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ABSTRACT 

The great success of the AlphaFold programs poses the following questions: (i) What is the main 

reason for this success? (ii) What exactly do AlphaFolds do: prediction of the 3D protein structure 

based on its amino acid sequence and knowledge of the protein physics or recognition of this 3D 

structure, based on the similarity between some parts of its amino acid sequence and parts of 

sequences with already known 3D structures? The answers given in this paper are: The main reason 

for the tremendous success of the AlphaFold is (i) the usage of huge protein databases, which already 

cover all or almost all of the protein superfamilies existing in nature; (ii) using these databases and 

the resulting multiple sequence alignments and coevolutionary information (like correlations in pairs 

and especially in triplets of amino acid residues in the contacting chain regions), AlphaFold 

recognizes a 3D structure of the examined amino acid sequence by a similarity of this sequence (or 

its parts) to related sequences with already known 3D structures. Concluding, I have to emphasize 

that this paper does not diminish the merit and utility of AlphaFold; it only explains the basis of its 

success. 
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1. Introduction 

The great success of The AlphaFold and then AlphaFold 2 programs [1, 2] in identifying 3D (three-

dimensional) protein structures from their amino acid (a.a.) sequences and the subsequent application 

of the latter program to the 3D structures of huge protein machines [3] raised two important 

questions: (i) What is the main reason for this success? (ii) What exactly do AlphaFolds do: 

prediction of the 3D protein structure based on its a.a. sequence and knowledge of the protein chain 

physics or recognition of this 3D structure based on the similarity between some parts of its a.a. 

sequence and parts of sequences with already known 3D structures? 

Our approach to the latter dilemma will exploit a well-known (in bioinformatics) observation [4-

7] that 20-25% or more identity of a.a. sequences is, as a rule, sufficient to ensure a high similarity of 

3D protein structures (with a small, 2Å or less, difference between them). More specifically [5, 6], 

the residue identity below 20% in the pairwise alignments of sequences usually does not provide the 

correct alignment of 3D structures; the residue identity of 20-25% corresponds to the zone where the 

alignments of sequences may correspond, but also may be rather different from the alignments of 3D 

structures; and only the residue identity above 25% ensures coincidence of alignments of 3D protein 

structures and sequences. 

 

2. Results 

2.1. Theory 

Now, let us estimate the expected similarity of a randomly taken a.a. sequence fragment    (of n a.a. 

residues) to the closest in similarity chain fragment    from a set    of   other random sequences of 

the same size. In fact, we pose a question as to whether the set    is large enough to contain a 

sequence   , whose high sequence identity to    (over 20-25%) ensures high similarity of 3D 

structures of    and   . 

According to the Poisson distribution, the probability that the random a.a. sequence    matches 

another random a.a. sequence of the same length n in   positions is  

      
(  ) 

  
    ,      (1) 

when each of the amino acids falls out with probability  .  

If the random sequence    is compared not with one but with   random sequences (forming the 

set    of sequences the same length  ), the expected number of the set    members matching    in 

  positions is       . Thus, the equation          determines the maximal expected number   

of matches of the sequence    with the most similar to it sequence from the set    of the  -residue 
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random sequences. 

Given     (for proteins,      ), not too small math expectation of the number of randomly 

matching amino acids (    ), long enough sequences (    ), and not too small actual 

sequence identity of similar sequences (      ), one can use the Stirling's approximation 

[   (   ) , where      ] for factorials and get  

       (
  

   
)
 
    .      (2) 

Thus, the value of     (where   is the maximal, in the "best" sequence S' from the set   , 

expected number of matches   with the given sequence   ) can be found from the following 

equation:          , or  

(
   

  
)   (

   

  
)  

 

 
 (

 

   
)   ( ).     (3) 

 

2.2. Numerical estimates 

For       (typical of proteins),      (typical protein domain size) and  1.5×10
5
 (the number 

of spatial protein structures in the Protein Data Bank (PDB) in 2020, 

https://www.rcsb.org/stats/growth/growth-protein),      0.19 (see Table 1). For      ,      

and  1.9×10
8
 (the number of protein sequences in the UniProtKB database in 2020, 

https://academic.oup.com/nar/article/49/D1/D480/6006196),      0.23 (see Table 1).. Thus, the 

search for the highest similarity between a random 100 a.a.-long sequence and the about 1.5×10
5
 

PDB-stored protein chain sequences is expected to discover an approximately 19%-identical 

sequence; while a 23%-identical chain should be discovered among the about 1.9×10
8
 UniProtKB-

stored protein sequences (see the blue bar in Fig. 1). Such a sequence identity level is usually 

sufficient to ensure close (with RMSD1.70.5Å, see Ref. 4) similarity of 3D structures of the 

examined protein to its closest analog in the databases of 2020. 
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Table 1. The     values obtained from the solution of equation (3) at different values of   and   

          

any any 1   

50 0.05 10 0.97   = 0.13 

50 0.05 1000 1.53   = 0.21 

50 0.05 1.5×10
5
 2.00   = 0.27 

50 0.05 1.9×10
8
 2.41   = 0.33 

50 0.05 2×10
14

 3.39   = 0.46 

100 0.05 10 0.77   = 0.10 

100 0.05 1000 1.13   = 0.15 

100 0.05 1.5×10
5
 1.43   = 0.19 

100 0.05 1.9×10
8
 1.68   = 0.23 

100 0.05 2×10
14

 2.28   = 0.31 

200 0.05 10 0.64   = 0.09 

200 0.05 1000 0.88   = 0.12 

200 0.05 1.5×10
5
 1.07   = 0.15 

200 0.05 1.9×10
8
 1.23   = 0.17 

200 0.05 2×10
14

 1.61   = 0.22 

 

 

Figure 1. Structural divergence of homologous proteins plotted against the sequence identity (black 

symbols and curve, adapted from Ref. 4), and the expected ranges (colored bars, see explanations in 

the text) of residue identity for a "domain-size" (    ) random sequence to the most similar to it 

chain from UniProtKB and PDB databases of different years. The structural difference is measured 

by the root mean square deviations (Å) of the main-chain atomic positions of residues of the "protein 

cores" (comprising the main secondary structure elements and covering >90% of the chains with a 

≳50% residue identity, and 50% of the chains with a 20% residue identity) [4] that have been 

optimally superimposed. The sequence similarity is measured in the percentage of residues that are 

identical in the superimposed cores. Different black symbols refer to different protein families.  

 

So far, we compared sequences without considering possible insertions or deletions in them. 
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Since the best alignment of distantly related protein sequences of   100 a.a. residues usually 

requires two or three insertions or deletions of several residues [6-9], these insertions and deletions, 

together with a shift of one chain relatively to another, totally increase the number   of independent 

sequence comparisons by about 3–6 orders of magnitude; thus, the best expected (from Eq. (3)) 

identity of a 100-residue random sequence to "the most similar" to it database protein shifts from 

the minimal 19-23% to a more realistic 24-31% (see the yellow bar in Fig. 1). For the “half-domain” 

pieces of the chain this will be shifts even from the minimal 27-33% to a more realistic 34-46% (see 

Table 1). 

Equation (3) and Table 1show that the expected     value decreases with the increasing chain 

length  . However, one part of a long examined chain can match some part of one protein structure, 

while another part of this chain can match some part of another protein structure, and AlphaFold 2 is 

able to do a flexible docking of auch parts (J. Jumper, private communication) using co-evolutionary 

correlations and restrictions of sequences forming the contacting chain regions (as it does [1, 2] for 

contacts of remote regions within a continuous chain). This refers to the examined protein chains that 

cannot be recognized as a whole (and therefore their 3D structures should be considered as "novel 

folds"): their parts can have a sufficiently high sequence identity to match some parts of different 

proteins existing in the databases, and AlphaFolds are able to try docking of such parts (J. Jumper, 

private communication). 

 

Discussion 

With huge UniProtKB and PDB databases currently available, we can conclude that a "new" 

sequence whose 3D structure is to be identified, typically either has a 19-31% sequence identity to 

some protein whose 3D structure (or that of its close homolog) is already known, or can be divided 

into a few domain-size parts having the same 19-31% sequence identity to some parts of proteins 

whose 3D structures (or those of their close homologs) is already known, or even into several half-

domain-size parts having up to 27-46% sequence identity to some parts of proteins whose 3D 

structures (or those of their close homologs) is already known; and then these parts can be united by a 

flexible docking. The 19-31% sequence identity is typical [4] (Fig. 1) for the members of protein 

superfamilies whose structural divergence does not exceed 1.70.5Å, and 27-46% identity is typical 

for the members of protein superfamilies whose structural divergence does not exceed 1.20.3Å (see 

Fig, 1). 

Now we can answer the questions posed at the beginning of this paper. The main reason for the 

tremendous success of AlphaFolds is (in addition to great and skillful programming) the usage of 

huge protein databases, which already (as Cyrus Chothia predicted 30 years ago
 
[10]) seem to cover 
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all or almost all of the protein superfamilies existing in nature. Using such databases, multiple 

sequence alignments and the resulting coevolutionary information (like correlations in pairs [1] and 

especially in triplets [2] of a.a. residues of the contacting chain regions), AlphaFold recognizes a 3D 

structure framework [11] by a similarity of the examined a.a. sequence to related sequence(s) with 

already known 3D structure(s), and then only slightly (J. Jumper, private communication) refines the 

recognized 3D structure using conventional physical potentials and energy minimization. 

It is not out of place to mention that the results of the AlphaFold 2 program trained at the 

databases of 1994 (when the first CASP took place) would be far not as good as now, since databases 

of 1994 were much smaller: the Swiss-Prot (the ancestor of UniProtKB database) of 1994 only 

contained about 30000 sequences [12], and the PDB of 1994 about 1000 3D protein structures 

(https://www.rcsb.org/stats/growth/growth-released-structures). With these databases of 1994, the 

highest expected (after Eq. (3)) sequence identity for gapless  alignments of a 100-residue chain 

would be not 19-23%, as now, but only 15-19% (see the dark-gray bar in Fig. 1), which is below the 

"twilight zone" [5] where the sequence-based protein structure similarity is not so reliable. As for the 

alignments with insertions and deletions, we would have, in 1994, more "twilight" recognition with 

the expected sequence identity of 20-27% (instead of 24-31% of now). And it goes without saying 

that in 1974, when the first international assessment of protein structure prediction [13] took place, 

and only a dozen of protein 3D structures and a few thousand sequences were known, it would be 

hardly possible (see a low light-gray bar in Fig. 1) to recognize a protein structure by the AlphaFold 

programs. 

 

Conclusions 

The main reason for the tremendous success of AlphaFolds is a skillful usage of huge protein 

databases that have been collected over 60 years. Now they give a possibility to predict, or rather 

recognize protein spatial structures from their amino acid sequences without considering the process 

of protein folding [7, 14] that creates these structures. 

However, it should be noted that although the assumption that similar sequences have similar 

folds [4, 7] is practically 100% correct for natural proteins, some specially designed protein 

sequences demonstrate that there a directed mutation of only one special amino acid residue 

drastically changes the 3D structure and function [15], which makes the 3D structure recognition 

from the a.a. sequence in such a designed case rather problematic. 

It is also worth noting that AlphaFold 2 contains about 21×10
6
 adjustable parameters (J. Jumper, 

private communication), which is at least 1000 times higher than the number of parameters that are 

necessary to describe physics of protein chains, including all the pairwise
 
[7], triple, and even 
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quadruple [16] interactions of all atoms existing in proteins (but 21×10
6
 adjustable parameters is 

close in order of magnitude to the number of quantities needed to describe positions in all rotational 

and bending degrees of freedom in all 1.5×10
5
 protein structures presented in PDB in 2020). 

This 1000-fold excess shows the ratio of AlphaFold‘s effort spent on bioinformatics recognition 

based on similarity, and on predictions and refinements based on physics: the former is much greater. 

Concluding, I have to emphasize that this paper does not diminish the merit and utility of 

AlphaFold; it only explains the basis of its success. 
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