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ABSTRACT

Single-cell sequencing has emerged as a promising technique to decode cellu-
lar heterogeneity and analyze gene functions. With the high throughput of mod-
ern techniques and resulting large-scale sequencing data, deep learning has been
used extensively to learn representations of individual cells for downstream tasks.
However, most existing methods rely on fully connected networks and are un-
able to model complex relationships between both cell and gene representations.
We hereby propose scFormer, a novel transformer-based deep learning framework
to jointly optimize cell and gene embeddings for single-cell biology in an un-
supervised manner. By drawing parallels between natural language processing
and genomics, scFormer applies self-attention to learn salient gene and cell em-
beddings through masked gene modelling. scFormer provides a unified frame-
work to readily address a variety of downstream tasks such as data integration,
analysis of gene function, and perturbation response prediction. Extensive ex-
periments using scFormer show state-of-the-art performance on seven datasets
across the relevant tasks. The scFormer model implementation is available at
https://github.com/bowang-lab/scFormer.

1 INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is a revolutionary technology that captures gene expres-
sion at the resolution of individual cells (Shapiro et al., 2013). Currently, large scRNA-seq atlases
already contain tens of millions of cells, and the size of the available data continues to grow ex-
ponentially (Regev et al., 2017; Han et al., 2018). This opens up ample opportunities for machine
learning algorithms to leverage these large-scale datasets for data-driven discoveries in the field of
genomics and medicine.

Recently, deep learning has been employed in the field of single-cell biology to integrate cell embed-
dings across datasets (Lopez et al., 2018; Gayoso et al., 2021; Lotfollahi et al., 2022), infer cell types
(Zhang et al., 2019), analyze gene regulatory networks (Seninge et al., 2021), and predict genetic
perturbation responses (Lotfollahi et al., 2019; 2021; Yu & Welch, 2022). The current mainstream
model utilized for learning representations of single-cell data are variational autoencoders (VAEs).
More specifically, VAEs with multi-layer perceptron (MLP) encoders and decoders are widely used
in most of the aforementioned approaches. However, the projection of latent cell embeddings to
reconstruct gene expression using MLP layers makes it difficult to model gene-gene interactions,
due to the lack of a one-to-one mapping from the compressed latent embedding to the full space of
all genes. Yet, we argue simultaneously modelling gene-level and cell-level information is a poten-
tial improvement for two reasons: (1) lower-level gene expression and higher-level cell identity are
highly correlated, and the embeddings can share information during model training; (2) single-cell
analysis focuses on both cell and gene related tasks. Common Cell-level tasks include cell annota-
tion and clustering, and gene-level tasks include functional pathway enrichment and gene network
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analysis. Therefore, the capability to provide both cell and gene representations is a desirable prop-
erty of models that lead to applicability to multiple downstream tasks.

To simultaneously provide gene and cell representations, we propose scFormer, a transformer-based
model that utilizes self-attention on gene expression and provides jointly optimized cell and gene
embeddings. Recently, unsupervised learning of large datasets using self-attention transformers
(Vaswani et al., 2017) has shown major success in several machine learning fields, including lan-
guage (Devlin et al., 2018; Brown et al., 2020), computer vision (He et al., 2022), and learning
protein representations (Jumper et al., 2021; Rao et al., 2021; Baek et al., 2021). Similarly, we
argue that the self-attention model can readily be applied to sequencing data and learn the context-
specific correlated expression patterns in an unbiased way. In this work, (1) We introduce several
techniques including masked gene modeling (MGM), and masked value for cell (MVC), to facilitate
self-attention optimization in the single-cell domain. (2) To our best knowledge, scFormer is the
first work using transformer to jointly learn cell and gene embeddings in a completely unsupervised
fashion and attain representations applicable to multiple downstream tasks. We envision scFormer
to be a new backbone model for single cell modeling due to these advantages, and we show the
techniques promising performance across several downstream tasks on seven datasets.

2 RELATED WORK

Learning cell and gene representation for scRNA-seq. Cell representation learning has been
one of the major research areas in the field of single-cell data modelling. Cell embeddings are the
foundation for various downstream tasks, such as cell type annotation, visualization, and data inte-
gration. Early approaches like Seurat (Satija et al., 2015) and its variants (Stuart et al., 2019) adopt
nearest-neighbor-based alignment to correct technical effects (Eisenstein, 2020) and learn linearly
transformed cell embeddings. Other approaches like LIGER (Liu et al., 2020) and OCAT (Wang
et al., 2022) use matrix factorization to find robust cell embeddings. Aside from these techniques,
Deep Learning methods, particularly VAE-based generative models (Kingma & Welling, 2013),
have been widely used in recent studies. scVI (Lopez et al., 2018) learns latent cell representa-
tions by variational inference and reconstructing original gene expressions. TotalVI (Gayoso et al.,
2021) and scGen (Lotfollahi et al., 2019) utilized similar models and extended the applications to
multi-omics and perturbation prediction. On the other hand, gene representation learning benefits
many downstream tasks, including gene regulatory network and functional pathway analysis. As an
example, GeneVector (Ceglia et al., 2022) detects gene-gene functional relations by factorizing the
co-expression and mutual information matrix of the sequencing readout. Despite the importance of
the two branches of research for cell and gene embeddings, few approaches have worked on jointly
learning both. DeepMAPS (Ma et al., 2021) utilizes graph neural networks to encode cell and gene
nodes for related tasks. scFormer stands out as an approach to effectively learn both embeddings of
cells and genes jointly in a shared architecture.

Transformers for modelling scRNA-seq data. Transformer models with self-attention (Vaswani
et al., 2017) have achieved great success in natural language processing (NLP) (Devlin et al., 2018),
and recently in computer vision and protein biology as well. Despite these results, there have been
few attempts to adopt the transformer architecture into single-cell biology and applications thereof.
Shen et al. (2022) use the transformer decoder setup to learn the gene name sequence of highly
expressed genes, without considering the actual sequenced expression abundance. This leads to
loss of major biological signal, as the expression values are informative of cell state and gene-gene
relationships. A very recent work, scBERT (Wang et al., 2021), that uses a BERT-like architecture
(Devlin et al., 2018) only applied learned embeddings for the supervised task of cell annotation.
To our best knowledge, scFormer is one of the first methods to provide a transformer backbone for
multiple single-cell analysis tasks in an unsupervised fashion.

3 METHODS

Single-cell sequencing captures genetic sequence information from individual cells, in contrast to
bulk approaches that average information across many cells. In particular, the widely used scRNA-
seq measures the individual abundance of RNA molecules in each cell, providing a profile of the
cellular identity, stage, and functionality. The scRNA-seq transcriptomic data is quantified into a
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cell-gene matrix, X ∈ RN×G, where each entry Xi,j ∈ R+ is the read for the transcribed RNA
abundance of gene j ∈ {0, 1, . . . , G} in the cell i ∈ {0, 1, . . . , N}. We refer to this data as the raw
matrix in later sections. Different from natural language texts, the sequenced data are continuous and
therefore create challenges for tokenization and modelling. Next, we introduce both data processing
techniques and learning objectives to facilitate the learning using transformer.
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Figure 1: Model schematic. From left to right: I. input embeddings that integrate three types of
tokens. II. the stacked transformer encoder blocks. III. Four task heads that are applied on cell
embeddings and gene-level transformer output.

3.1 INPUT EMBEDDINGS

The input to scFormer consists of three components: (1) gene tokens, (2) gene expression values,
and (3) optional external tokens. The gene tokens and expression values are pre-processed from the
raw matrix X with a slightly different procedure for each modeling task (see section 4).

Gene Tokens We naturally use gene names as gene tokens. Each gene gj has a unique integer
id id(gj) out of the full vocabulary of tokens. Notably, for a dataset of multiple studies that con-
tain different sets of genes due to technological/processing differences, these tokens can be readily
collected into a shared vocabulary of the union set of genes across studies. This leads to a unique
flexibility of scFormer for modeling data with distinct gene sets when integrating multiple studies.
We also include special tokens in the vocabulary, including < cls > for integrating across genes into
a cell representation and < pad > for padding the input length in a mini-batch. Conceptually, we
consider the gene tokens work similar to the word/token embeddings in natural language modeling
(NLM). In summary, the input gene tokens for each cell i are a fixed length vector t(i)g ∈ NK ,

t(i)g =
[
id(g

(i)
1 ), id(g

(i)
2 ), . . . , id(g

(i)
M )

]
, (1)

where M is the preset input length, which is usually set as the number of highly variable genes used.

Expression Values The input of gene expression values are converted from the raw counts Xi,j .
A key challenge of modeling gene expression is that the absolute magnitudes vary among sequenc-
ing protocols (Sarkar & Stephens, 2021). Because of the difference in sequencing depth and in
probability of capturing lowly expressed genes, data from different sequencing batches (the termi-
nology for experiment trials) have quite different scales even after common preprocessing measures
of normalizing to a fixed sum and log1p transformation. In other words, the same absolute value
conveys different “semantic” meaning across sequencing batches. To resolve this, we introduce
value binning and convert all expression counts into relative values. For all non-zero expression
counts of each cell, we count the raw absolute values and make B number of consecutive intervals
[bk, bk+1], k ∈ {1, 2, . . . , B}, where each interval range includes an equal 1/B portion of all ex-
pressed genes. Note that the computation is done cell-wise and the interval edges bk vary among
cells. The converted expression value x

(i)
j for each cell i is as follows,

x
(i)
j =

{
k, if Xi,j > 0 and Xi,j ∈ [bk, bk+1],

0, if Xi,j = 0.
(2)

With this binning, x(i)
j has consistent semantic meaning across sequencing batches. For example,

the value x
(i)
j = B always implies that gene j is one of the highest expressed genes in the cell.
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Conventional pre-processing steps Luecken & Theis (2019) are conducted before the value binning
step. Here we omit these other steps and use the raw data notation Xi,j in the above equation. The
final input value vector for cell i is

x(i) =
[
x
(i)
1 , x

(i)
2 , . . . , x

(i)
M

]
. (3)

External Tokens The external tokens can contain any meta information corresponding to individ-
ual genes. For example, pathway tokens can represent the functional pathways a gene belongs to,
and perturbation tokens can indicate if a gene is altered in perturbation experiments. We describe all
external tokens as an input vector with the same dimension as the input genes,

t(i)e =
[
t
(i)
e,1, t

(i)
e,2, . . . , t

(i)
e,M

]
, (4)

where t
(i)
e,j are integer indices representing external categories.

Embedding layers We use standard embedding layers1 embg for the gene tokens and embe for
the external tokens to map each token into a embedding vector of fixed-length D. Although the
standard embedding layer is also applicable to the expression values since they are binned into fixed
set of B + 1 integers, we by default use fully connected layers, embx. This has the benefit of easily
modeling the consecutive nature of the value magnitudes. The final embedding h(i) ∈ RM×D of
cell i is defined as

h(i) = embg(t
(i)
g ) + embx(x

(i)) + embe(t
(i)
e ). (5)

3.2 ENCODER AND GENE EXPRESSION MODELING

We use the transformer encoder (Vaswani et al., 2017; Devlin et al., 2018) to encode the total input
embedding h(i) in equation 5. The self-attention mechanism in transformer blocks operates over the
M embedding vectors in the input sequence, and particularly suits the goal of learning the interaction
between genes across different cell types. The output of stacked transformer blocks is

h
(i)
0 = h(i)

h
(i)
l = transformer block(h

(i)
l−1) ∀l ∈ [1, n]

(6)

We use the output, h(i)
n ∈ RM,D, for both gene-level and cell-level tasks. Gene-level task heads

(see section 3.4) can be directly applied on these learned embeddings for specific tasks including
perturbed expression prediction and masked gene modelling. For cell-level tasks, we first integrate
h
(i)
n into a cell embedding vector (section 3.3).

The input number M of genes can go up to tens of thousands. This greatly exceeds the input length of
common transformers used in NLM. Efficient self-attention techniques can be used (Katharopoulos
et al., 2020; Wang et al., 2020; Dao et al., 2022). Also, since the order of the genes is not sequential
in scRNA-seq data, and the transformer computation is agnostic to the order, we can dynamically
sample subsets of the input.

3.3 CELL REPRESENTATION

We view each cell as a ”sentence” of genes, and a cell representation h
(i)
c ∈ RD vector can be

generated by integrating the learned gene-level representation h
(i)
n . Common pooling operations

such element-wise mean-pooling or weighted-pooling can be readily used. Here, we choose to use
a special token < cls > for the cell representation and let the model learn the pooling operation
within transformer blocks: the < cls > token is appended to the beginning of other input tokens
(figure 1), and the final embedding at this position will be extracted as the cell representation, which
is usually the first row of h(i)

n , i.e. h
(i)
c = h

(i)
n [< cls >], where [< cls >] denotes retrieving the

row at the index of < cls > token in the input.
1look-up table embedding layer, https://pytorch.org/docs/stable/generated/torch.

nn.Embedding.html
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3.4 TASK HEADS

We use the term task head for the task-specific module and the loss function paired with it. scFormer
benefits from various task heads to facilitate the learning of biologically meaningful cell and gene
representations, in addition to task heads for regularization purposes such as batch correction.

Masked Gene Modelling (MGM) scFormer employs masked gene modelling to promote the
learning of cross-gene relations, inspired by the masked-language modelling in NLM. In each cell, a
proportion of genes and their expression values x(i) are randomly masked, and the scFormer model
is optimized to correctly predict the gene expression values at the masked positions. This task head
helps the model effectively encode co-expression within sets of genes. Formally, we feed the trans-
former output into a fully connected MLP to estimate the expression value for M genes, and use the
cross entropy loss (ce) only at the masked positions, Mmask, to optimize this objective:

x̃(i) = MLP(h(i)
n ),

LMGM =
1

|Mmask|
∑

j∈Mmask

ce(x̃
(i)
j , x

(i)
j ),

(7)

where x̃(i) ∈ NM is the row of expression estimates.

MGM is a general self-supervised task head that works to predict gene expression for masked genes.
In some downstream tasks, such as the perturbation prediction task, the model will predict known
target gene expression values rather than the original ones. In such a supervised scenario, no mask-
ing is needed. We keep the MLP estimator and cross entropy loss in equation 7, use target gene
expression as x(i)

j in the equation, and simply change the predicted expression values to apply to all
valid target positions instead of the masked positions.

Masked Value for Cell Modelling (MVC) This task head works in a similar fashion as the MLM,
although it instead uses and promotes the cell representation h

(i)
c . For the expression of each gene j

in an input cell i, we make a query vector qj and use the parameterized inner product of qj and cell
representation h

(i)
c as the predicted expression value.

qj = MLP(embg(t
(i)
g )),

x̃
(i)
j = qj ·Wh(i)

c ,

LMVC =
1

|Mmask|
∑

j∈Mmask

ce(x̃
(i)
j , x

(i)
j ).

(8)

MVC shares the the gene token embedding, embg(t
(i)
g ) in equation 5. In practice, we found applying

MGM and MVC altogether achieves significantly better performance than applying either individ-
ually (section 4.2.1). This is consistent with our argument that the joint modeling of cell and gene
representations contributes to learning a more biologically meaningful embedding of both.

Elastic Cell Similarity (ECS) This task head enhances the disentangling of cell representations.
It uses a contrastive learning loss introduced by Liu et al. (2019).

LECS = −(sim(h(i)
c ,h(i′)

c )− β)2, (9)

where sim is the cosine similarity function, i, i′ denote two cells in the same training mini-batch,
and β is a predefined threshold. ECS works pair-wise on all cells in a mini-batch. Intuitively, it
increases the similarity of the pairs that already have similarity above β, and conversely pushes
away dissimilar pairs.
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Domain Adaptation by Reverse Back-propagation (DAR) Technical batch effects introduce
non-biological differences between data samples and can greatly impact the representation learning
procedure (Eisenstein, 2020; Tran et al., 2020). To address this issue, we use a separate MLP
classifier to predict the sequencing batch of each input cell, and reverse the gradients when back-
propagating through the classifier. This strategy has been shown as a robust domain adaptation
method by Ganin & Lempitsky (2015). We also use a domain-specific batch normalization (DSBN)
(Chang et al., 2019) on the input embedding (equation 5) as a soft strategy to further enhance batch
correction.

4 EXPERIMENTS AND RESULTS

4.1 REPRESENTATION LEARNING FOR SINGLE DATASET OF SCRNA-SEQ

Cell clustering and visualization is an essential task that often serves as the first step for cell type
and cell state identification. Therefore, we first evaluate the clustering on datasets with annotated
cell types to measure how well the cell representations learned by scFormer preserve biological
information as such.

Datasets We tested 3 datasets re-procecessed by Gayoso et al. (2022): Cortex (3,005 cells and
19,972 genes), PBMC 8K (7,982 cells and 3,346 genes), and Spleen 17K (17,001 cells and 13,553
genes).

Experiment Setup We performed the following preprocessing steps using the SCANPY python
library (Wolf et al., 2018): (1) normalize each cell by total counts over all genes, (2) logarithmize
the data matrix with log1p, and (3) select highly variable genes.

We evaluated cell embeddings on biological conservation metrics proposed in Luecken et al. (2022).
Biological conservation evaluation metrics included NMI (normalised mutual information), ARI
(adjusted rand index), and ASW (average silhouette width), to measure the consistency between
derived cell type clusters and ground truth labels. For ease of comparison, we also reported AvgBIO
as the average of NMI , ARI and ASWcell. See Appendix A.1 for details on metric calculations.

We benchmarked scFormer against Seurat (Satija et al., 2015), scVI (Lopez et al., 2018) and a
highly variable gene (HVG) baseline on all datasets. For all methods benchmarked, we used the
same set of highly variable genes. The output metrics are calculated using the implementation in
scib.metrics by Luecken et al. (2022).

Table 1: Cell embedding results (Single dataset)

Cortex PBMC 8K Spleen 17K
Model AvgBIO ARI NMI ASWcell AvgBIO ARI NMI ASWcell AvgBIO ARI NMI ASWcell

HVG 0.605 0.657 0.643 0.517 0.626 0.624 0.733 0.522 0.600 0.611 0.685 0.505
Seurat 0.597 0.618 0.622 0.551 0.762 0.864 0.821 0.601 0.641 0.650 0.702 0.572
scVI 0.688 0.743 0.716 0.606 0.696 0.699 0.797 0.592 0.619 0.615 0.692 0.551
scFormer 0.763 0.805 0.738 0.745 0.819 0.786 0.861 0.810 0.645 0.640 0.706 0.589

Results The benchmark in single datasets demonstrates that scFormer achieves the state-of-the-art
results in the cell embedding extraction task across all metrics tested. Notably, scFormer’s AvgBIO
score on the Cortex dataset exceeds other methods by a 8−17% margin, and on the PBMC 8K dataset
by a 5 − 19% margin. This showcases scFormer’s superior performance in amplifying biological
and cell type signals through effective feature learning. See Appendix A.2 for the comparisons of
UMAP visualizations on the Cortex dataset.

4.2 INTEGRATION OF MULTIPLE SCRNA-SEQ DATA WITH BATCH CORRECTION

Cell representation learning faces the challenge of batch effects when multiple datasets or sequenc-
ing batches are given as input. True biological variance may be confounded with technical difference
between input batches. Without batch correction, two cells from the same batch of different cell
types maybe be clustered together rather than two of same cell type from different batches, leading
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to errors in cell type annotations. Therefore, we assess scFormer’s ability to correct batch effects
while preserving biological variance of the integrated datasets.

Datasets For data integration task, we tested on 2 datasets re-processed by (Gayoso et al., 2022)
and (Luecken et al., 2022): Immune human (33,506 cells and 12,303 genes from 10 donors), and
Pancreas (16,382 cells and 19,093 genes from 9 batches).

Experiment Setup In integration datasets, we performed the same preprocessing steps as de-
scribed in Section 4.1. Additionally, we filtered out genes with low read counts as quality control
suggested by Luecken et al. (2022).

We reported the same biological conservation metrics and AvgBIO for cell type clustering as de-
scribed in Section 4.1. Additionally, we reported batch correction metrics proposed in Luecken
et al. (2022) to assess batch mixing. Batch correction performance is measured by ASWbatch, the
inverse of average silhouette width for batch clustering, and GraphConn for graph connectivity. For
ease of comparison, we reported AvgBATCH as the average of ASWbatch and GraphConn for batch
mixing. We also reported an Overall score as a weighted sum of AvgBIO and AvgBATCH, consistent
with Luecken et al. (2022). See Appendix A.1 for details on metric calculations.

We benchmarked scFormer against other unsupervised methods, including Seurat (Satija et al.,
2015), Harmony (Korsunsky et al., 2019), and scVI (Lopez et al., 2018). Harmony and scVI has
been shown with best performances in recent benchmarking of integration methods Luecken et al.
(2022). For all methods benchmarked, we used the same set of highly variable genes across all
methods.

Results On both datasets, scFormer achieves the best biological conservation score (AvgBIO) and
the best overall score. Shown in figure 2a, we find the learned cell representation can be well clus-
tered in concordance with the cell type labels. scFormer also provides comparable batch correction
results (figure 2b), although the performance is not fully shown in the AvgBATCH score (see sec-
tion 4.2.1). Note that the biological conservation is a more important evaluation for this task, since
it ensures that the clusters are reliable for downstream analysis such as cell type annotation.

Table 2: Cell embedding results (Integration)

Immune Human Pancreas
Model AvgBIO AvgBATCH Overall AvgBIO AvgBATCH Overall
Seurat 0.565 0.882 0.691 0.647 0.910 0.752
Harmony 0.743 0.914 0.811 0.836 0.916 0.868
scVI 0.725 0.921 0.803 0.829 0.917 0.864
scFormer 0.765 0.903 0.820 0.882 0.900 0.889

Figure 2: (a)UAMP plot of learned gene embeddings with colors of cell types. (b)UAMP plot of
learned gene embeddings with colors of sequencing batches. (c)UMAP of gene embedding. Colored
genes are top 9 markers of corresponding cell types. All other genes in the input space are shown in
grey.

Using both MVC and MGM task heads, scFormer learns gene embeddings simultaneously with cell
embeddings. We present the 2-dimensional UMAP (McInnes et al., 2018) plot of the learned gene
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Table 3: Ablation Results.

Pancreas
Option AvgBIO AvgBATCH Overall
scFormer

-w/o MGM 0.819 0.855 0.833
-w/o MVC 0.716 0.869 0.777
-w/o MGM,MVC 0.590 0.851 0.694
-w/o DAR 0.880 0.904 0.889
-w/o DSBN 0.867 0.902 0.881
-w/o ECS 0.837 0.897 0.861
-mask 15% 0.838 0.886 0.857
-mask 75% 0.806 0.878 0.834

scFormer(full) 0.882 0.900 0.889

BBatch Celltype

BBatch Celltype

A. scFormer (full)

B. scFormer w/o MGM,MVC

Figure 3: UMAP Visualizations.

embeddings of 1200 input genes. As shown in Figure 2, the gene markers of major cell types are
well clustered together, even though scFormer is trained in a pure unsupervised manner without
cell type labels. These results demonstrate that scFormer is capable of simultaneously learning
distinguishable cell and gene representation.

4.2.1 ABLATION STUDIES

We validated the effectiveness of each task head through ablation experiments on the Pancreas
dataset, as detailed in Table 3. In the ablation study, we tested 9 options including: (1) full scFormer
with all task heads on and default MGM mask ratio, (2) 2 additional full task-headed scFormer with
lower or higher MGM mask ratios, and (3) 6 ablation settings with removal of one or two task heads.
Each option is repeated 5 times for random seed values 0-4, and the best cell clustering and batch
mixing metrics are reported.

Notably, MGM and MVC task heads are critical in learning biological information, as the model
observes a 6 − 16% drop in AvgBIO when one is removed, and 29% drop when both are removed.
See Figure 3 for much improved cluster separation by cell type and mixing by batch: for example,
intertwined cell types alpha and gamma become distinctly separated, and the three batch clusters for
cell type beta have merged into one. DAR, ECS, and DSBN task heads all contributed to the smooth-
ing effects on batch mixing, despite comparable scores in the ASWbatch metric. Furthermore, the
appropriate mask ratio is essential for effective learning, as demonstrated in the performance deteri-
oration when mask ratio is too high or two low.

4.3 PERTURBATION PREDICTION

Recent combination of scRNA-seq and gene editing techniques enables high-throughput experi-
ments revealing the cellular response to multiple genetic perturbations. This has become a promising
tool for the discovery of novel gene interactions and regenerative medicine. However, the combi-
natorial space of possible gene being perturbed quickly exceeds the scope of feasible experiments
and thus limits the application. Therefore, machine learning methods can be applied to learn from
cellular response of known experiments and extrapolate to unknown ones. scFormer is particularly
suitable for this task because the self-attention over gene dimension may well encoded the interaction
between perturbed genes and downstream expression responses of other genes. We test scFormer in
this setting of predicting gene expressions after perturbation and shows its performance.

Datasets For perturbation task, we benchmarked on 2 perturbation datasets pre-processed by
Roohani et al. (2022): (1) Pertub-seq dataset by Adamson et al. (2016) containing 87 1-gene per-
turbations, with around 100 cells per perturbation and at least 7,000 unperturbed cells, and (2)
Perturb-Seq dataset by Norman et al. (2019) containing 131 2-gene perturbations and 105 1-gene
perturbations, with 300-700 cells treated with each perturbation.
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Experiment Setup We followed the same preprocessing steps by Roohani et al. (2022) in their
benchmark: (1) normalize by total counts over all genes, (2) log transform data, (3) select 5000
highly variable genes, and (4) include any pertubed genes not accounted for. In our experiments,
for 1-gene perturbation prediction in both datasets (Adamson et al., 2016; Norman et al., 2019) ,
the perturbations are split to ensure that test perturbations are not seen in training, i.e., no cells in
training set has undergone any of the test perturbations. For 2-gene perturbation prediction in the
Norman et al. (2019) dataset, the train-test split consists of three scenarios with increasing difficulty:
(1) 0/2 unseen genes, (2) 1/2 unseen genes, and (3) 2/2 unseen genes in the training set.

We evaluate perturbation prediction accuracy based on Pearson correlation (corr) between predicted
gene expressions post-perturbation and ground-truth expression values. Another variant of the Pear-
son metric is calculated on the amount of change in expression post-perturbation compared to control
instead of raw expression values, denoted as corr(∆). We also report these Pearson metrics on dif-
ferent gene sets, including (1) all genes (ALL), and (2) top 20 differentially expressed genes (DE).
We thus report 4 evaluation metrics as detailed below, namely corr and corr(∆) each for gene sets
(ALL) and (DE). See Appendix A.1 for details on metric calculation.

Table 4: Perturbation generation results

Norman et al. (2019) Adamson et al. (2016)
DE ALL DE ALL

Model corr corr(∆) corr corr(∆) corr corr(∆) corr corr(∆)
MLP 0.909 0.428 0.987 0.408 0.948 0.729 0.991 0.656
GEARS 0.917 0.508 0.986 0.387 0.961 0.726 0.991 0.652
scFormer 0.921 0.582 0.988 0.459 0.964 0.740 0.991 0.632

Results We compare the performance against the recent GEARS method (Roohani et al., 2022)
and the multi layer perceptron baseline. scFormer shows the highest correlation to the ground-truth
perturbed expressions on almost all metrics. Since around 50% of gene expression counts before and
after perturbation are zero due to either low capture rate or low expression, we would argue that the
evaluation on differentially expressed genes, i.e., the DE columns in Table 4, are more convincing.
Particularly, significant improvements by scFormer are shown for the correlation of the change (∆)
of the top differentially expressed genes, which is arguably the most important metric.

5 IMPLEMENTATION DETAILS

All models are set to have 4 stacked transformer blocks. Each block has an embedding size of 128,
4 attention heads and the fully connected layer has hidden size of 128. The training mini-batch is
set to 16. We use the Adam optimizer with a starting learning rate 0.001, and decay to 90% after
each epoch. We set the mask ratio of MGM and MVC to 0.4, beta in ECS to 0.6, and a weighting
of 10 on ECS loss when combined with others. For the embedding learning tasks (sections 4.1 and
4.2), each dataset is split into train and evaluation sets at 9:1 ratio. We trained the model for fixed
30 epochs and evaluated the MGM loss value on the validation set after each epoch. We report the
model with the best validation score. For the perturbation task (section 4.3), we noticed the model
can converge usually within 3 epochs and we similarly report the best validated model.

6 CONCLUSION

We hereby propose scFormer, a novel transformer-based deep learning framework to jointly op-
timize cell and gene embeddings for single-cell biology in pure unsupervised manner. scFormer
provides a unified framework to address a variety of downstream tasks including data integration,
gene function analysis, and perturbation response prediction. Empirical results show that the self-
attention on gene expressions and the introduced MGM and MVC objectives significantly boost
the performance for cell-level and gene-level tasks. For future directions, we envision the proposed
techniques can be applied to other modalities such as single-cell atac-seq and spatial transcriptomics.
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Marco Wagenstetter, Žiga Avsec, Adam Gayoso, Nir Yosef, Marta Interlandi, et al. Mapping
single-cell data to reference atlases by transfer learning. Nature Biotechnology, 40(1):121–130,
2022.

Malte D Luecken and Fabian J Theis. Current best practices in single-cell rna-seq analysis: a tutorial.
Molecular systems biology, 15(6):e8746, 2019.
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A APPENDIX

A.1 EVALUATION METRIC CALCULATIONS

A.1.1 EMBEDDING EXTRACTION

We followed the evaluation metric calculations specified by Luecken et al. (2022) in their benchmark
paper as detailed below.

Normalized Mutual Information

We calculate the normalized mutual information (NMI) score to measure the overlap between ground
truth cell type labels and Louvain cluster labels obtained from integrated cell embeddings. Louvain
clustering was performed at a resolution range of 0.1 to 2 in steps of 0.1 to identify the highest NMI
to be reported. The cell type NMI score, denoted as NMIcell, ranges from 0 to 1, with higher
score indicating better cell type match.

Adjusted Rand Index
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We calculate the adjusted rand index (ARI) to measure both overlap and disagreements between
ground truth cell type labels and MNI-optimized Louvain clusters. The rand index is further adjusted
for randomly correct labels. The cell type ARI score, denoted as ARIcell, ranges from 0 to 1, with
0 corresponding to random labelling and 1 for perfect match.

Average Silhouette Width

The silhouette width measures the relationship between the within-cluster distances of a cell and
the between-cluster distances of that cell to the closest cluster. The average silhouette width (ASW)
score is calculated by averaging the silhouette widths of all cells. The ASW score ranges from -1
and 1, where an ASW score of 1 suggests well-separated clusters while -1 to 0 implies overlapping
clusters and misclassification.

For cell type clustering evaluation, we calculate the ASW score with respect to cell type labels,
denoted as ASWcell:

ASWcell = (ASWC + 1)/2

where C denotes cell types.

For batch mixing evaluation, we calculate the ASW score with respect to batch labels and scale it
by subtracting 1, denoted as ASWbatch:

ASWbatch = 1− |ASWB |

Both ASWcell and ASWbatch range from 0 to 1, with higher score indicating better cell type
clustering or batch mixing performance.

Graph Connectivity

The graph connectivity metric computes the average proportion of cells that are connected through
a kNN graph within its own cell type. For each cell identity c in C, we calculate the size of the
largest connected component with kNN among cells of identity c only over the total number of cells
of identity c. The average across all cell types is reported as the GraphConn score:

GraphConn =
1

|C|
∑
c∈C

|LCC(GkNN
c )|

Nc

where LCC denotes the largest connected component and N denotes total number of cells for each
cell type.

Aggregated Metrics

The aggregated metric AvgBIO computes the mean of the three metrics for biological conserva-
tion:

AvgBIO = (ARI +NMI +ASWcell)/3

The aggregated metric AvgBATCH computes the mean of the two metrics for batch mixing:

AvgBATCH = (ASWbatch +GraphConn)/2

Following the convention in (Luecken et al., 2022), an Overall metric for integration tasks is
computed as the weighted average of AvgBIO and AvgBATCH:

AvgBATCH = 0.6 ∗AvgBIO + 0.4 ∗AvgBATCH

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.20.517285doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.20.517285
http://creativecommons.org/licenses/by-nc-nd/4.0/


A.1.2 PERTURBATION PREDICTION

Pearson Correlation

Pearson Correlation (corr) is used to measure the correlation between the mean predicted expres-
sions and mean ground truth expressions for the perturbation group. Similarly, corr(∆) computes the
correlation on change in the mean expressions post-perturbation compared to control. The Pearson
metric is calculated using scikit-learn’s implementations.

A.2 CELL EMBEDDING TASK RESULTS - UMAP VISUALIZAIONS

Table 5: Integration metrics details (Immune Human)

Biological Conservation Batch Mixing
Model AvgBIO ARI NMI ASWcell AvgBATCH ASWbatch GraphConn
Seurat 0.565 0.445 0.695 0.556 0.882 0.858 0.907
Harmony 0.743 0.830 0.810 0.590 0.914 0.860 0.968
scVI 0.725 0.780 0.813 0.582 0.921 0.871 0.971
scFormer 0.765 0.844 0.821 0.632 0.903 0.832 0.975

Table 6: Integration metrics details (Pancreas)

Biological Conservation Batch Mixing
Model AvgBIO ARI NMI ASWcell AvgBATCH ASWbatch GraphConn
Seurat 0.647 0.557 0.769 0.616 0.910 0.841 0.980
Harmony 0.836 0.94 0.91 0.66 0.916 0.880 0.952
scVI 0.829 0.949 0.914 0.625 0.917 0.863 0.972
scFormer 0.882 0.954 0.921 0.773 0.900 0.833 0.968

Table 7: Ablation metric details (Pancreas)

Biological Conservation Batch Mixing
Option AvgBIO ARI NMI ASWcell AvgBATCH ASWbatch GraphConn Overall
scFormer

-w/o MGM 0.819 0.911 0.857 0.689 0.855 0.782 0.928 0.833
-w/o MVC 0.716 0.809 0.790 0.550 0.869 0.812 0.926 0.777
-w/o MGM,MVC 0.590 0.561 0.707 0.502 0.851 0.816 0.887 0.694
-w/o DAR 0.880 0.953 0.919 0.767 0.904 0.834 0.975 0.889
-w/o DSBN 0.867 0.941 0.898 0.762 0.902 0.833 0.970 0.881
-w/o ECS 0.837 0.948 0.911 0.651 0.897 0.822 0.972 0.861
-mask 15% 0.838 0.945 0.912 0.657 0.886 0.808 0.965 0.857
-mask 75% 0.806 0.916 0.874 0.629 0.878 0.806 0.950 0.834

scFormer(full) 0.882 0.954 0.921 0.773 0.900 0.833 0.968 0.889
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