Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A Framework for Designing Efficient Deep Learning-Based Genomic Basecallers

View ORCID ProfileGagandeep Singh, Mohammed Alser, Alireza Khodamoradi, Kristof Denolf, Can Firtina, Meryem Banu Cavlak, Henk Corporaal, Onur Mutlu
doi: https://doi.org/10.1101/2022.11.20.517297
Gagandeep Singh
aETH Zürich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gagandeep Singh
  • For correspondence: gagan.posted@gmail.com
Mohammed Alser
aETH Zürich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alireza Khodamoradi
bAMD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kristof Denolf
bAMD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Can Firtina
aETH Zürich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Meryem Banu Cavlak
aETH Zürich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Henk Corporaal
cEindhoven University of Technology
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Onur Mutlu
aETH Zürich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/2022.11.20.517297
History 
  • December 8, 2022.

Article Versions

  • Version 1 (November 22, 2022 - 12:38).
  • You are viewing Version 2, the most recent version of this article.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Author Information

  1. Gagandeep Singha,†,
  2. Mohammed Alser*,a,
  3. Alireza Khodamoradi*,b,
  4. Kristof Denolfb,
  5. Can Firtinaa,
  6. Meryem Banu Cavlaka,
  7. Henk Corporaalc and
  8. Onur Mutlua
  1. aETH Zürich
  2. bAMD
  3. cEindhoven University of Technology
  1. ↵†Corresponding author; email: gagan.posted{at}gmail.com
  1. ↵* These authors contributed equally to this work.

Back to top
PreviousNext
Posted December 08, 2022.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A Framework for Designing Efficient Deep Learning-Based Genomic Basecallers
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A Framework for Designing Efficient Deep Learning-Based Genomic Basecallers
Gagandeep Singh, Mohammed Alser, Alireza Khodamoradi, Kristof Denolf, Can Firtina, Meryem Banu Cavlak, Henk Corporaal, Onur Mutlu
bioRxiv 2022.11.20.517297; doi: https://doi.org/10.1101/2022.11.20.517297
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A Framework for Designing Efficient Deep Learning-Based Genomic Basecallers
Gagandeep Singh, Mohammed Alser, Alireza Khodamoradi, Kristof Denolf, Can Firtina, Meryem Banu Cavlak, Henk Corporaal, Onur Mutlu
bioRxiv 2022.11.20.517297; doi: https://doi.org/10.1101/2022.11.20.517297

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4223)
  • Biochemistry (9101)
  • Bioengineering (6748)
  • Bioinformatics (23931)
  • Biophysics (12081)
  • Cancer Biology (9488)
  • Cell Biology (13726)
  • Clinical Trials (138)
  • Developmental Biology (7614)
  • Ecology (11655)
  • Epidemiology (2066)
  • Evolutionary Biology (15474)
  • Genetics (10614)
  • Genomics (14291)
  • Immunology (9454)
  • Microbiology (22773)
  • Molecular Biology (9068)
  • Neuroscience (48832)
  • Paleontology (354)
  • Pathology (1479)
  • Pharmacology and Toxicology (2560)
  • Physiology (3821)
  • Plant Biology (8307)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2288)
  • Systems Biology (6168)
  • Zoology (1297)