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Abstract

Rejuvenation, long a quixotic dream, recently became a possibility through exciting new
approaches to counteract aging. For example, parabiosis and partial reprogramming through
overexpressing four stem cell transcription factors (Yamanaka factors) both rejuvenate
organisms and cells1–5. We hypothesize there are many other genetic solutions to human cell
rejuvenation, and some solutions may be safer and more potent than current gene targets. We
set out to develop a systematic approach to identify novel genes that, when overexpressed or
repressed, reprogram the global gene expression of a cell back to a younger state. Using the
Hayflick model of human cell replicative aging, we performed a Perturb-seq screen of 200
transcription factors (TFs) selected through a combination of bioinformatic analysis and
literature search. We identified dozens of potentially rejuvenating TFs—those that when
overexpressed or repressed in late passage cells reprogrammed global gene expression
patterns back to an earlier passage state. We further validated four top TF perturbations through
molecular phenotyping of various aging hallmarks. Late passage cells either overexpressing
EZH2 or E2F3 or repressing STAT3 or ZFX had more cell division, less senescence, improved
proteostasis, and enhanced mitochondrial function. These TF perturbations led to similar
downstream gene expression programs. In addition, the rejuvenating effects of these TFs were
independent of telomeres. We believe our general approach for identifying rejuvenating factors
can be applied to other model systems, and some of the top TF perturbations we discovered will
lead to future research in novel, safer rejuvenation therapies.
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Introduction
The idea of rejuvenation to counteract aging is as old as human civilization. For millennia,
humankind has dreamt of rejuvenation therapies that could reverse aging, and tales of the
fountain of youth have been recounted across continents. But, without a cellular level
understanding of aging coupled with advanced intervention technologies, rejuvenation remained
a fiction. Recent breakthroughs in aging research changed this situation drastically and brought
us the hope that rejuvenation may become a reality. For example, systemic factors in young
blood rejuvenate various mouse tissues and brain function1,2,6, and partial reprogramming with
four stem cell transcription factors (OCT4, SOX2, KLF4, and MYC, or the Yamanaka factors)
rejuvenates both tissues and cells and extends the lifespan of mice3–5. More recently, it was
found that cyclic induction of an N terminal truncated form of FOXM1 in mice delays natural and
progeroid aging phenotypes and extends their lifespan7.

These discoveries support the notion that “young” and “old” can be described as different gene
expression states, and the “old” state can be reversed back into a “young” state. The Yamanaka
factors, arguably the most famous and well-studied rejuvenation factors3,4, are being intensely
studied by academics and biotechnology companies alike8. Unfortunately, there is considerable
cancer risk when overexpressing the Yamanaka factors. Previous work suggests cancer risk
can be minimized by optimizing the dose and schedule of gene induction3,5,7. While an exciting
proof of concept, it is very challenging to translate this rejuvenation protocol to humans.

We hypothesized that there are many other genetic solutions to human cell rejuvenation, and
some solutions may be safer and more potent than current gene targets. Finding more genetic
solutions is also important as it will increase the chance of successful future translation into
human therapy. We set out to develop a systematic approach to identify novel genes that, when
overexpressed or repressed, reprogram the global gene expression state of a cell back to a
younger state. We decided to focus on transcription factors and chromatin modifiers because
they influence the expression of many other genes (hereafter we will call them TFs for the ease
of description).

To test our hypothesis, we utilized a canonical model for human cell aging and senescence,
passaged human skin fibroblasts. Leonard Hayflick discovered that fibroblast cells gradually age
in vitro, eventually becoming senescent after about 40 to 60 population doublings (PD)—a
phenomenon termed the Hayflick limit9. We used early, middle, and late passage fibroblasts to
model young, middle-aged, and old cells, respectively, because these passaged cells display
aspects of both cellular aging and senescence10–13.

We first performed single-cell RNA-sequencing (scRNA-seq) on passaged fibroblasts to define
their gene expression states. Next, we aimed to find TF perturbations that could change the
global gene expression of a late passage cell back to an earlier passage state. Using a
combination of bioinformatic analyses of differentially expressed TF modules and literature
searches, we selected 200 candidate TFs. We next performed a high-throughput Perturb-seq14

screen of these TFs in late passage cells, overexpressing and repressing each TF individually
with CRISPRa (CRA)14 and CRISPRi (CRI)15 respectively, and measured gene expression
changes via scRNA-seq. We reasoned that using global gene expression as a high-dimensional
readout would give us a higher likelihood of success than using one or two gene reporters, as
cell aging is a complex phenotype involving scores of genes. Amazingly, over a dozen TF
perturbations reversed global gene expression in late passage cells back to an earlier state.
Further TF module analyses16 indicated these top TF perturbations caused similar, convergent
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gene expression changes, even though the TFs themselves originated from diverse upstream
pathways.

We further tested our top TF perturbations from the Perturb-seq screen with comprehensive cell
and molecular phenotyping, and we found four TF perturbations which reversed various cell
aging hallmarks11. Late passage CRA cells overexpressing EZH2 or E2F3, and late passage
CRI cells repressing STAT3 or ZFX had more cell division, less senescence, improved
proteostasis, and enhanced mitochondrial function. No combination or cocktail of gene
perturbations was required, and the fibroblasts always maintained their cell identity. In addition,
the rejuvenating effects of these TFs were independent of telomeres.

We believe our general approach for identifying rejuvenating factors can be applied to other
model systems, and some of the top TF perturbations we discovered will lead to future research
in novel, safer rejuvenation therapies.

Results

Characterizing the gene expression states of passaged human fibroblast cells
We aimed to find novel TF perturbations capable of “rejuvenating” late passage fibroblasts. We
defined rejuvenation as reversing late passage cell gene expression and phenotypes back to an
earlier passage state. Our approach is depicted in the schematic diagram in Figure 1A, where
each point in the high dimensional gene expression space represents one cell. Late passage
and early passage wild-type (WT) cells cluster apart from each other due to their gene
expression differences. Most late passage cells with TF perturbations will also cluster near WT
late passage cells. However, cells with rejuvenating TF perturbations will shift towards the early
passage WT cells.

To define the young and old states, we first measured the gene expression of passaged WT
fibroblasts using single-cell RNA sequencing (scRNA-seq). Based on preliminary cell
experiments and gene expression data, we categorized the cells as follows: WT cells from
population doubling (PD) 1 - 19 are early passage, cells from PD 20 - 30 are middle passage,
and cells from PD 30 - 39 are late passage. At approximately PD 40, cells become fully
senescent. Gene expression patterns largely recapitulated previous fibroblast and cellular aging
data10,11,17. For example, late passage cells had lower gene expression related to the cell cycle,
mitochondria, proteasome, and ribosome biogenesis. On the other hand, late passage cells had
more gene expression related to secretory pathways, extracellular matrix, and senescence.
Using this data, we next aimed to identify candidate TFs likely playing a role in these gene
expression differences.

Identifying TF perturbations that reverse global gene expression of late passage cells
back to that of earlier passage cells
There are approximately 1,500 transcription factors, cofactors, and chromatin regulators18,19 in
the human genome. Using our lab’s TF prediction tool (see Methods), we performed a
bioinformatic analysis on the scRNA-seq data to identify differentially expressed TF modules in
WT passaged cells. We also performed a literature search on TFs linked to senescence and
cellular aging. From these methods, we selected 200 candidate TFs to perturb (2/3 from the
computational analysis and 1/3 from the literature search).
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To alter the expression of the 200 candidate TFs, we created stable cell lines in late passage
fibroblasts expressing either dCas9 CRISPR activation (CRA) or interference (CRI)14,15 to
overexpress or repress TFs, respectively. Then, we infected these cells with a guide RNA
(sgRNA) library targeting each of these 200 TFs 20, along with six non-targeting control guides,
and performed Direct Capture Perturb-seq14,21 (Figure 1B). Direct Capture Perturb-seq is a
high-throughput method for performing scRNA-seq on pooled genetic perturbation screens
(using a pooled CRISPR sgRNA library). It quantifies the gene expression changes associated
with a particular perturbation by simultaneously capturing the mRNAs and the sgRNA
sequences in single cells. We could thus identify TF perturbations that reversed the gene
expression changes caused by the replicative aging. To ensure the robustness of gene
activation and repression, we targeted each TF with two distinct sgRNAs (built in the same
construct) with the highest efficacy based on a previously developed library design rules20,21(see
Methods).

For each TF perturbation, we calculated the gene expression differences between late passage
cells with a TF perturbed versus late passage cells with non-targeting (NT) sgRNAs (control
cells). We then compared these gene expression differences with those between WT (no
CRISPR construct) late passaged cells and WT early passaged cells. TF perturbations with a
significant negative correlation (as measured by the Pearson correlation coefficient
r-rejuvenation) indicated the perturbation reversed the gene expression changes due to
replicative aging. From the 200 overexpressed and repressed TFs, we identified more than a
dozen TF perturbations with strong negative r-rejuvenation (see the top 15 hits for CRA and CRI
in Tables 1 and 2, and examples of the global gene expression changes in Figure 2), suggesting
that late passaged fibroblast cells may be rejuvenated by targeting these TFs.

To gain a global perspective on how the transcriptional landscape of late passage cells changed
due to these TF perturbations, we performed a TF module analysis by applying a previously
developed computational method called SCENIC22 to our scRNA-seq data. This analysis
revealed that several top TF perturbations caused similar gene expression changes in the late
passage cells, even though the TFs themselves are from diverse upstream pathways (Figure
3A).

We further investigated whether specific genes, and not just TF modules, overlapped as well. In
fact, within the top 100 most significantly up-regulated genes for seven TF perturbations that
clustered together in Figure 3A (CRA E2F3, CRA DLX6, CRI ZFX, CRI EGR1, CRI MAZ, CRI
SOX2, and CRI ATF4), 23 genes were up-regulated in at least five of seven TF perturbations
(Figure 3B)23. These data indicate (1) passaged fibroblasts have tightly interconnected gene
regulatory networks and (2) perturbing different TFs can lead to similar gene expression
outcomes, possibly via transcriptional cascades through the networks.

Validating top TF hits from the Perturb-seq screen through cellular and molecular
phenotyping of aging hallmarks
To test whether the top TF perturbations from our Perturb-seq screen indeed rejuvenated late
passage cells, we performed comprehensive cellular and molecular phenotyping of various
aging hallmarks11 in cells with a specific TF targeted. We identified four novel TF perturbations
that consistently rejuvenated diverse aging hallmarks: CRA (overexpression) of EZH2 or E2F3,
and CRI (repression) of STAT3 or ZFX. E2F3 is largely involved in regulating cell cycle
progression from G1 to S phase24. EZH2 is a methyl-transferase best known for being a
catalytic subunit of the polycomb repressive complex 2 (PRC2)25 but has other roles outside the
PRC2 complex26–28. STAT3 is a member of the STAT family that forms part of the JAK-STAT
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signaling cascade and plays an important function in immune/inflammatory response29. ZFX is
relatively poorly understood TF30, but it has links to stem cell renewal31,32. We selected these
four TF perturbations initially because they had large negative r-rejuvenation scores and the
strongest phenotypes in cell cycle gene expression33 and cell growth assays. Excitingly,
targeting any one of these four TFs alleviated diverse cell aging phenotypes, confirming their
rejuvenating effect beyond the transcriptional program.

Decreased cell proliferation and increased cellular senescence are two defining hallmarks of
replicative aged fibroblast cells10,11. We found that perturbing any of the four TFs leads to
significantly more cell division, as measured via immunofluorescence of KI67, a common cell
division marker34 (Figure 4A, 4B), and by cell cycle analysis33 of the gene expression data
(Figure 4C). For all four TF perturbations, the cell division rate returned to that of a middle
passage state (about 12 - 14 PDs earlier). CRA E2F3 and CRA EZH2 caused significant
decreases in cellular senescence, as quantified by senescence associated beta-galactosidase
staining35(Figure 5A, 5B). In addition, all four TF perturbations had lower expression of
senescence associated genes p21, TIMP1, and TIMP236, while late passage cells expressed
more (Figure 6 A-C). Thus, targeting any one of these four TFs in late passage cells caused
more cell division and less senescence.

Loss of proteostasis is a key contributor to several diseases and aging37. All four TF
perturbations significantly increased proteasome expression, reversing the pattern seen in late
passage cells (Figure 7A). In three of the four TF perturbations, there was also significantly
increased proteasome activity, as measured through a fluorescence-based cleavage assay
(Figure 7B).

Lysosomes also play an important role in proteostasis. Interestingly, there were significant
decreases in total lysosome puncta per cell area in all four TF perturbations, while late passage
WT cells had significantly more lysosome puncta per cell area than early passage cells, as
measured by the Lysotracker staining (Figure 7C and 7D). An early electron microscopy study
found the lysosomes of serially propagated human fibroblasts gradually transform to residual
bodies (containing undigested materials), and these bodies increase in number and size38,
reflecting degeneration of lysosomal function39. Thus, it is likely the Lysotracker stained those
residual bodies, and the decrease of the number of puncta by the TF perturbations indicated
improved lysosomal function. Overall, these four TF perturbations significantly rejuvenated
proteostasis in these late passage fibroblasts.

Mitochondrial dysfunction is another conserved hallmark of aging11. Mitochondria become less
functional and mitochondrial genes are less expressed in old cells and late passage cells10,11. In
all four of our top TF perturbations, there were significant increases in mitochondrial and Krebs
cycle genes, reversing the pattern seen in late passage WT cells (Figure 8A). We assayed
mitochondria function by measuring the mitochondrial membrane potential, using the TMRE
(tetramethylrhodamine, ethyl ester) membrane potential marker. CRA EZH2 had a significant
increase in mitochondrial membrane potential (Figure 8B and 8C). CRAMYC was a positive
control for increased mitochondrial membrane potential, given MYC’s known roles in
mitobiogenesis40. CRA E2F3 had slightly less mitochondrial membrane potential. The other TF
perturbations did not have significant changes in mitochondrial membrane potential.

Telomeres, protective caps at the ends of chromosomes, get progressively shorter every time a
cell divides41, and late passage cells have shorter telomeres than early passage cells42.
Overexpressing telomerase (TERT) increases telomere length, allowing cells to divide
regardless of their usual Hayflick limit43,44. Thus it is essential to ask whether the rejuvenating
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effect of the four TFs depends on the activation of telomerase and increased telomere length.
We compared gene expression of our top TF perturbations to previously published data on
dermal skin fibroblasts overexpressing TERT45. None of the TF perturbations have similar gene
expression changes to TERT overexpressing fibroblasts (Figure 9A). Furthermore, TERT mRNA
itself was never expressed enough to be measured in our scRNA-seq experiments (data not
shown). We next measured the relative length of telomeres in late passage cells with the TF
perturbations, NT controls, and WT passaged cells through qPCR analysis46. While we did see
a progressive decrease in telomere length in passaged cells, there was no change among TF
perturbations (Figure 9B). Therefore, the TF perturbations did not affect telomere length, and
their rejuvenation phenotypes are independent of the telomerase and telomere axis.

As rejuvenation of replicatively aged cells necessarily increases their proliferation, an important
question to ask is whether the TF perturbations make the late passage cells behave like cancer
cells. In Yamanaka factor rejuvenation experiments, cells become cancerous if the four TFs are
turned on too much or for too long3,47. We compared the gene expression of our top TF
perturbations to that of previously published data on dermal skin fibroblasts transformed into
cancer cells across several steps45. In that work, cells were first immortalized with TERT
overexpression, then transformed with SV40 large-T antigen, and finally metastasized with
oncogenic H-Ras (RASG12V)45. None of our TF perturbations had similar gene expression
changes to transformed or metastasized skin fibroblasts (Figure 10A and 10B). When looking at
genes commonly differentially expressed across seven types of cancer48, there were some
genes more expressed in our top TF perturbations (Figure 10C). But, all those genes are cell
cycle related45. Because our top TF perturbations also caused more cell division, this overlap
was not surprising. In all our experiments, the TF perturbations maintain the normal growth rate
of primary fibroblast cells. Even when we extended our experiment and perturbed these TFs for
over twice as long as our typical experiments, cells still grew at middle passage cell rates (data
not shown).

Overexpressing all four Yamanaka factors at once is sufficient to cause cancer. While the four
top TFs we identified do have links to cancer, literature supports that changing their expression
individually does not seem sufficient to cause cancer49–56. STAT3 and ZFX are often
overexpressed in cancer49,52, but in our studies, we found repressing these genes was
rejuvenating in late passage fibroblasts. While our gene expression analysis suggests these TF
perturbations are unlikely to cause cancer in an in vitro system, further experiments are
necessary to fully determine their carcinogenic potential.

We also analyzed other aging hallmarks related to genome instability (DNA damage markers)
and epigenetic modifications (histone and DNAmethylation), and did not find consistent
changes due to the TF perturbations.

DNA damage increases as cells age, but also as cells grown in culture divide more rapidly11,57,58.
A common way to measure DNA damage is through γH2AX, a histone phosphorylation marker
adjacent to double stranded DNA breaks59 60. In rejuvenation studies with the Yamanaka factors,
γH2AX decreased slightly3. In our top TF perturbations, we saw either no change or a slight
increase in γH2AX per cell (Figure S1A and B). In passaged WT cells, late passage cells did
have significantly more γH2AX puncta.

Epigenetic patterns, like histone and DNAmethylation, regulate gene expression and have links
to aging and senescence11. The DNAmethylation clock correlates methylation at certain CpG
islands to the actual age of organisms or PD of cells61,62. While the later passage WT cells did
have progressively “older” methylation clock scores, none of our four TF perturbations changed
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the cells’ skin DNAmethylation clock age62(Figure S2). Thus, the rejuvenation phenotypes were
not dependent on turning back the DNAmethylation clock.

The global levels of histone 3 lysine 9 trimethylation (H3K9me3) and histone 3 lysine 27
trimethylation (H3K27me3) have been used as cell aging markers, but both have mixed results
in various studies and organisms63,64,65. For example, overexpressing the Yamanaka factors in
fibroblasts led to more global H3K9me33; but, in a progeria model, more H3K9me3 was linked to
senescence66. In our WT cells, late passage cells had more global H3K9me3. In the TF
perturbations, global H3K9me3 levels were significantly higher in CRI STAT3 and lower in CRI
ZFX. In CRA E2F3, the distribution of H3K9 global fluorescence was significantly different than
in NT, although their medians were similar (Figure S3A-B). H3K27me3 levels of WT passaged
cells increased significantly in later passage stages. In the TF perturbations, H3K27me3 levels
were significantly higher in CRA E2F3 and significantly lower in CRA EZH2 and CRI STAT3. In
the future, perhaps probing specific histone methylation sites, instead of global levels, may be
more informative.

Discussion
Using a human cell culture model of replicative aging (the Hayflick model9,13), we developed a
high throughput screen to identify the potentially rejuvenating TFs—TFs that, when
overexpressed or repressed, reprogram the global gene expression state from the late passage
state back to an earlier passage state. Our approach combined a novel bioinformatic analysis to
narrow down a candidate list of TFs and chromatin modifiers, followed by Perturb-seq14,21 to
identify the potential rejuvenating factors. The top TF perturbations were then followed by
extensive cell and molecular phenotyping to test the rejuvenating effects. This approach led to
the successful identification of four TFs that, when overexpressed (E2F3, EZH2) or repressed
(STAT3, ZFX), reversed various cell aging and senescence phenotypes. Although our
experiments were only done in in vitro aged cells, our findings serve as a proof of concept that
(1) genes outside the Yamanaka factors can reverse aging hallmarks in human cells and (2)
these hallmarks can be reversed without reprogramming cells back towards a stem cell state.

Interestingly, one of our top TF perturbation hits from the screen was CRA FOXM1. A recent
study showed cyclic overexpression of an N-terminal truncated form of FOXM1 delays natural
and progeria aging phenotypes and extends lifespan in mice7. In our system, CRA FOXM1
ranked highly by the rejuvenation r-value and induced a downstream transcriptional profile
similar to our newly discovered TFs (Table 1 and Figure 2). In our follow-up experiments, CRA
FOXM1 did phenocopy some features seen in our top TF perturbations—fewer senescent cells,
lower senescence genes expression, fewer lysosome puncta—but CRA FOXM1 did not
rejuvenate cells to the same extent as our other top TF perturbations (Figure S4A-F). We
suspect that these results occurred because we solely targeted the expression of endogenous
FOXM1 instead of the truncated form, which is constitutively active. Because FOXM1 can
rejuvenate mice, we are excited by the possibility of other TF perturbations we identified being
able to rejuvenate tissues and organs in vivo.

Besides the four TFs we discovered, there are likely other TF perturbations which could reverse
cell aging phenotypes in passaged fibroblasts. For example, CRI of ATF4 and EGR1 and CRA
of DLX6 all ranked in the top three with large negative rejuvenation r-values, and their
downstream transcriptional profiles clustered together with E2F3 and ZFX. Interestingly, ATF4 is
a master transcriptional regulator of integrated stress response (ISR)67, and previous work

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.20.517270doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.20.517270


showed that inhibition of ISR increased the survival of nematodes and improved the cognitive
function of aging mice68–71. EGR1 plays an important role in regulating the response to growth
factors, DNA damage, and ischemia72,73. DLX6 encodes a member of a homeobox TF gene
family similar to the Drosophila distal-less gene and is much less studied. We did not pursue
these factors further in this study as we decided to focus our effort on the four TFs that yielded
stronger phenotypes in our initial tests based on cell cycle gene expression analyses and KI67
microscopy. However, EGR1, ATF4, DLX6 and other top hits warrant further systematic
evaluation for their rejuvenating potential.

We observed that seemingly unrelated TFs led to converging downstream gene expression and
cell rejuvenation signatures in late passage fibroblast cells. This observation suggests the
transcriptional networks in these cells are densely connected, where targeting one node leads
to similar transcriptional cascade altering the other connected nodes. It will be important to
better understand the structure of the networks, and our systematic Perturb-seq data will serve
as a good resource for furthering such investigation. It will also be interesting to investigate
whether such convergence is seen in different models of aging and rejuvenation (e.g., different
cell models or rejuvenation related treatments), and if so, whether the converged signature will
overlap with what we observed in the passaged fibroblasts.

Replicative senescence in human fibroblast cells is linked to telomere attrition, and
overexpressing telomerase has been shown to extend the proliferative capacity of the cells
beyond the Hayflick limit43,44,74. The four TF perturbations we identified rejuvenated late passage
cells without increasing telomere length or obviously increasing telomerase expression. And, the
transcriptional changes induced by the TF perturbations did not resemble that of telomerase
overexpression, suggesting that the TF perturbations caused distinct changes from telomerase
overexpression. Our data support previous findings that, as the cells are continuously
passaged, they progressively have more aging phenotypes and shorter telomeres. However, the
aging phenotypes seem to be decoupled from telomeres until their length becomes critically
short, at which point massive genome instability and cell senescence happen throughout the
cell population.

The finding of multiple solutions to cellular rejuvenation will likely increase the probability of
developing safe rejuvenation therapies. Currently, rejuvenation therapeutics companies are
largely focused on the Yamanaka factors, where the dose and schedule of induction must be
carefully controlled to avoid dedifferentiation or cancer. We observed that these four TF
perturbations did not change the cell identity. In addition, the cells’ transcriptional profiles did not
resemble that of cancerous cell transformations. These data point towards the possibility of
rejuvenation while maintaining cell identity.

There is significant therapeutic potential in cell rejuvenation, but how to do so effectively and
safely remains a challenge. To move from the lab bench towards a therapeutic, finding small
molecules which cause similar gene expression changes as rejuvenating TF perturbations
would be beneficial. Our finding of individual rejuvenating TF perturbations (instead of TF
combinations) sets the stage for testing small molecule compounds for rejuvenation, where
fluorescent transcriptional reporters of the TFs could be constructed and used for high
throughput screens of small molecule libraries.

We believe the systematic approach we developed in this study can be applied to a general
class of problems: searching for TFs which transform the cellular state into a predefined state
with desired properties. In the context of aging and rejuvenation, the desired goal is to transform
late passage cells back to early passage cells. In the context of disease, the desired goal could
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be to transform “diseased” state to a “healthy” state, e.g., in a cell culture model of Alzheimer’s
disease. Similarly we can start by characterizing the difference between the two states (such as
“diseased” and “healthy”), using bioinformatic analysis to identify a list of candidate TFs, and
performing Perturb-seq to identify the relevant TF perturbations.

A major limitation of our findings in this study is that the TFs were identified from one specific
cell culture model of aging: the passaged human skin fibroblast. Further work is needed to test
whether the identified TFs are able to rejuvenate fibroblast cells aged in vivo, other aged post
mitotic cells, or large-scale systems like tissues, organs, or organisms.
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Materials and Methods
Plasmids and sgRNA
All the CRISPR related plasmids were gifts from the Jonathan Weissman lab (pMH0001,
pJKNp44, pJR89, pJR85, pMJ114, pMJ117, and pMJ179). sgRNA were assembled as
previously described14. In follow-up cell aging hallmark assays, pMJ117 was used, although any
of the three pMJ sgRNA backbones would have been equally valid to use.

For dual sgRNA production, previous protocols were followed, with the slight modification of
changing one digestion enzyme (see citation’s supplementary note 4)21. Briefly, dual-guide
libraries were created by PCR amplifying pooled oligonucleotides. These oligonucleotides and
pJR85 were digested with BstXI/BlpI and ligated together. Then, this new intermediate plasmid
and pJR89 were digested with Esp3I. The resulting piece from pJR89 was ligated into the
intermediate pJR85. The final plasmids were validated via sequencing.

Lentivirus production
Lenti-X 293T (Lx293T) were used for lentivirus production. Lx293T cells were grown in
Dulbecco’s modified eagle medium (DMEM) supplemented with 10 % FBS and
penicillin-streptomycin. Lentivirus was made by transfecting Lx293T with standard packaging
vectors and TransIT-LT1 Transfection Reagent (Mirus, MIR 2306). Viral supernatant was
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harvested two days after transfection, filtered through a 0.45 um filter, and either added directly
to target cells or frozen in aliquots at -80 °C.

Cell culture and CRISPRa and CRISPRi cell lines
Neonatal primary skin fibroblasts were purchased from ATCC (PCS-201-010) and cultured in
ATCC’s Fibroblast growth kit with low serum (PCS-201-041), with phenol red (ATCC,
PCS-999-001) and penicillin-streptomycin (ATCC, PCS-999-002). These fibroblasts were
passaged for almost one year, during which they were split about 1:2 or 1:4 at about 80 - 90 %
confluency. Population doublings were determined using a standard method, by which we
compared the number of cells plated initially to the number of cells at the next passage. Cells
were frozen in normal medium plus 10 % DMSO for long-term storage in liquid nitrogen.

Stable cell lines in passaged fibroblasts expressing either CRISPRi (CRI; pMH0001) or
CRISPRA (CRA; pJKNp44) were created by infecting either the CRA or CRI lentiviral particles
into early passage fibroblasts. These vectors have a BFP tag, and thus we sorted cells for purity
by BFP on the BD FACSAria2. CRA and CRI cell lines were passaged until they were late
passage; BFP fluorescence and CRA/CRI activity was maintained across all population
doublings. Next, sgRNA lentiviral particles were infected into CRA and CRI cells at the desired
population doubling at an MOI of ~0.3. For all experiments using sgRNA, CRA or CRI cells were
infected with the sgRNA lentiviral particles, recovered for two days, selected for purity using
puromycin for 2-3 days (2µg/mL), recovered for an additional 2 days, and then used for
experiments. The sgRNA vector had a BFP tag as well, and this one was significantly brighter
than the CRA/CRI vectors’ BFP. The puromycin selection led to 90 - 100% purity, which we
could visualize by the very bright BFP signal from the infected cells.

Real-time quantitative polymerase chain reaction (qPCR)
Total RNA was isolated using the RNeasy Plus Mini Kit (Qiagen, 74134). RNA was converted to
cDNA using the SuperScript IV (Invitrogen, 18090050) standard protocol. Twenty uL qPCR
reactions were prepared with 10 uL of the KAPA SYBR FAST Universal MasterMix (Roche,
KK4602), 5 uL cDNA (representing 5 - 20 ng RNA per reaction), and 5 uL of forward and
reverse primers mixed together 1:1 at 0.8 uM each. Three technical replicates were run for
every sample. These reactions were run on the LightCycler 480. Relative expression of each
gene (ΔCt) was measured using beta-actin as a control gene. Log 2 fold change (log2fc) was
calculated by finding the difference between two conditions’ conditions’ ΔCts (ΔΔCts).

Single-cell RNA sequencing and Perturb-seq
For our first round of WT passaged cell scRNA-seq, we used manufacturer’s protocols for the
Chromium Single Cell 3' Library v2 (10x Genomics, 120237) with one change; different WT
passage stages were added in a pool and identified with cell membrane barcodes
(MULTI-seq75). For the second round of WT passage cell scRNA-seq, we used the same set up,
except we used the Chromium Next GEM Single Cell 5' Library v1.1 (10x Genomics, 1000167).

For the CRA/CRI Perturb-seq experiment with dual sgRNA, the top two guides for every TF and
non-targeting guides were selected from a previously derived list20. Dual direct capture seq was
performed as described previously21. Briefly, CRA and CRI cell lines were infected with two
pooled lentiviral libraries (one library for CRA, one for CRI) of 200 dual sgRNA vectors and three
dual non-targeting vectors (6 non-targeting guides total). These cells were selected for purity
with puromycin (2µg/mL), recovered for two days, and processed according to the protocol for
Chromium Next GEM Single Cell 5' Library v1.1 with slight changes21. All scRNA-seq libraries
for WT and Perturb-seq were sequenced on a NovaSeq 6000.
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Immunofluorescence
For all microscopy experiments, on day one, cells were plated in 8 well cell culture treated
microscopy slides (ibidi, 80841) so the cells would be at about 70 % confluency the next day.
For immunofluorescence, on day two, cells were first fixed (4% paraformaldehyde in PBS) for 10
minutes, washed with PBS, and then blocked/permeabilized (2% Bovine Serum Albumin/0.1%
Triton X in PBS) for one hour at room temperature. The wells were washed with PBS, and then
primary antibodies were added (buffer: 0.5% Bovine Serum Albumin/0.1% Triton X in PBS) for
one hour at room temperature. The wells were washed with PBS. Then, secondary antibodies,
Hoechst 33342 (Thermo Scientific, 62249), and Alexa Fluor™ 546 Phalloidin (Invitrogen,
A22283) were added to the wells and incubated for one hour at room temperature in the dark.
Finally, the wells were washed with PBS and imaged in PBS.

For live-cell imaging of lysosomes and mitochondrial membrane potential, cells were plated as
described above. On day two, manufacturer protocols were followed for both
TMRE-Mitochondrial membrane potential staining (Abcam, ab113852) and lysosome
LysoTracker™ Red DND-99 staining (Invitrogen, L7528). All microscopy quantification was done
using ImageJ.

Beta-galactosidase staining
Manufacturer protocols were followed for the Senescence β-Galactosidase Staining (Cell
Signaling Technology, 9860). To avoid evaporation of the β-Galactosidase stain overnight, which
would lead to salt crystals precipitating out of solution, the slides were placed in a plastic
container with water-soaked paper towels to create a humidity chamber. Quantification was
done using ImageJ.

Proteasome activity
Manufacturer protocols were followed for the proteasome activity assay (Proteasome-Glo
Chymotrypsin-like cell-based assay, Promega, G8660). The fluorescence was measured on the
Promega GloMax plate reader.

Relative telomere length
Genomic DNA was extracted from approximately one million cells per condition (QIAamp DNA
Blood Mini Kit, 51104). Relative telomere length was measured by quantitative polymerase
chain reaction (qPCR), expressed as the ratio of telomere to single-copy gene abundance (T/S
ratio)76,77. Detailed protocol can be found on the Telomere Research Network’s website
(https://trn.tulane.edu/wp-content/uploads/sites/445/2021/07/Lin-qPCR-protocol-01072020.pdf).
The inter assay coefficient of variation (CV) for this study is 2.7% ± 1.7%. The intraclass
correlation (ICC) of duplicate DNA extraction from similar samples is 0.955 (CI: 0.914-0.977).

Methylation clock
Genomic DNA was extracted from approximately one million cells per condition (QIAamp DNA
Blood Mini Kit, 51104). The genomic DNA was then brought to the Stanford Genomics Facility,
where bisulfite conversion and methylation chip experiments using the Infinium MethylationEPIC
Kit were conducted. For quantification of the methylation data, the methylclock package78 was
used, specifically the skinHorvath clock. There were technical replicates for the control samples
(CRA NT, CRI NT). Due to a small fraction of CpG islands having inconsistent methylation rates
between repeats, these repeats had about 15 - 30 % variability in methylation clock results. To
correct for this technical variation, for each CpG island, the difference of the repeats was divided
by the mean of the repeats, and only those CpGs with less than 15 % variability were kept. The
more variable CpGs were filtered out, meaning they did not contribute to the methylation clock
calculations. The specific CpGs filtered out for CRA NT were also filtered out for CRA EZH2 and
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CRA E2F3; the CpGs filtered out for CRI NT were also filtered out for CRI STAT3 and CRI ZFX.
Then, the mean value for the technical repeats was calculated.

Single-cell RNA Sequencing (scRNA-seq) Analysis
10x Genomics Cell Ranger and Scanpy33 were computational packages used to analyze
scRNA-seq data. The potential rejuvenation effect of the TF perturbations was measured by
how well the gene expression profile in perturbed cells mimicked the gene expression profile in
the early passage cells, compared to the late passage cells. We first computed the gene
expression fold changes (log2) in the late passage cells compared to the early passage cells:

where is the log2 fold-change of gene g between late passage�
���_��_�����= [�1, �2, …,�

�
] �

�

cells and early passage cells. Then, for each TF perturbation (CRA or CRI) we computed the
gene expression fold changes (log2) by comparing the cells with the guides targeting the TF
and the cells with the non-targeting guides (NT): where is the log2�
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fold-change of gene g in the perturbed cells (targeting the tf) vs the NT cells. We then computed
the Pearson correlation of the gene expression vectors from each TF perturbation against(�

��
)

the gene expression vector of WT late passage ). The TF perturbations with the(�
���_��_�����

strongest negative Pearson correlation had the most significant change in gene expression
towards being like earlier passage cells.

Differentially expressed TF module analysis for selecting initial TF candidates for the
screen
Briefly, the promoter region around the transcription start site of every gene was scanned with
known TF motifs with their positional weight matrices. A motif score was calculated by scanning
5000 base pairs upstream from the transcription start site for each gene79 and transformed into
a Z score using the mean and standard deviation of the motif score for all the genes. To create a
TF module, we selected all genes for a TF with a Z-score of at least 2.5; for TFs with fewer than
50 genes passing this cutoff, the top 50 genes were selected. To identify TFs related to gene
expression differences between early and late passage cells, we performed a Welch’s t-test on
the log2 fold change between early and late passage cells for the genes in each TF module
against all other genes.

Transcription Factor Module Analysis with SCENIC
To find the downstream transcriptional signatures of the TF perturbations, we performed TF
module analysis using the SCENIC pipeline (SCENIC)16,22. Briefly, TF targets were inferred from
the scRNA-seq data based on the co-variation between a given TF and a gene and the
occurrence of the TF binding site motif in the promoter of the gene. A module activity score
(AUCell score) was then computed for each module in each single cell. We then compared the
AUCell scores from the perturbed cells (CRA or CRI) with the corresponding NT cells with a
ranksum test to derive an AUCell t-score for the differential gene expression between the TF-
perturbed and the NT cells. Similar calculations were done for WT young versus old cells.

Statistical analysis for cellular assays
Experiments were conducted in at least three biological replicates for all cell assays for TF
perturbations and NT control. Sometimes biological replicates (sub-experiments) were done on
separate days. Because of slight differences in staining efficiencies and microscopy settings, the
absolute values from different days of experiments varied. But, the relative differences (ratio) in
a value were consistent between NT and TF perturbations. In order to accurately combine data
collected from different days, we used the following normalization procedure. First a global
mean of NT across all sub-experiments is calculated. Then data from each sub-experiment was
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normalized through a multiplication constant to bring the mean value of the NT in the
sub-experiment to the global NT mean; this multiplication constant is also applied to all the TF
perturbations in the same sub-experiment. After the normalization, all the data across different
sub-experiments were pooled. For WT data performed on separate days, we combined the data
as follows. We matched the pairs of cells with the same PD, and using a scale factor, we scaled
the pairs so we minimized the difference between their medians. After the normalization, all the
data across different sub-experiments were pooled.

For continuous data, a Wilcoxon rank-sum test was used to compute p values. For nominal data
(KI67 and beta-galactosidase positive rates), binomial distribution was used to compute p
values. * p values < 0.05, ** p < 0.01, and *** p values < 0.001.

Gene lists for the cluster heatmaps
To create the cluster heatmaps, a collection of sources was used to generate the gene lists. For
proteasome genes, all human proteasome genes were included. For mitochondria and
metabolism related genes, all mitochondrial genes (except those encoding tRNA) and the genes
derived from the KEGG pathway for “KEGG_CITRATE_CYCLE_TCA_CYCLE”, ID M3985 were
included. For the cluster heatmaps on TERT, SV40, and RAS cancer expression, the gene list
came from Danielsson et al.45. For genes commonly differentially expressed in cancer, the gene
list came from Xu et al.48. The log 2 fold change for every gene in each sub-list was found for
WT passaged cells and TF perturbations, with no p value cut off. Then, fold changes for the
genes were clustered using Euclidean distance as the distance metric.

Detailed list of materials used

Material name Manufacturer Identifier
Concentration/
amount used

What used
for

Phospho-Histone H2A.X (Ser139)
Rabbit mAb

Cell Signaling
Technology 9718S 500x

antibody
staining

Ki-67 Mouse mAb
Cell Signaling
Technology 9449S 10,000x

antibody
staining

Histone H3K9me3 (trimethyl Lys9) Invitrogen PA5-31910 500x
antibody
staining

Histone H3K27me3 (trimethyl
Lys27) Rabbit mAb

Cell Signaling
Technology 9733S 2,000x

antibody
staining

Bovine Serum Albumin Fisher BioReagents BP9703-100 0.5 - 2 %
antibody
staining

µ-Slide 8 Well chambered slide ibidi 80826 N/A
antibody
staining

Alexa Fluor™ 488 donkey
anti-rabbit antibody Invitrogen R37118

1 drop per mL
antibody dilution

buffer
antibody
staining

Alexa Fluor™ 488 donkey
anti-mouse IgG Invitrogen A21202 2,000x

antibody
staining
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Alexa Fluor™ 546 Phalloidin Invitrogen A22283 2,000x
antibody
staining

H3K9me3 Polyclonal Antibody Invitrogen PA5-31910 500x
antibody
staining

Triton X-100 Sigma X100-100mL 0.10%
antibody
staining

10 % Formaldehyde Solution (w/v)
Methanol-free Thermo Scientific 28906 4%

antibody
staining

Hoechst 33342 Thermo Scientific 62249 10,000x
antibody
staining

XL1-Blue Chemically Competent
cells

Macrolab, UC
Berkeley N/A N/A

Bacterial
cloning

Hemocytometer, Neubauer
Improved Bulldog Bio DHC-N01 N/A Cell counting

Trypan Blue Stain (0.4%) Gibco 15250-061 2x Cell counting

Primary Dermal Fibroblast Normal;
Human,

Neonatal (HDFn) ATCC PCS-201-010 N/A Cell culture

Fibroblast growth kit low serum ATCC PCS-201-041 N/A Cell culture

Penicillin-Streptomycin-Amphoteric
in B Solution ATCC PCS-999-002 1000x Cell culture

Phenol Red ATCC PCS-999-001 1000x Cell culture

Fibroblast Basal Medium ATCC PCS-201-030 N/A Cell culture

Fetal Bovine Serum qualified, USA
origin

Thermo Fisher
Scientific 26140087 N/A Cell culture

Minimum Essential Medium Gibco 11095-080 N/A Cell culture

Dulbecco's Modified Eagle
Medium Gibco 11965-092 N/A Cell culture

Puromycin Sigma-Aldrich 540411

2
micrograms/mL

final Cell culture

Lenti-X™ 293T Cell Line Takara 632180 N/A Cell culture

pJKNp44 dCas9 VPR;

pHR-SFFV-HA-NLS-dSpCas9(D10
A/H840)-VPR-2PA-BFP Weissman lab Link N/A

CRISPRA
VPR

pMH0001
UCOE-SFFV-dCas9-BFP-KRAB Weissman lab Link N/A

CRISPRI
KRAB

pJR89 insert for dual sgRNA
plasmid Weissman lab

Addgene
140096 N/A dual sgRNA

pJR85 dual sgRNA plasmid Weissman lab Addgene N/A dual sgRNA
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140095

QIAamp DNA Blood Mini Kit Qiagen 51104 N/A
gDNA

extraction

LysoTracker™ Red DND-99 Invitrogen L7528 N/A
lysosome
staining

TMRE-Mitochondrial Membrane
Potential Assay Kit Abcam ab113852 N/A

mitochondria
membrane
potential stain

Promega GloMax plate reader Promega N/A N/A

Proteasome
fluorescence

assay

Proteasome-Glo Chymotrypsin-like
cell-based assay Promega G8660 N/A

Proteasome
fluorescence

assay

SuperScript IV Reverse
Transcriptase Invitrogen 18090050 N/A qPCR

RNaseOUT Ribonuclease Inhibitor Invitrogen 10777-019 20x qPCR

KAPA SYBR FAST Universal
MasterMix Roche KK4602 2x qPCR

RNeasy Plus Mini Kit Qiagen 74134 N/A
RNA

extraction

Chromium Single Cell 3' Kit v2 10x Genomics 120237 N/A
scRNA-seq
library prep

Chromium Next GEM Single Cell
5' Kit v1.1 10x Genomics 1000167 N/A

scRNA-seq
library prep

Senescence β-Galactosidase
Staining Kit

Cell Signaling
Technology 9860 N/A

Senescence
staining

pMJ114 (Plasmid #85995);
sgRNA, bovine promoter Weissman lab

Addgene
85995 N/A

sgRNA
backbone

pMJ117 (Plasmid #85997); sgRNA
human promoter Weissman lab

Addgene
85997 N/A

sgRNA
backbone

pMJ179 (Plasmid #85996) Weissman lab
Addgene
85996 N/A

sgRNA
backbone

TransIT-LT1 transfection reagent Mirus MIR 2304 15 uL per 6-well; transfections
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qPCR primers

Gene Direction Sequence (5’ - 3’)
PrimerBank ID if
applicable

ACTB
Forward AGAGCTACGAGCTGCCTGAC

N/A
Reverse AGCACTGTGTTGGCGTACAG

CDKN1A (p21)
Forward TGTCCGTCAGAACCCATGC

310832423c1
Reverse AAAGTCGAAGTTCCATCGCTC

EZH2
Forward AATCAGAGTACATGCGACTGAGA

322506095c1
Reverse GCTGTATCCTTCGCTGTTTCC

KI67
Forward ACGCCTGGTTACTATCAAAAGG

N/A
Reverse CAGACCCATTTACTTGTGTTGGA

STAT3
Forward CAGCAGCTTGACACACGGTA

47080104c1
Reverse AAACACCAAAGTGGCATGTGA

TIMP1
Forward CTTCTGCAATTCCGACCTCGT

73858576c1
Reverse ACGCTGGTATAAGGTGGTCTG

ZFX
Forward GGCAGTCCACAGCAAGAAC

N/A
Reverse TTGGTATCCGAGAAAGTCAGAAG
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A.

Figure 1: Conceptual diagram and experimental set up for discovering novel transcription factor (TF) perturbations 
capable of reversing gene expression in late passage skin fibroblasts back to an earlier passage state. 
A. Diagram of the high dimensional gene expression space indicating early passage, late passage, and perturbed late 
passage cells. Perturbed late passage cells that cluster close to early passage cells are considered to be “rejuvenated”. 
The rejuvenating TF perturbations “move” the late passage cells along the direction of the rejuvenation vector, defined as 
the difference between early and late passage cells. 
B. Experimental set up. Late passage cells expressing CRISPRa (CRA) or CRISPRi (CRI) constructs were transfected 
with a sgRNA library targeting different TFs for activation or repression. The gene expression state of the transfected 
cells was then analyzed via Direct Capture Perturb-seq to quantify the mRNA expression and identify the sgRNA in each 
single cell. WT early and late passage cells were assayed in parallel to define the direction of aging (or its reverse, the 
direction of rejuvenation). 
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Figure 2. Examples of TF perturbations that reversed gene expression in late passage cells back towards an earlier 
passage state. 
Correlation plots comparing gene expression changes between late passage and early passage WT cells to that between 
late passage cells with a TF perturbation and those with the NT control. Shown are CRA E2F3, CRA EZH2, CRI STAT3, 
and CRI ZFX, the four TF perturbations that we subsequently validated with cellular and molecular phenotyping. TF 
perturbations with a significant negative correlation (as measured by the Pearson correlation coefficient r-value) indicated 
that the TF perturbation reversed gene expression changes due to replicative aging.
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Table 2. Top 15 CRISPRi (CRI) TF perturbations, ranked by 
r-value, including the log 2 fold change (log2fc) of the TF itself 
and the p value for the log2fc of the TF. Those in red boxes are the 
TFs we tested extensively with cell and molecular phenotyping. 

Table 1. Top 15 CRISPRa (CRA) TF perturbations, ranked by 
r-value, including the log 2 fold change (log2fc) of the TF itself and 
the p value for the log2fc of the TF. Those in red boxes are the TFs 
we tested extensively with cell and molecular phenotyping. 
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Figure 3. Transcription factor module analysis revealed that rejuvenating TF perturbations drive similar downstream gene 
expression changes. 
A. TF perturbations (rows) were clustered by the AUC t-test scores for selected TF modules (columns) from the SCENIC 
analysis. Only the modules differentially expressed between WT PD14 (early passage) and PD32 (late passage) (|t-test 
score| > 5) were shown. A positive (red) module score means the genes in that TF module were more expressed in the TF 
perturbation compared to the NT control, or earlier passage cells compared to later passage cells, and a negative (blue) 
module score means the genes in that TF module were less expressed in the TF perturbation or earlier passage cells. The 
AUC t-test score is derived from the AUC score for individual cells from the SCENIC analysis (see Methods).
B. Interaction network analysis (using string-db) of commonly up-regulated genes within a cluster of TF perturbations in A
(CRA E2F3, CRA DLX6, CRI ZFX, CRI EGR1, CRI MAZ, CRI SOX2, and CRI ATF4). The red color indicates genes in the 
cell cycle gene ontology category. The lines connecting genes represent known interactions (light blue and pink), predicted 
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Figure 4. TF perturbations increased the cell division rate.
A. KI67 microscopy of CRA NT and CRA E2F3 cells. Blue is Hoechst staining the nucleus, red is phalloidin staining 
actin, and green is KI67; 50 uM scale bar.
B. Percent KI67 positive cells for CRA and CRI perturbed cells and WT passaged cells ranging from early to late 
population doubling (PD); N > 1500 per sgRNA, and N > 700 per WT PD; statistical significance is calculated by 
binomial distribution, relative to PD 9 for WT and NT for CRA and CRI. Data from experiments performed on 
different days was normalized and combined as described in Methods. Similar data normalization was performed 
for other figures; * p < 0.05, ** p < 0.01, *** p < 0.001. 
C. The percent of cells in S, G2, or M phase of the cell cycle, as measured via single cell RNA sequencing 
analysis.
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Figure 5. TF perturbations CRA E2F3 and CRA EZH2 decreased the number of senescent cells.
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PD 9 for WT. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 6. TF perturbations decreased the expression of common senescence associated genes. Using quantitative 
PCR (qPCR), we measured changes in the expression of A. p21 (CDKN1A), B. TIMP1, and C. TIMP2 for CRA and 
CRI is relative to NT controls, and the log2fc for WT is relative to early passage cells
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Figure 7. TF perturbations improved proteostasis.
A. Cluster heatmap of all proteasome genes, colored by log2 fold change (log2fc). In CRA and CRI cells, the log2fc is 
relative to NT cells; for WT, the log2fc is relative to early passage cells (WT PD 32 versus PD 14).
B. Proteasome activity for CRA and CRI TF perturbations; significance was calculated by a Wilcoxon rank-sum test, 
comparing TF perturbations to NT. * p < 0.05, ** p < 0.01, *** p < 0.001. 
C. CRI NT and CRI STAT3 cells stained with LysoTracker Red; blue is BFP from the sgRNA construct and labels the 
cytoplasm; 100 uM scale bar. 
D. Quantification of lysosome puncta per cell area, as measured with LysoTracker Red. N > 180 cells per sgRNA, and N > 
330 cells per WT PD. Significance was calculated by a Wilcoxon rank-sum test, comparing TF perturbations to NT and WT 
later PDs to WT PD 15. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 8. TF perturbations enhanced mitochondrial function. 
A. Cluster heatmap of mitochondrial genes (all “MT” mitochondrial genes 
except those encoding tRNA) and Krebs cycle genes, colored by log2 fold
change (log2fc). In CRA and CRI cells, the log2fc is relative to NT cells; for 
WT, the log2fc is relative to early passage cells (WT PD 32 versus PD 14).
B TMRE (tetramethylrhodamine, ethyl ester) mitochondrial membrane 
potential stain of CRA NT and CRA EZH2 cells; brighter red indicates higher 
membrane potential; blue is BFP from the sgRNA construct and labels the 
cytoplasm; scale bar is 100 uM.
C. Quantification of the TMRE membrane potential stain. Significance was 
calculated by a Wilcoxon rank-sum test, comparing TF perturbations to NT 
and WT later passages to WT PD 15. N > 300 cells per sgRNA, N > 465 
cells per WT PD. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Figure 9. TF perturbations and their effects on late passage cells are independent of telomeres.
A. Differentially expressed genes when TERT was overexpressed in human skin fibroblasts (previously 
published data), colored by log2 fold change (log2fc). In CRA and CRI cells, the log2fc is relative to NT cells; 
for TERT overexpression, the log2fc is relative to untransformed primary fibroblasts. 
B. Relative telomere length, as determined through qPCR analysis, for WT passaged cells and CRA and CRI 
TF perturbations.
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Figure 10. TF perturbations did not lead to cancer-like gene expression. 
A. Differentially expressed genes when SV40 large-t antigen was overexpressed in skin fibroblasts 
(previously published data). In CRA and CRI cells, the log two fold change (log2fc) is relative to NT cells; 
for SV40 cells, the log2fc is relative to TERT overexpressing fibroblasts. 
B. Differentially expressed genes when oncogenic H-Ras (RASG12V) was introduced to skin cells 
(previously published data). In CRA and CRI cells, the log2fc is relative to NT cells; for cells with Ras 
overexpression, the log2fc is relative to SV40 cells. 
C. Commonly differentially expressed genes from seven cancer types. In CRA and CRI cells, the log2fc 
is relative to NT cells. 

0.
0 

  
2.

5

lo
g2

 fo
ld

 c
ha

ng
e

-2
.5

0.
0 

  
2.

5

lo
g2

 fo
ld

 c
ha

ng
e

-2
.5

0.
0 

  
2.

5

lo
g2

 fo
ld

 c
ha

ng
e

-2
.5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.20.517270doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.20.517270

