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 2 

ABSTRACT 23 

 24 

Advances in sequencing technologies have facilitated the genetic characterization of large numbers of 25 

clinical cancer samples, leading to accumulation of extensive amounts of data. While potentially very 26 

useful for directing research and for clinical decision making, the increasing quantity of data generates 27 

challenges in its optimal management, and translation to informing clinical and research questions. 28 

Here, we present Database Of Recurrent Mutations (DORM), a database listing recurrent mutations 29 

(tissue-agnostic population frequency > 1) identified from cancer samples analyzed with whole genome 30 

or whole exome sequencing. The DORM database is a fast and feature-rich database supporting 31 

searching for several proteins, amino acid substitutions as well as queries using regular expressions.  32 
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 3 

INTRODUCTION 33 

 34 

The fast-paced development of next-generation sequencing (NGS) technology and its use to 35 

study cancer specimens has led to an accumulation of large amounts of data and establishment 36 

of expansive databases that have propelled the discovery of predictive and therapeutic 37 

biomarkers for various cancers (Campbell et al. 2020). Large-scale sequencing efforts have 38 

pinned somatic mutations as the most common cause of human cancers (Martincorena and 39 

Campbell 2015). Mutations in several oncogenes are well-characterized driver events in 40 

various cancers, e.g. mutations in KRAS G12 residue in pancreatic and lung cancer (Hong et 41 

al. 2020), BRAF V600 in melanoma (Hauschild et al. 2012), and the EGFR L858 in lung 42 

cancer (Lynch et al. 2004; Paez et al. 2004). Despite  their frequent observations in the clinic, 43 

these hotspot mutations actually make up a small proportion of all the cancer-associated 44 

mutations and there are a large number of recurrent, but “non-hotspot” mutations (Chang et al. 45 

2016).  46 

Databases presenting cancer-associated mutations like COSMIC 47 

(https://cancer.sanger.ac.uk) (Tate et al. 2019), the ICGC data portal (https://dcc.icgc.org) 48 

(Zhang et al. 2011), AACR GENIE (https://genie.cbioportal.org) (The AACR Project GENIE 49 

Consortium 2017), and cBioportal (https://www.cbioportal.org/) (Cerami et al. 2012; Gao et 50 

al. 2013) present a well-designed interface that provides access to rich data. However, by 51 

design, these databases with comprehensive information use a significant amount of bandwidth 52 

as well as require multiple steps to access to key pieces of information, like the frequency of 53 

mutations and the affected amino acid residues. Especially, calculation of the latter requiring 54 

manual processing of the data, as there is no direct way to retrieve this information from any 55 

of these large databases.  56 
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 4 

We sought to solve these shortcomings and built a database of recurrent mutations using 57 

the large COSMIC cancer registry as a model. Our goal with this project was to develop and 58 

deploy a fast and lightweight web-tool to give the user a quick-and-easy way to check the status 59 

of a particular mutation of interest in cancer samples in an easy-to-understand format. In 60 

addition to direct time-savings, we believe initiatives like ours, help further cancer research 61 

and its global outreach by improving accessibility to well-summarized information. Moreover, 62 

we hope that our open-source framework enables applications to other public cancer registries 63 

and diversification to other frontiers of healthcare.  64 
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 5 

MATERIALS AND METHODS 65 

 66 

Website and web server 67 

The DORM database is accessible at https://eleniuslabtools.utu.fi/tools/DORM/Mutations/, 68 

and all requests to the server are handled by an NGINX reverse-proxy (https://nginx.org/) that 69 

encrypts the traffic between our server and the end-user’s web-browser. The connection is 70 

encrypted using the latest Transport Layer Security (TLS) cryptographic protocol 1.3 (Rescorla 71 

2018) and an industry standard 256-bit Advanced Encryption Standard (AES-256) (National 72 

Institute of Standards and Technology 2001). Additionally, as a fallback,  the server of DORM 73 

also supports connections over TLS 1.2 to support legacy hardware and browsers. The landing 74 

page website and the documentation is built using HTML5, CSS and JavaScript. The web tools 75 

are built using Shiny (Chang et al. 2021) and R (R Core Team 2018). These services are hosted 76 

on a virtual private server at the premises of University of Turku, Turku, Finland. The source 77 

code for deploying DORM as an R Shiny app is available at 78 

https://github.com/dchakro/DORM_Mutations repository. 79 

 80 

Hardware 81 

Database processing & analysis: Apple iMac (early 2013) equipped with Intel Core i5 CPU (4 82 

cores – 3.2 GHz), 24 GB DDR3 RAM, 500 GB SSD running macOS Catalina 10.15. 83 

Server: Virtual private server (KVM virtualization) with Intel(R) Xeon(R) Gold 5120 CPU (1 84 

core – 2.20 GHz), 6 GB ECC RAM, 100 GB HDD running Ubuntu 18.04 LTS. 85 

Web performance testing: Apple MacBook Pro (early 2015) equipped with an Intel Core i5 86 

CPU (2 cores – 2.7 GHz), 8 GB DDR3 RAM, 500 GB SSD running macOS Catalina 10.15. 87 

The device was connected via a 5 GHz Wi-Fi router to the public ISP (i.e., outside the network 88 

where the DORM database is hosted) over a 100 Mbps fiber optic broadband connection. 89 
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 90 

Data and processing of data 91 

Data were acquired from COSMIC release v95 (released November 24, 2021 92 

https://cancer.sanger.ac.uk) as a GNU zip (GZIP) archive of the tab-delimited text file with all 93 

mutations identified from genome-wide screens (includes data from whole genome 94 

sequencing, and whole exome sequencing). The samples from targeted screens were excluded 95 

to ensure our analysis is free from selection bias and so that, for a particular tissue, the 96 

frequency of mutations between different proteins can be compared directly. 97 

Pre-processing: The decompressed data (16.03 GB) is processed using the "awk" programming 98 

language (Aho, Kernighan and Weinberger 1988) to select relevant columns (named, Gene 99 

name, Sample name, Primary site, Primary histology, Genome-wide screen, Mutation CDS, 100 

Mutation AA). This step reduces the size of the data matrix by ≈80%, thereby, decreasing the 101 

computation time and computational resource requirements for the downstream analyses. The 102 

selected columns were read in R by using the data.table::fread() function (Dowle and 103 

Srinivasan 2021). The complete database was stored as standard R object in the .RDS file 104 

format, with a notable difference: instead of saveRDS from R “base”, which uses serialized 105 

compression, parallelized GZIP (pigz: https://zlib.net/pigz/) was used for compression – 106 

decompression. This enabled usage of multiple CPU threads to speed up the read-write 107 

operations, and in our case was limited by disk I/O. The functions for reading-writing R objects 108 

in .RDS files using parallelized compression-decompression are described in this R script. 109 

Filtering: The duplicate entries for mutations attributed to ENSEMBL transcripts (n = 30.8 x 110 

106) were removed (Supplementary Figure S1). Mutations with unknown consequences on the 111 

protein level (n = 8.8 x 106) were removed, leaving 6.4 x 106 coding alterations. From these, 112 

silent mutations (n = 1.5 x 106) i.e., nucleotide substitutions leading to no changes at the amino 113 

acid level (this phenomenon happens due to codon degeneracy (Watson et al. 2007)) were 114 
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 7 

removed (Supplementary Figure S1). To retain only unique entries, a mutation ID was created 115 

using the sample name, protein name and the amino acid change. Samples with duplicate 116 

mutation IDs (n = 78,569) were removed (Supplementary Figure S1). The filtered database 117 

with unique coding mutations (n = 4.8 x 106) were stored as a parallelized GZIP .RDS file, 118 

enabling faster load times. Searching and parsing of the text was done using the ‘stringi’ R 119 

package (Gagolewski 2021). 120 

Processing: Mutations with single occurrences (i.e., frequency = 1) were removed (n = 2.9 x 121 

106) from the list of unique coding mutations, as they are not part of the pool of recurrent 122 

mutations. For each mutation, its cumulative frequency of occurrence, as well as its frequency 123 

in cancers of various tissues, was calculated and compiled into a table. The table was sorted by 124 

mutation frequency (total number of samples across all cancers) and then stored as a 125 

parallelized-GZIP .RDS file. 126 

Updates: Since 2004, marking the release of COSMIC v1, the dataset has been updated on 127 

average four times per year (range: 11 releases in 2006 and two releases in 2020). The COSMIC 128 

data releases need to be acquired from (https://cancer.sanger.ac.uk), then our optimized 129 

pipeline can be run with a shell script that automates the processing and generation of the 130 

underlying database for DORM. 131 

 132 

Benchmarking and testing performance 133 

To evaluate the performance of different code blocks, the ‘microbenchmark’ R package 134 

(Mersmann 2021) was used to gather data. The data were graphically represented using 135 

Graphpad Prism 9. Statistical testing comparing multiple groups was performed using Brown 136 

Forsythe and Welch ANOVA test and correction for multiple testing was done by controlling 137 

the false discovery rate using the two-stage step-up method of Benjamini, Krieger and 138 
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Yekutieli (Benjamini, Krieger and Yekutieli 2006) in Grahpad Prism 9. Statistical testing 139 

comparing two groups of observations was done using Welch’s t-test in Grahpad Prism 9. The 140 

code blocks used for testing and benchmarking their performance is available at 141 

https://github.com/KE-group/DORM-2022 repository. 142 

The performance of the websites hosting the databases was measured on Google 143 

Chrome (v. 97.0.4692.99) with Google Lighthouse (v. 8.5.0) (available in Chrome DevTools). 144 

Lighthouse (https://github.com/GoogleChrome/lighthouse) is an open-source tool for 145 

automated auditing and assessing performance metrics. A search for EGFR mutations was done 146 

on the five databases (DORM, COSMIC, ICGC, cBioPortal and AACR GENIE), and links 147 

(Supplementary Table 1) to those individual searches were used to test the performance of the 148 

databases. This was done to discount the varying duration required to do the same search on 149 

the four databases. Lighthouse 8 produces a performance score which is a weighted average of 150 

First Contentful Paint (10%, marks the time at which the first text or image is painted), Speed 151 

Index (10%, shows how quickly the contents of a page are visibly populated), Largest 152 

Contentful Paint (25%, marks the time at which the largest text or image is painted), Time to 153 

interactive (10%, the amount of time it takes for the page to become fully interactive), Total 154 

Blocking Time (30%, measures the total amount of time that a page is blocked from responding 155 

to user input), and Cumulative Layout Shift (15%, measures the unexpected movement of page 156 

content). The JSON data in the lighthouse reports was parsed using the ‘jsonlite’ R package 157 

(Ooms 2014) and tabulated in R. The data were graphically represented using Graphpad Prism 158 

9. Statistical testing comparing multiple groups was performed either using Brown Forsythe 159 

and Welch ANOVA test or Kruskal-Wallis test. Correction for multiple testing was done by 160 

controlling the false discovery rate using the two-stage step-up method of Benjamini, Krieger 161 

and Yekutieli (Benjamini, Krieger and Yekutieli 2006) in Grahpad Prism 9. 162 

  163 
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 9 

RESULTS 164 

 165 

Optimizing R code for speed and efficiency 166 

In order to maximize the efficiency throughout our pipeline, we benchmarked common 167 

workflows that can be used to resolve the computation bottlenecks. There are several packages 168 

for reading data into R, and we discovered that data.table::fread() function offered the 169 

best performance in reading both small and big (tested with 105 rows) tables. In our tests, 170 

data.table::fread() was faster (q < 0.0001) than base::read.table() in reading 171 

files containing 103 and 105 rows (Supplementary Figure S2 A-B). As intended by the 172 

developers of the ‘readr’ and ‘vroom’ package, their individual functions for reading TSV files 173 

were faster than fread for large files (q < 0.001), but, they were slower by a factor of 16-20 for 174 

smaller files (q < 0.0001) (Supplementary Figure S2 A-B). Furthermore, the data.table 175 

implementation of generating a frequency table was more efficient (q < 0.0001) than 176 

alternatives like base::table() and plyr::count() (Supplementary Figure S2 C). 177 

Consequently, we used data.table as the background framework for reading and managing 178 

tabular data throughout our analysis pipeline, as well as in the backend of the R Shiny web tool 179 

for DORM.  180 

Filtering a large database requires extensive use of search, and the search-replace 181 

functionality is required for parsing and cleaning up data fields. We found that alternatives 182 

from ‘stringi’ were faster than their counterparts in R base (P < 0.0001) (Supplementary Figure 183 

S2 D) in carrying out these operations. Furthermore, in comparison to base::grep(), we 184 

observed considerable improvements in speed (500-fold reduction, q < 0.0001) by using GNU-185 

grep for searching the data (stored on disk) server-side when a query was received by the R 186 

Shiny web tool (Supplementary Figure S2 E). Therefore, the fastest approach to process the 187 

search queries (entered by a user in the interface), was to execute the search using GNU-grep 188 
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 10 

on the DORM database (stored in plain text) and read the output in R. This intermediate file 189 

containing the search results is deleted after being read in R (to plot and display the results on 190 

the user’s browser) to uphold the user's privacy. 191 

With large datasets, parallel computation, is known to improve performance (Nagurney 192 

1996). Indeed, even with our limited four CPU-core (x86-64 architecture) setup, we observed 193 

performance improvements by using a parallelized version of the code. The gathered data 194 

indicated that parallelizing appropriate repetitive tasks with constructs such as 195 

foreach::foreach() and parallel::mclapply(), offer significant reductions in 196 

processing time (Supplementary Figure S2 F). The mclapply() implementations were the 197 

fastest methods across our range of tested number of operations (range: 600 – 60000) 198 

(Supplementary Figure S2 F). It is noteworthy that, in case of the foreach package, the gains in 199 

performance were dependent on the size of data, i.e., with smaller loops (600 operations) set 200 

significant overheads were incurred while setting up an environment for parallel processing 201 

(Supplementary Figure S2 F). Additionally, similar improvements were observed by 202 

parallizing the operations of saving and loading the standard .RDS file format in comparison 203 

to base::saveRDS() and base::readRDS() methods (Supplementary Figure S2 G-H). 204 

 205 

Contemporary databases are slow and resource intensive 206 

One of the primary goals of DORM was to display the desired statistics and results faster than 207 

the contemporary databases like COSMIC, the ICGC data portal, cBioPortal and AACR 208 

GENIE data portal. To this end, Google Lighthouse was used to benchmark the performance 209 

of these databases and compare it to that of DORM to understand an end-user’s experience. 210 

DORM scored better than all the four databases (mean score for DORM: 84.7, COSMIC: 43.2, 211 

ICGC: 24.5, cBioPortal: 21, GENIE: 20.83) (Figure 1 A). In addition to taking the lowest time 212 

to become fully interactive (Figure 1 B), DORM was the only database that had zero seconds 213 
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 11 

of blocking time (i.e., DORM remained responsive to user input) (Figure 1 C). Regarding 214 

client-side memory management, DORM had the lowest peak RAM usage (Figure 1 D), and 215 

the lowest RAM usage after garbage collection (i.e., after the browser was left to idle for 2 216 

minutes) (Supplementary Figure S3 A) among the tested databases. Lighthouse performance 217 

score is a weighted mean of six individual parameters, namely, First Contentful Paint, Speed 218 

Index, Largest Contentful Paint, Time to interactive, Total Blocking Time, Cumulative Layout 219 

Shift, (details described in the materials & methods section titled “Benchmarking and testing 220 

performance”). The individual observations are plotted in Figure 1 B-C and Supplementary 221 

Figure S3 B-E. 222 

 223 

Identifying recurrent coding mutations after eradicating duplicate entries 224 

All the major cancer databases (like COSMIC, cBioPortal, GENIE) which source information 225 

from multiple institutions share the common problem of mutations being reported multiple 226 

times due to same samples being included in different publications and/or studies. To counter 227 

this rampant issue of duplicate entries, we devised a mutation ID by using a combination of 228 

sample name, the protein name and the amino acid change and used it to remove the entries 229 

with duplicate mutation IDs. From the list of genuine coding mutations, COSMIC v95 had 230 

78,569 duplicates, constituting 1.60 % of the filtered coding mutations (Supplementary Figure 231 

S1). After filtering out the non-recurrent mutations (i.e., mutations with a tissue-agnostic 232 

population frequency of 1), the data consists of 1,887,757 recurrent mutations which are 233 

comprised of 673,033 individual mutations (Supplementary Figure S1).  234 

Interestingly, some samples (n = 1,207) in the dataset exclusively harbor non-recurrent 235 

coding mutations (Supplementary Figure S4 A), and overall, these individual samples belong 236 

to cancers of hematopoietic and lymphoid tissues, kidney, and autonomic ganglia 237 

(Supplementary Figure S4 A) and have very few coding mutations (range: 1 to 43 mutations 238 
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per sample) (Supplementary Figure S4 B). On average, out of the total number of mutations 239 

across the 39 tissues included in the analysis, 39.1% of the mutations were recurrent (i.e., 240 

tissue-agnostic population frequency >1) in nature (Supplementary Figure S4 C). The highest 241 

percentage of recurrent mutations could be found in penile cancers (92.6%, n = 1,195 242 

mutations; sample size = 10), thyroid cancers (89.6%; n = 139,883 mutations; sample size = 243 

989) and meningeal malignancies (56.1%; n = 2,401 mutations; sample size = 163) 244 

(Supplementary Figure S4 C). The largest number of non-recurrent mutations were in cancers 245 

of the skin, large intestine, and lungs and together these contribute 48.5% of all the non-246 

recurrent mutations. However, this was expected, as the samples from these three tissues also 247 

contribute a total of 46.6% of all the coding mutations in the dataset (Supplementary Figure S4 248 

C).  249 

The median mutational load (defined as the number of mutations per sample) in the 250 

dataset was 42 mutations/sample (mean (µ): 141, IQR: 81), with several outliers in different 251 

cancer types (Supplementary Figure S4 D). On average, samples from cancers of the 252 

endometrium (µ = 564), skin (µ = 508), and placenta (µ = 393) had the highest mutation load 253 

while samples from the autonomic ganglia (µ = 16), eye (µ = 16.8) and the adrenal gland (µ = 254 

19) had the lowest (Supplementary Figure S4 D).  255 

 256 

Top recurrent mutations  257 

Among the 100 most-recurrent mutations, the highest number of mutations are reported in 258 

TP53 (number of variants [n] = 19, frequency in cohort [ν] = 3,779), followed by KRAS (n = 259 

9, ν = 3,006), PIK3CA (n = 6, ν = 1,808), BRAF (n=1, ν = 1,432), and NRAS (n=5, ν = 773) 260 

(Figure 2). Among these 100 recurrent mutations, 19 mutations (ν = 9,438) were in oncogenes, 261 

and 11 mutations (ν = 5,349) in tumor suppressor genes. The top three recurrent mutations 262 
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were the amino acid substitutions BRAF V600E (ν = 1,432), KRAS G12D (ν = 977) and KRAS 263 

G12V (ν = 784) (Figure 2). 264 

 The survey of the cancer genomes, conducted here, was free from the selection bias that 265 

is introduced with targeted panels and selected sequencing. Although, while those are cost-266 

effective strategies to identify driver and predictive mutations for cancers of selected 267 

histologies, they cause an over-representation of genes (and mutations in those genes) that are 268 

included in the selected panels which masks the true frequency of mutations in tumor tissues. 269 

This disparity was evident by the fact that EGFR L858R, the hotspot driver mutation in lung 270 

adenocarcinoma, ranked 84th (ν = 75) in the list of most frequent amino acid substitutions 271 

(Figure 2). By contrast, it ranks 6th (ν = 10,631) when data from the targeted screens are also 272 

incorporated in computation of population frequencies. 273 

 274 

Website to browse the recurrent mutations 275 

The processed database is hosted on a web server at the University of Turku and can be 276 

accessed at the URL https://eleniuslabtools.utu.fi/tools/DORM/Mutations (Figure 3). On 277 

receiving a connection request, the Shiny (https://shiny.rstudio.com/) web server spawns a new 278 

instance and displays the 50 mutations with the highest rate of recurrence. At the top of a page, 279 

there is a plot panel that consists of two dynamic plots that are updated in real-time in response 280 

to the user’s search queries. The bar plot on the left shows the cumulative frequency of the 281 

individual recurrent mutations in the population (Figure 3 A). The bar plot on the right shows 282 

the 25-most frequently mutated proteins across all the samples for the selected tissue (Figure 3 283 

B). The plot is rendered as a high-resolution image in the user’s web browser in accordance 284 

with the browser’s dimensions and can be saved as an image straight from the browser. Query 285 

term(s) can be entered in the search bar (Figure 3 C), which updates the results in the table 286 

(Figure 3 D) showing the protein, the mutation, the aggregate frequency in the population, and 287 
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the frequencies categorized by the primary site of the cancer. The results displayed in the table 288 

can be readily copied to a spreadsheet. Next to the search bar, there is a dropdown menu (Figure 289 

3 E) to limit the number of results displayed in the table and the plot. The search or browsing 290 

can be restricted to a particular tissue from the menu (Figure 3 F). In addition to a button to 291 

reset the website and various parameters to their default value (Figure 3 G), there is a button to 292 

generate a direct link to a particular search (Figure 3 H). Clicking this button opens a dialog 293 

box (shown in Figure 3 I), with the link that can be used to perform the same search with the 294 

exact selected parameters. Clicking this button saves the search term(s) and the set parameter(s) 295 

anonymously on our server (i.e., no identifiable information is stored). Links like these 296 

facilitate sharing of the results, in addition to making it easy to repeat a search without having 297 

to enter the terms and set the parameters manually. 298 

 299 

Searching the database 300 

The user can search the database with terms such as “KRAS” (protein symbol), “V600E” (exact 301 

mutation), or “L858” (amino acid residue). The functions implemented in R and Shiny for 302 

searching the data were slow and unable to process a multi-term search query like “KRAS 303 

G12”. To facilitate this, a custom search function was written where a multi-term search query 304 

gets decomposed into constituent terms and the database is searched with GNU-grep 305 

(https://www.gnu.org/software/grep/) in a hierarchical manner. For instance, the server 306 

processes the above-mentioned search query by first shortlisting all the mutations in KRAS, 307 

then selecting only the mutations at the residue Gly 12. The search results are subsequently 308 

read and processed in R. Simultaneously, the plot panels are redrawn to correspond to these 309 

results and the user’s browser is updated with the search results. Depending on the search 310 

complexity and the number of results to be displayed, all of this computation happens within 311 
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fractions of a second and the results are transmitted securely (TLS encryption) to the user’s 312 

web browser. 313 

 Circumstantially, when the search results consist of just a single protein (like “KRAS 314 

G12” mentioned above), the plot in the right panel changes to a bar plot showing the 315 

distribution of the tissues harboring the specific mutation(s) (Figure 4 A) that are displayed in 316 

the table. On the other hand, when a search result contains several proteins, the plot in the right 317 

panel changes to a pie showing the distribution of mutations in those proteins (Figure 4 B). 318 

 319 

Advanced search using regular expressions 320 

The search bar (shown in Figure 3 C) in the DORM database supports advanced search using 321 

regular expressions. Regular expressions are an important tool in computational and data 322 

science and have been around since their inception in the 1950s (Kleene 1956). Regular 323 

expressions are a sequence of characters that define a set of strings and are a core component 324 

of almost all modern programming languages. In bioinformatics, regular expressions have been 325 

used in a myriad of diverse applications like establishing databases (Bairoch, Bucher and 326 

Hofmann 1997), determination of motifs from aligned protein sequences (Huang 2001), and in 327 

performing multiple sequence alignments (Arslan 2005). The language of regular expressions 328 

is known to have several dialects (i.e., syntax) (Zheng et al. 2021), and DORM supports the 329 

UNIX POSIX style regular expressions (IEEE and The Open Group 2018). A brief description 330 

and examples are presented here: 331 

1) The pipe, i.e., | symbol, can be used for either-or clause, e.g., ‘ERBB|EGFR’ lists 332 

mutations in proteins EGFR, ERBB2, ERBB3 and ERBB4. 333 

2) The square brackets, i.e., [ABC] structure, can be used to specify inclusions, e.g., 334 

‘NRG[1-4]’ matches only the four of the Neuregulin ligands (NRG1, NRG2, NRG3, 335 

and NRG4). On the other hand, if we want to exclude results that can be done with 336 
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[^abc] construct, e.g., ‘ERBB[^4]’ only matches ERBB2 and ERBB3 among the 337 

ERBB proteins leaving out ERBB4. 338 

3) Word boundaries can be set with \< and \> operators, e.g., ‘RAS\>’ matches all 339 

the proteins ending in ‘RAS’. 340 

4) Match length modifying operators like *, ?, +, and {m,n} are used to specify zero or 341 

more, at most one, at least one, or repetition for at least m times and at most n times 342 

respectively. 343 

With the help of these regular expression operators one can formulate complex queries; 344 

for instance, if we are interested in searching the entire EGFR family of proteins (Yarden 2001) 345 

with one query, we can use a specific query like this: 346 

‘ERBB[234]|[HB]{0,1}EGF[R]{0,1}\>|NRG[1-4]|\<EP[GR]\>|AREG|BTC|TGFA’ 347 

In the human protein repertoire, this regular expression matches the four receptors from 348 

the ERBB-family EGFR, ERBB2, ERBB3, ERBB4, and their eleven ligands AREG, BTC, 349 

TGFA, NRG1, NRG2, NRG3, NRG4, EGF, HBEGF, EPG and EGR; and nothing more (Figure 350 

4 C). 351 

  352 
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DISCUSSION 353 

 354 

Next-generation sequencing (NGS) of cancer sample series has enabled more accurate 355 

understanding of cancer biology and helped to identify new predictive and therapeutic 356 

biomarkers. Here, we present DORM, a fast (Figure 1 and Supplementary Figure S3) and 357 

feature-rich (Table 1) web tool, which allows browsing its database that is derived from an 358 

unbiased analysis of somatic mutations identified by whole genome or whole exome NGS 359 

(consists of 91% of the coding mutations present in the COSMIC v95 data release). This 360 

strategy avoids encounters with the ill-effects of the selection biases that are introduced with 361 

the use of targeted NGS panels.  362 

In addition to be performant and fast (Figure 1 and Supplementary Figure S3), DORM has 363 

several advantages (Table 1), most notably the ability to directly search for sets of proteins and 364 

use regular expressions. Additionally, DORM is the only database that can summarize the 365 

mutations at an amino acid residue level, (this feature is accessible by clicking “DORM-366 

Residues” link at the top of the page) (direct link: 367 

https://eleniuslabtools.utu.fi/tools/DORM/Residues/). Data from all other databases requires 368 

manual processing to retrieve this information. DORM is also the only database to allow the 369 

user to view a large amount of the data without having to click through numerous pages of 370 

results (on DORM, users can choose from a range of 10-10000 results to display). DORM is 371 

also the only database that is free of cookies, trackers, and any embedded analytics. 372 

COSMIC, cBioPortal and AACR Genie feature duplicate entries, while DORM and 373 

ICGC do not. Individual mutations, like KRAS G12C, can be directly searched on DORM as 374 

well as COSMIC. The cBioPortal, and the AACR GENIE (based on the cBioPortal user 375 

interface) do not offer the users to limit the search to specific tissues. On ICGC the 376 
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implementation is similar to DORM (i.e., requires selection from a menu), but on COSMIC the 377 

user has to click the tissue from a table in the “Tissue distribution” section. 378 

In the quest for speed and performance, certain compromises had to be made that 379 

constitute the limitations of DORM (Table 2). For instance, DORM does not incorporate or 380 

display the information about copy number variations or structural variations and has stripped 381 

all the detailed sample- and study-level information. Like some other databases in our 382 

comparison, DORM also doesn’t display fusions or non-coding mutations, allow selecting 383 

multiple tissues, and display a lollipop diagram which are a nice tool that place the mutations 384 

in context of the primary sequence of the proteins. 385 

DORM is lightweight, and, by using our open-source codebase (see methods for links 386 

to the repositories), it can be run on normal consumer hardware. DORM is publicly available 387 

on a virtual private server that allows us to scale up the resources with an increase in demand. 388 

We believe that DORM can improve accessibility of the important information about recurrent 389 

mutations by being faster and by consuming lesser resources than the competition.  390 
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Fig. 1

Figure 1. Comparison of databases and the performance of their websites.
A search for EGFR mutations was done on each database, and the individual links for that search were used
to test the performance of the databases with Google Lighthouse running on Google Chrome web browser.
Scatter plots indicating mean and standard deviation of 3 to 6 observations for A) Lighthouse performance
score B) Time to interactive (y-axis in seconds) C) Total blocking time (y-axis in seconds) D) Peak memory
(RAM) usage by the web pages (y-axis in Megabytes).

A

DO
RM

cB
ioP
ort
al

CO
SM

IC
IC
GC

GE
NI
E

0

20

40

60

80

100

Database

Pe
rfo
rm
an
ce
Sc
or
e

<0.0001

<0.0001

<0.0001

<0.0001

B C D

DO
RM

cB
ioP
ort
al

CO
SM

IC
IC
GC

GE
NI
E

0

5

10

15

20

Database

To
ta
lB
lo
ck
in
g
Ti
m
e

(s
ec
on
ds
)

<0.0001

0.0143

<0.0001

<0.0001

DO
RM

cB
ioP
ort
al

CO
SM

IC
IC
GC

GE
NI
E

0

200

400

600

800

1000

Database

Pe
ak
RA
M
us
ag
e

(m
eg
ab
yt
es
)

0.0018

0.0323

0.0131

0.0131

DO
RM

cB
ioP
ort
al

CO
SM

IC
IC
GC

GE
NI
E

0

10

20

30

40

Database

Ti
m
e
to
in
te
ra
ct
iv
e

(s
ec
on
ds
)

0.0004

0.0001

0.0002

<0.0001

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.21.517363doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517363
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 2

Figure 2. Distribution of top 100 recurrent mutations.
Bar plots showing the top 100 most-frequently mutated proteins in the genome-wide somatic mutation data
from COSMIC release v95. The top 20 mutations are listed in the table on the right, and the mutations in
oncogenes are colored in red and the mutations in tumor suppressors are colored in green.
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Fig. 3

Figure 3. User interface for DORM : Database Of Recurrent Mutations.
The default GUI of DORM, which hosted at https://eleniuslabtools.utu.fi/tools/DORM/Mutations/, shows
the information about top 50 most-recurrent mutations identified from genomes of cancer samples. A)
Dynamically updated bar plot, responds to search queries, and settings of dropdown menus in "E" and "F".
B) A bar chart showing the 25-most frequently mutated genes (color gradient) across all the samples in the
selected tissue (can be changed from menu "F"). The "Others" bar represents the percentage of samples not
containing mutations in any of the top 25 genes (bars with color gradient). C) The search bar can be used
to query the database with several terms, as well as, regular expressions; an example is displayed in gray
text. D) Table showing the protein name, mutation (displayed as amino acid change), the number of
samples with that exact mutation, and the breakdown of the sample count by primary site of the cancer. E)
Dropdown menu can change the number of records displayed in the table "D" and plotted in the bar plot
"A". F) Dropdown menu to limit the search to a specific tissue type. G) Button to reset the website and
various parameters to their default values. H) Button to generate a direct link to repeat a search with the
exact search terms and parameters. Clicking this opens the dialog box "I" which shows the link. I) Dialog
box showing the direct link which can be used to conduct the exact search again without having to manually
enter search term(s) and set the parameters.
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Fig. 4

A

C

B

Figure 4. Dynamic plots in response to search results.
Based on the context of the search results, DORM automatically generates these specific plots.
A) If the search results (bar plot on the left) consists of just one protein (example results shown here for the
query term KRAS G12), the bar plot on the right is updated to show the frequency of mutations in that
protein in cancers of various tissues (x-axis).
B) If the search results contain multiple proteins (query: EGFR, ERBB), a pie chart is displayed with the
slices in the pie representing the proportion of mutations that can be attributed to the individual proteins.
C) The distribution of search results when using a regular expression to search the database:
ERBB[234]|[HB]{0,1}EGF[R]{0,1}\>|NRG[1-4]|\<EP[GR]\>|AREG|BTC|TGFA. This
regular expression matches the four receptors and eleven ligands in the Epidermal Growth Factor Receptor
family of proteins.
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Fig. S1

Figure S1. Filtering scheme to isolate recurrent mutations from COSMIC data.
Out of 46 million mutations, 30.8 million mutations were removed as they can be attributed to duplicate
transcripts of genes. 8.89 million mutations with unreported / unknown consequence were removed. 1.53
million silent mutations were removed, which do not produce any change in the protein. Subsequently,
78,569 duplicate records were removed as they are present due to incorporation of some samples in
multiple studies. After this filtering process, 4.82 million unique coding mutations that remained were
processed to create the DORM database which summarizes the 1.88 million recurrent mutations (mutations
with tissue-agnostic population frequency >1).
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Fig. S2

Figure S2. Comparison of strategies and methods for performing various computational operations.
Scatter plots showing mean and standard deviation for A-B) Different R packages for reading a tab-
separated value (TSV) file or 1000 rows (shown in A) and 100,000 rows (shown in B). C) Various
approaches of generating a frequency table. D) Searching for a regular expression (pattern:
[ACDEFGHIKLMNPQRSTVWYX]?[0-9]+) using R base and stringi package. E) Searching the data with
a regular expression (pattern: EGFR|ERBB[2-4]|[HKN]RAS\>) using the indicated methods. For
giving the functions in R the best chance, the data was preloaded in the R outside the code for timing the
benchmark. F) Comparing various looping constructs for 600, 6000 and 60000 operations, for and lapply
are serialized loops, foreach and mclapply are their parallel alternatives. G) Writing an R object containing
a table (1 million rows) as an RDS file with either the R base serialized version or our custom parallelized
version using 'pigz' for compression. H) Reading an RDS file (written with our parallel version of saveRDS)
with the R base serialized version or our custom parallelized version using 'pigz' for decompression.
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Fig. S3

Figure S3. Comparison of databases and the performance of their websites.
A search for EGFR mutations was done on each database, and the individual links for that search were used
to test the performance of the databases with Google Lighthouse running on Google Chrome web browser.
Scatter plots with mean and standard deviation for 3 to six observations for A) Memory (RAM) usage after
garbage collection (browser idling for 2 minutes) while browsing the indicated databases (y-axis in
Megabytes) B) First contentful paint (y-axis in seconds) C) Largest contentful paint (y-axis in seconds) D)
Speed index (y-axis in seconds) E) Cumulative layout shift.
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Fig. S4

Figure S4. Distribution of mutations across samples included in the analysis.
A) Bar chart showing the number of samples harboring at least one recurrent coding mutation, or samples
having only unique coding mutations. Recurrent coding mutations are defined as protein sequence-altering
mutations with a tissue-agnostic population frequency > 1. Samples are categorized by primary site of the
cancer (x-axis).
B) Dot plot showing the mutational load of individual samples (n = 1,207) harboring only unique coding
mutations (n = 4,077) (i.e., samples comprising the gray part of the bars in panel A). Samples are
categorized by primary site of the cancer (x-axis).
C) Distribution of the individual coding mutations categorized by the primary site of the cancer, showing
the total number of mutations, the number of unique (mutations never observed in any other sample (tissue-
agnostic) in the dataset) and recurrent mutations (tissue-agnostic population frequency > 1), and the
proportion of the recurrent mutations from the total number of mutations are shown as a percentage.
D) Dot plot showing distribution of mutational load (y-axis in log scale) in samples (n = 35,462). Each point
represents a sample. Red horizontal line shows the mean mutational load for samples of different primary
sites of the cancer (x-axis). NS = tissue is not specified.
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Searching & querying DORM COSMIC ICGC cBioportal AACR 
Genie Comment

Protein Yes Yes Yes Yes Yes

Individual Mutations (e.g. KRAS G12C) Yes Yes Yes * Yes * Yes *
cBioPortal & Genie require searching for the gene 
and then the mutation. ICGC requires clicking the 
mutation from a list of results in a dropdown menu.

Protein sets Yes No No Yes Yes
Tissues Yes Yes Yes No No

Regular expression Yes No No No No
Substring search (searching for RAS shows 

HRAS, KRAS, NRAS, etc.)
Yes Yes Yes No No

Comment
Direct link to save and share search results Yes Yes Yes Yes Yes

Summarize by Residue Yes No No No No
cBioPortal Lollipop occasionally groups hotspot 

mutations at a residue as a single lollipop.
Duplicate samples No Yes No Yes Yes

Display most recurrent mutations for a tissue 
or protein set

Yes No Yes No No

Show frequency of a protein being mutated 
in various tissues

Yes Yes * No Yes No Possible on COSMIC Cancer Browser.

Number of rows displayed in table 10-10000 10-100 10-50 25 25
Free from cookies, trackers and/or analytics Yes No No No No

Additional features

Table 1: Comparison of features between DORM and other public databases presenting somatic mutations identified from cancer samples. An asterisk indicates a 
caveat; which is clarified in the corresponding comment column.
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Limitations of DORM DORM COSMIC ICGC cBioportal AACR 
Genie Comment

Copy number variations & 
Structural variations

No Yes Yes Yes No

Show Lollipop diagram for 
locating mutations on peptide

No * No Yes Yes No DORM shows the distribution of mutations in a 
single protein in different tissues with a pie chart.

Show detailed information 
(sample and study level)

No Yes Yes Yes Yes

Non coding mutations No Yes Yes No No
Fusions No Yes No Yes Yes

Select multiple tissues No Yes * Yes Yes No Possible on COSMIC Cancer Browser.

Data download No Yes Yes Yes No

Table 2: Limitations of DORM in comparison to other public databases presenting somatic mutations identified from cancer samples. An asterisk 
indicates a caveat; which is clarified in the corresponding comment column.
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