
 

Figure 3.  LLAMAS qualitatively improves noise reduction compared to OBS. A) An EEG signal from 
channel Oz collected outside the scanner. B) A raw signal from the same channel and subject, collected 
inside the scanner. C) The same signal from B), after gradient artifact correction, lowpass filtering, and 
downsampling have been applied. D) The same signal after online LLAMAS artifact removal. E) The same 
signal after offline RLAS. F) The same signal after offline OBS. G-L) Spectrograms of the signals from A-F). 
Black bars show timing of 12 Hz visual stimulus. 
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the scanner (i.e., EEG channels with no BCG artifact). This approach thus created a dataset in which the 
ground truth was known precisely, but also had the same temporal statistics as real BCG artifact.  

To test the efficacy of LLAMAS in reducing BCG artifact compared to existing methods, specifically 
the gold-standard offline method RLAS, and best-available online method OBS, we then attempted to 
recover the original EEG data from the simulated data using each of the three methods. We first analyzed 
the difference in the EEG timeseries. LLAMAS produced significantly lower error than OBS, the most 
commonly used online method (Fig. 2E, p=0.008, paired t-test corrected for multiple comparisons). We 
next investigated which method would preserve the spectral characteristics of the underlying EEG data, 
and again found optimal online performance with LLAMAS (Fig 2 G-H, p=0.0051 for PSD difference, paired 
t-test corrected for multiple comparisons). Online phase estimation was also most accurate using LLAMAS 
(Fig. 2F, p<0.0001, paired t-test corrected for multiple comparisons). These simulation benchmark results 
thus demonstrated that LLAMAS performed better than existing online methods for EEG artifact removal. 
It also performed nearly as well as the gold-standard offline method, RLAS (12.9% increase in timeseries 
RMSE for LLAMAS compared with RLAS,  vs. 268.7% increased RMSE for OBS; 39.2% vs 483.4% increase in 
spectral RMSE; 15.3% vs 211.1% increase in phase RMSE). 

 In order to determine if LLAMAS would also perform well during a live experiment, we next tested 
its ability to acquire and correct EEG-fMRI data in real time. We collected EEG data from healthy adult 
subjects inside the MR scanner, and performed online correction using LLAMAS, to obtain cleaned EEG 
signals in real time during the fMRI scans. For the sake of comparison, after each recording was completed, 
RLAS and OBS were also used offline to remove BCG artifact (Fig. 3). Subjects viewed a flickering 
checkerboard stimulus, to induce a steady-state visual evoked potential (SSVEP) with known frequency. 
Qualitative evaluation of the spectral response to visual stimulation showed that LLAMAS performed 
better than OBS at reducing BCG noise, and clearly recovered an SSVEP with similar magnitude to RLAS 
(Fig. 4A-J). To quantify this difference, we calculated the SSVEP amplitude by comparing the difference in 
power at the flicker frequency between the Stim-on and Stim-off epochs, for each BCG removal method. 
While both online methods recovered significantly smaller SSVEPs than outside the scanner (p<0.05), 
LLAMAS did recover a significantly larger SSVEP than the uncorrected signals (p=0.04; Fig. 4K). There was 
no significant difference in recovered SSVEP amplitude between LLAMAS and OBS after correcting for 
multiple comparisons (p=0.247; post-hoc paired t-test with Bonferroni’s multiple comparison correction). 
In addition, to assess overall spectral properties of the EEG signals, we compared how well the recovered 
PSDs matched those collected outside the scanner. Power spectral density estimates recovered with 
LLAMAS better matched those collected outside the scanner than using OBS (p=0.005 for the stim-on 
condition and p=0.003 for the stim-off condition) and were not significantly different than those 
recovered with RLAS (p=1 for both the stim-on condition and for the stim-off condition; Fig. 4L-M). These 
results obtained in live recordings thus demonstrated that LLAMAS performed better than the publicly 
available online method (OBS) and nearly as well as the offline gold-standard method (RLAS) at reducing 
BCG noise, while achieving real-time results. 

 Low latency is a requirement for many neurofeedback paradigms, and existing real-time BCG 
removal techniques do not accommodate these experiments, as they have been performed over windows 
lasting a second or longer (Lioi et al., 2020b; van der Meer et al., 2016). To determine if LLAMAS could 
provide a viable option for experiments that require low latency, we measured the latency of the LLAMAS 
software at three different graphical settings for data display: low (no display of signals in real time), 
medium (signals displayed in real-time at 0.5 frames per second, and high (10 frames per second). The  
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Figure 4.  Real-time EEG signals acquired with LLAMAS show improved signal quality. A-E) Mean 
spectrograms from uncorrected, corrected, and outside-the-scanner signals at channel Oz (n=10 
subjects). Black bars indicate presentation of the 12Hz visual stimulus. F-J) Mean PSDs from uncorrected, 
corrected, and outside-the-scanner signals at channel Oz during stimulus-on (blue) and stimulus-off 
(orange) epochs (n=10). K) Magnitude of the power difference between the stim-on and stim-off epochs 
at the flicker frequency in channel Oz, across all four flicker frequencies. Circles and gray lines show 
individual subjects; black line shows the mean, and red lines above show significance (p<0.05) using 
repeated measures ANOVA and post-hoc paired t-tests with Bonferroni correction. L) Error in power 
spectral density relative to the outside-the-scanner signals across all four flicker frequencies during stim-
on epochs. Lines and markers are as in K). M) Same as K), but for stim-off epochs. 
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results of the latency analysis showed a mean latency of 44.1ms for low settings, 44.4ms for medium 
settings, and 57.4 for high settings (Fig 5A-C).  Note that this does not account for hardware latency, which 
will depend on the specific hardware being used and how it is connected. For example, in our 
implementation using BrainAmpMR hardware, we chose to connect directly to LSL via the BrainAmpMR 
LSL connector, which is relatively low latency, but others user may prefer to connect to LSL via the remote 
data access tool of Brainvision Recorder, which has some useful features but is higher latency. A minimum 
estimate of hardware latency of 40ms is with reason. 

Discussion 

 We conclude that our acquisition method, LLAMAS, can provide online BCG artifact removal that 
is comparable to the best available offline methods, and superior to the most commonly used online 
methods, while achieving sub-100ms latency. The lower latency makes it possible to perform time-
sensitive neurofeedback experiments, and the improved noise reduction will increase efficacy of closed-
loop paradigms. Our work builds upon prior previous research describing techniques for real time BCG 
reduction (Mayeli et al., 2016; Purdon et al., 2008; Steyrl et al., 2018; van der Meer et al., 2016), which 
are challenging to replicate independently, and advances and validates these approaches to achieve low 
latency and high-quality signals in real time. Our open-source, publicly available software package LLAMAS 
makes this technique freely available to the community in a simple to use, open-source MATLAB-based 
graphical interface. This software enables future rtEEG-fMRI experimentation by removing the need to 
devise and implement from scratch suboptimal artifact correction techniques, supporting broad adoption 
by the EEG-fMRI community.  

 The experiments which most stand to benefit from LLAMAS are those with time-dependent 
stimuli, for example when aiming to provide a stimulus at a particular phase of an oscillation, or in 
response to a short-duration event. A widely used example is slow wave auditory stimulation, in which a 
brief auditory stimulus is presented locked to slow-wave peaks, a window of time that is on the order of 
50-250 ms. (Ngo et al., 2013; Zhang and Gruber, 2019), or sleep spindle targeting, which seeks to stimulate 
during sleep spindles, which may be as short as 500ms (Choi and Jun, 2022). Notably, OBS was particularly 
poor at recovering oscillatory phase in our simulations, and we did not find that it provided any benefit 
relative to the uncorrected signals. This drawback means that currently available online methods are not 
well suited to phase-dependent experiments, and suggests that LLAMAS may be particularly useful for 
enabling real-time EEG phase targeting in the MRI scanner. Additionally, even those experiments which 
can accommodate longer latency would still benefit from the improved signal quality provided by our 
reference-based approach. 

  Our decision to use a reference layer to capture BCG artifact has important costs and benefits. It 
means that reference channels are spread all over the head, providing better noise fitting as BCG artifact 
varies over space as well as time. It also means the reference channels are electrically insulated, which 
means they will better isolate the BCG signal, as compared with the EOG channels used by In et al (In et 
al., 2006). However, it also means that a larger number of channels which could otherwise be collecting 
EEG data must be sacrificed to collect BCG signals. It also adds an extra piece of equipment, the reference 
layer, to the experimental setup, which takes time to apply, is not currently commercially available, and 
must be custom made. In our view, this trade-off is worthwhile to achieve improved noise reduction. 
However, LLAMAS is compatible with any number of reference channels, and could also accommodate an 
EOG setup, or wire loops, like that used by In et al. and Masterton et al. with minimal changes. 
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Figure 5.  LLAMAS provides sub-100ms latency. A) Histogram of intervals between sample receipt and 
the completion of sample processing during a 30-minute LLAMAS recording using minimally demanding 
visual settings (no graphical display of signals) B) Same latency histogram when using intermediate visual 
settings (1 frame per second) C) Same latency histogram when using with high visual settings (10 frames 
per second).  
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 LLAMAS has multiple additional features that were not explored in these experimental results, 
but could be helpful for other users. It is programmable to allow the user to design their own event 
detection protocols, provide multimodal stimuli and plot additional signals or features. It also has options 
to allow re-referencing, downsampling, altering the montage display options, and to enable playback of 
existing EEG recordings. Our goal was to provide a platform flexible enough to allow users to create their 
own experimental protocols, provided they have adequate programming experience. Also notable is that 
LLAMAS can function as a general-purpose EEG neurofeedback platform, even outside the MR scanner. 
The features specific to rtEEG-fMRI (the Kalman filter and gradient artifact correction) can be switched off 
to accommodate outside-the-scanner EEG recordings.  

Future work could develop more extensive options in the LLAMAS platform. For example, it could 
also implement alternative online BCG removal techniques, such as those described earlier. Some 
researchers may still wish to use one of those methods, for example if their experiment requires many 
channels. Another feature which we have not added is the option for real-time processing of MR data. If 
an experiment requires this capability, as in Lioi et al. (2020a and 2020b), additional software would be 
needed, or nontrivial alterations would have to be made. In addition, since the software is open-source, 
users can create additional capabilities for themselves if needed. 

LLAMAS is not without limitations. As described above, it depends on use of a reference layer. 
The designs used in this study are relatively simple, and can be replicated without the need for any 
specialized tools or skills, but more complex reference layers also exist, and have their own merits (Steyrl 
et al., 2017). However, the need for a reference layer may soon be obviated, as EEG caps with integrated 
carbon wire loops (van der Meer et al., 2016) have recently become commercially available. The signals 
from carbon wire loops could readily be substituted for the reference layer signals without the need to 
reprogram LLAMAS, as the software is agnostic as to the source of reference signal. We anticipate that 
the Kalman filter approach used here would also be effective with these inputs, although this has not yet 
been tested. More recent neural-network based developments in BCG reduction may completely 
eliminate the need for any additional hardware (Lin et al., 2022). Importantly, LLAMAS can be readily 
modified to accommodate alternative methodologies. Another important limitation of LLAMAS is its 
latency. Although it substantially faster than current alternatives, it is still not fast enough for all 
neurofeedback protocols, for example those that target specific phases of faster EEG oscillations like 
alpha. Intrinsic delays are introduced by the acquisition hardware, and to make these sorts of experiments 
possible, lower-latency MR-compatible hardware would be required. 

Real-time EEG-fMRI is a potentially powerful technique to investigate the neural mechanisms of 
neurofeedback interventions, and to probe large-scale neural dynamics in humans. Its use has so far been 
stifled by technological challenges, and only a small number of real-time EEG-fMRI experiments have so 
far been performed. By enabling high-quality, low-latency artifact removal, the LLAMAS software platform 
will support wider adoption of real-time EEG-fMRI, enabling new studies to tackle a broad range of 
questions in neuroscience. 
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