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Table 3: Ablation Results.

Pancreas

Option AvgBIO AvgBATCH Overall B. scFormer w/o MGM,MVC
scFormer | 0w coltpe

-w/o MGM 0.819 0.855 0.833

-w/o MVC 0.716 0.869 0.777

-w/o MGM,MVC | 0.590 0.851 0.694

-w/o DAR 0.880 0.904 0.889

-w/o DSBN 0.867 0.902 0.881

-w/o ECS 0.837 0.897 0.861

-mask 15% 0.838 0.886 0.857

-mask 75% 0.806 0.878 0.834 . . .
scFormer(full) 0.882 0.900 0.889 Figure 3: UMAP Visualizations.

embeddings of 1200 input genes. As shown in Figure 2, the gene markers of major cell types are
well clustered together, even though scFormer is trained in a pure unsupervised manner without
cell type labels. These results demonstrate that scFormer is capable of simultaneously learning
distinguishable cell and gene representation.

4.2.1 ABLATION STUDIES

We validated the effectiveness of each task head through ablation experiments on the Pancreas
dataset, as detailed in Table 3. In the ablation study, we tested 9 options including: (1) full scFormer
with all task heads on and default MGM mask ratio, (2) 2 additional full task-headed scFormer with
lower or higher MGM mask ratios, and (3) 6 ablation settings with removal of one or two task heads.
Each option is repeated 5 times for random seed values 0-4, and the best cell clustering and batch
mixing metrics are reported.

Notably, MGM and MVC task heads are critical in learning biological information, as the model
observes a 6 — 16% drop in AvgBIO when one is removed, and 29% drop when both are removed.
See Figure 3 for much improved cluster separation by cell type and mixing by batch: for example,
intertwined cell types alpha and gamma become distinctly separated, and the three batch clusters for
cell type beta have merged into one. DAR, ECS, and DSBN task heads all contributed to the smooth-
ing effects on batch mixing, despite comparable scores in the ASWpgicp, metric. Furthermore, the
appropriate mask ratio is essential for effective learning, as demonstrated in the performance deteri-
oration when mask ratio is too high or two low.

4.3 PERTURBATION PREDICTION

Recent combination of scRNA-seq and gene editing techniques enables high-throughput experi-
ments revealing the cellular response to multiple genetic perturbations. This has become a promising
tool for the discovery of novel gene interactions and regenerative medicine. However, the combi-
natorial space of possible gene being perturbed quickly exceeds the scope of feasible experiments
and thus limits the application. Therefore, machine learning methods can be applied to learn from
cellular response of known experiments and extrapolate to unknown ones. scFormer is particularly
suitable for this task because the self-attention over gene dimension may well encoded the interaction
between perturbed genes and downstream expression responses of other genes. We test scFormer in
this setting of predicting gene expressions after perturbation and shows its performance.

Datasets For perturbation task, we benchmarked on 2 perturbation datasets pre-processed by
Roohani et al. (2022): (1) Pertub-seq dataset by Adamson et al. (2016) containing 87 1-gene per-
turbations, with around 100 cells per perturbation and at least 7,000 unperturbed cells, and (2)
Perturb-Seq dataset by Norman et al. (2019) containing 131 2-gene perturbations and 105 1-gene
perturbations, with 300-700 cells treated with each perturbation.



bioRxiv preprint doi: https://doi.org/10.1101/2022.11.20.517285; this version posted November 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Experiment Setup We followed the same preprocessing steps by Roohani et al.| (2022) in their
benchmark: (1) normalize by total counts over all genes, (2) log transform data, (3) select 5000
highly variable genes, and (4) include any pertubed genes not accounted for. In our experiments,
for 1-gene perturbation prediction in both datasets (Adamson et al.| [2016; Norman et al, 2019) ,
the perturbations are split to ensure that test perturbations are not seen in training, i.e., no cells in
training set has undergone any of the test perturbations. For 2-gene perturbation prediction in the
Norman et al.|(2019)) dataset, the train-test split consists of three scenarios with increasing difficulty:
(1) 0/2 unseen genes, (2) 1/2 unseen genes, and (3) 2/2 unseen genes in the training set.

We evaluate perturbation prediction accuracy based on Pearson correlation (corr) between predicted
gene expressions post-perturbation and ground-truth expression values. Another variant of the Pear-
son metric is calculated on the amount of change in expression post-perturbation compared to control
instead of raw expression values, denoted as corr(A). We also report these Pearson metrics on dif-
ferent gene sets, including (1) all genes (ALL), and (2) top 20 differentially expressed genes (DE).
We thus report 4 evaluation metrics as detailed below, namely corr and corr(A) each for gene sets
(ALL) and (DE). See Appendix [A.T|for details on metric calculation.

Table 4: Perturbation generation results

Norman et al.|(2019) Adamson et al.|(2016)
DE ~ALL DE ~ALL
Model corr  corr(A) | corr  corr(A) | corr  corr(A) | corr  corr(A)
MLP 0909 0428 0987 0408 | 0948 0.729 0991  0.656
GEARS 0.917 0.508 0.986 0.387 0.961 0.726 0.991 0.652
scFormer | 0.921 0.582 0.988 0459 | 0964 0.740 0.991 0.632

Results We compare the performance against the recent GEARS method (Roohani et al., [2022)
and the multi layer perceptron baseline. scFormer shows the highest correlation to the ground-truth
perturbed expressions on almost all metrics. Since around 50% of gene expression counts before and
after perturbation are zero due to either low capture rate or low expression, we would argue that the
evaluation on differentially expressed genes, i.e., the DE columns in Table [} are more convincing.
Particularly, significant improvements by scFormer are shown for the correlation of the change (A)
of the top differentially expressed genes, which is arguably the most important metric.

5 IMPLEMENTATION DETAILS

All models are set to have 4 stacked transformer blocks. Each block has an embedding size of 128,
4 attention heads and the fully connected layer has hidden size of 128. The training mini-batch is
set to 16. We use the Adam optimizer with a starting learning rate 0.001, and decay to 90% after
each epoch. We set the mask ratio of MGM and MVC to 0.4, beta in ECS to 0.6, and a weighting
of 10 on ECS loss when combined with others. For the embedding learning tasks (sections 4.1]and
4.2)), each dataset is split into train and evaluation sets at 9:1 ratio. We trained the model for fixed
30 epochs and evaluated the MGM loss value on the validation set after each epoch. We report the
model with the best validation score. For the perturbation task (section @, we noticed the model
can converge usually within 3 epochs and we similarly report the best validated model.

6 CONCLUSION

We hereby propose scFormer, a novel transformer-based deep learning framework to jointly op-
timize cell and gene embeddings for single-cell biology in pure unsupervised manner. scFormer
provides a unified framework to address a variety of downstream tasks including data integration,
gene function analysis, and perturbation response prediction. Empirical results show that the self-
attention on gene expressions and the introduced MGM and MVC objectives significantly boost
the performance for cell-level and gene-level tasks. For future directions, we envision the proposed
techniques can be applied to other modalities such as single-cell atac-seq and spatial transcriptomics.
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A APPENDIX

A.1 EVALUATION METRIC CALCULATIONS

A.1.1 EMBEDDING EXTRACTION

We followed the evaluation metric calculations specified by |Luecken et al.|(2022) in their benchmark
paper as detailed below.

Normalized Mutual Information

We calculate the normalized mutual information (NMI) score to measure the overlap between ground
truth cell type labels and Louvain cluster labels obtained from integrated cell embeddings. Louvain
clustering was performed at a resolution range of 0.1 to 2 in steps of 0.1 to identify the highest NMI
to be reported. The cell type NMI score, denoted as N M I, ranges from O to 1, with higher
score indicating better cell type match.

Adjusted Rand Index

12
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We calculate the adjusted rand index (ARI) to measure both overlap and disagreements between
ground truth cell type labels and MNI-optimized Louvain clusters. The rand index is further adjusted
for randomly correct labels. The cell type ARI score, denoted as A R1I ¢y, ranges from 0 to 1, with
0 corresponding to random labelling and 1 for perfect match.

Average Silhouette Width

The silhouette width measures the relationship between the within-cluster distances of a cell and
the between-cluster distances of that cell to the closest cluster. The average silhouette width (ASW)
score is calculated by averaging the silhouette widths of all cells. The ASW score ranges from -1
and 1, where an ASW score of 1 suggests well-separated clusters while -1 to 0 implies overlapping
clusters and misclassification.

For cell type clustering evaluation, we calculate the ASW score with respect to cell type labels,
denoted as ASW .y;:

ASWoeyy = (ASWe +1) /2

where C' denotes cell types.

For batch mixing evaluation, we calculate the ASW score with respect to batch labels and scale it
by subtracting 1, denoted as ASWhyatch:

ASWhatern =1 — |ASWg]
Both ASW_ ey and ASWygicn range from O to 1, with higher score indicating better cell type
clustering or batch mixing performance.
Graph Connectivity

The graph connectivity metric computes the average proportion of cells that are connected through
a kNN graph within its own cell type. For each cell identity ¢ in C, we calculate the size of the
largest connected component with KNN among cells of identity c only over the total number of cells
of identity c. The average across all cell types is reported as the GraphConn score:

1 |LCC(GFNN))|
GraphConn = — —_ =
[PV

where LCC' denotes the largest connected component and [N denotes total number of cells for each
cell type.

Aggregated Metrics

The aggregated metric AvgBIO computes the mean of the three metrics for biological conserva-
tion:

AvgBIO = (ARI + NMI + ASW_e;1)/3

The aggregated metric Avg B AT C H computes the mean of the two metrics for batch mixing:

AvgBATCH = (ASWyaten + GraphConn) /2

Following the convention in (Luecken et all [2022), an Overall metric for integration tasks is
computed as the weighted average of AvgBIO and AvgBATCH:

AvgBATCH = 0.6 * AvgBIO + 0.4« AvgBATCH
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A.1.2 PERTURBATION PREDICTION

Pearson Correlation

Pearson Correlation (corr) is used to measure the correlation between the mean predicted expres-
sions and mean ground truth expressions for the perturbation group. Similarly, corr(A) computes the
correlation on change in the mean expressions post-perturbation compared to control. The Pearson
metric is calculated using scikit—-learn’s implementations.

A.2 CELL EMBEDDING TASK RESULTS - UMAP VISUALIZAIONS

Table 5: Integration metrics details (Immune Human)

Biological Conservation Batch Mixing
Model AvgBIO  ARI NMI ASW,..; | AvgBATCH ASWjaer,  GraphConn
Seurat 0.565  0.445 0.695 0.556 0.882 0.858 0.907
Harmony | 0.743  0.830 0.810  0.590 0914 0.860 0.968
scVI 0.725  0.780 0.813 0.582 0.921 0.871 0.971
scFormer | 0.765  0.844 0.821 0.632 0.903 0.832 0.975

Table 6: Integration metrics details (Pancreas)

Biological Conservation Batch Mixing
Model AvgBIO ARI NMI ASW,; | AvgBATCH ASWy4,  GraphConn
Seurat 0.647  0.557 0.769 0.616 0.910 0.841 0.980
Harmony | 0.836 094 091 0.66 0.916 0.880 0.952
scVI 0.829 0949 00914 0.625 0.917 0.863 0.972
scFormer | 0.882  0.954 0.921 0.773 0.900 0.833 0.968

Table 7: Ablation metric details (Pancreas)

Biological Conservation Batch Mixing
Option AvgBIO ARI NMI ASW,..; | AvgBATCH ASWyaicr,  GraphConn | Overall
scFormer
-w/o MGM 0.819 0911 0.857 0.689 0.855 0.782 0.928 0.833
-w/o MVC 0.716 0.809 0.790 0.550 0.869 0.812 0.926 0.777
-w/o MGM,MVC 0.590 0.561 0.707 0.502 0.851 0.816 0.887 0.694
-w/o DAR 0.880 0.953 0919 0.767 0.904 0.834 0.975 0.889
-w/o DSBN 0.867 0.941 0.898 0.762 0.902 0.833 0.970 0.881
-w/o ECS 0.837 0.948 0911 0.651 0.897 0.822 0.972 0.861
-mask 15% 0.838 0.945 0912 0.657 0.886 0.808 0.965 0.857
-mask 75% 0.806 0.916 0.874 0.629 0.878 0.806 0.950 0.834
scFormer(full) 0.882 0.954 0.921 0.773 0.900 0.833 0.968 0.889
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