Top 20 differentially expressed genes for each breast cancer subtype was integrated with 
STRING data analysis. The same tool was used to perform functional enrichment analysis of the 
differentially expressed genes that are corresponding biological processes (BP) and molecular functions 
(MF) which were identified using Gene Ontology (GO) and the signaling pathways involved were 
identified using the Kyoto Encyclopedia of Genes and Genomes (KEGG) for the p adjusted value < 0.05 
with top 25 for pathway strength. The color coding represents broader categories of these terms. 
*Pathway strength is defined as percentage of genes represented in our dataset for a given pathway. (B) 
Protein-protein interaction network analysis of differentially expressed genes for each breast cancer 
subtype were generated using String-DB and are curated based on string evidence from knowledge and 
experimental based curations. After the identification of network clusters, we performed a literature 
search to identify targetable pathways and associated small molecules. 
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Figure 5. Validation of Computational Pipeline Using Gliomas Dataset identify Distinct Gene Signature and Pathways 
which are Targetable. A glioma dataset was utilized to validate the computational pipeline. (A) The molecular subtype 
prediction model had a predictive accuracy of 96%. (B and C) The differential expression analysis was conducted that 
aided in prioritizing the genes to identify the most impactful pathways. (D) Using StringDB, protein-protein interactions 
were analyzed. MMP3 can potentially be targeted for glioblastomas (GBM). PSEN1 can potentially be targeted using 
miR-193a for oligodendrogliomas (LGG-OD) and KDM1A (LSD1) can potentially be targeted using ORY-1001 
(ladademstat) to treat astrocytomas (LGG-AA). 
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