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Abstract

Effort-based decisions, in which people weigh potential future rewards against effort costs required
to achieve those rewards, have largely been studied separately for cognitive or physical effort, yet most
real world actions incur both cognitive and physical effort costs. What is the relationship between
cognitive and physical effort costs? Here we attempt to formalize the mechanisms underlying effort-
based decisions and address methodological challenges to isolate and measure the factors contributing
to such decisions (including sensitivity to reward and effort costs).

Patch foraging is an ecologically valid reward rate maximization problem with well developed the-
oretical tools to understand choices. We developed the Effort Foraging Task to isolate and quantify
the cost of both cognitive and physical effort using a computational model. We embedded cognitive
or physical effort costs into a patch foraging sequential decision task. Participants chose between
harvesting a depleting patch, or traveling to a new patch that was costly in time and effort. Partici-
pants’ exit thresholds (reflecting the reward they expected to receive by harvesting when they chose
to travel to a new patch) were sensitive to cognitive and physical effort demands, allowing us to
quantify the perceived effort cost in monetary terms. Individual differences in cognitive and physical
effort costs were positively correlated, suggesting that these are perceived and processed in common
terms across different domains. We found patterns of correlation of both cognitive and physical
effort costs with self-reported cognitive function, anhedonia, depression, anxiety, and fatigue. This
suggests that our task captures decision mechanisms closely associated with real-world motivation,
and can be used to study individual variation in effort-based decisions across different domains of
cost.

1 Introduction

People make effort-based decisions every day, weighing the potential rewards associated with an action
against the effort it requires. Economic utility theories guide researchers’ understanding of these choices:
people seek to maximize reward while minimizing effort, which can be accomplished by computing an
‘expected value’ of effort (Shenhav et al., 2013; Shenhav et al., 2017). In these theories effort is described
as costly, since it reduces the value of rewards. Evidence from cognitive psychology and neuroscience
consistently shows that people factor effort into their decisions and that individuals approach tradeoffs
between rewards and effort differently (Chong et al., 2016; Salamone et al., 2018; Treadway et al., 2012;
Walton et al., 2007). Individuals choose to avoid environments with a higher demand for task switches
(Kool et al., 2010) and are willing to forgo rewards to avoid tasks that impose a higher working memory
load (Westbrook et al., 2013). Other studies have shown that participants can increase the amount of
cognitive effort they exert with increased incentives, but generally hold back from doing so (Botvinick &
Braver, 2015; Padmala & Pessoa, 2011).

Achieving many goals depends on the exertion of both cognitive and physical effort. For example
you might need to plan a route to a reward (cognitive effort) and then walk there (physical effort).
Research tends to treat cognitive and physical effort costs separately. However, real-world actions involve
multiple types of costs including the cognitive and physical effort, time costs, and factors such as risk
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and uncertainty. Furthermore, these costs interact – for example, exerting greater physical effort (e.g.,
vigor) can reduce time costs, and exerting greater cognitive effort (i.e., planning an efficient action) can
reduce both physical effort and time costs. The reinforcement learning literature has been concerned
with the extent to which there is a common representation of ’value’ that integrates different kinds of
rewards (e.g., food, money Chib et al., 2009; Levy & Glimcher, 2011, 2012). To what extent is there
also a common representation of ‘cost’ that integrates different forms of effort and costs associated with
an activity (i.e. cognitive effort costs, physical effort costs, time costs Schmidt et al., 2012)? Human
and animal research suggests that cognitive and physical effort decisions are controlled by shared neural
populations (Borderies et al., 2020; Bornert & Bouret, 2021; Chong et al., 2017; Lopez-Gamundi et al.,
2021; Schmidt et al., 2012). Cognitive and physical fatigue seem to interact (Giboin & Wolff, 2019;
Marcora et al., 2009) and intermixing choices about cognitive and physical effort affects choices for both
effort types (Toro-Serey et al., 2021).

One window into the relationship of different domains of cost is to investigate individual differences.
Do individuals who avoid cognitive effort more also avoid physical effort more? Research is limited about
the relationship between individual differences in cognitive and physical effort costs. Lopez-Gamundi &
Wardle (2018) found a positive relationship (correlation = 0.43, df = 60, p<0.001) between the percent
of hard task choices in the cognitive (task-switching task) and physical (rapid key-pressing task) versions
of an effort based decision making task (this finding was replicated in Tran et al., 2020, correlation =
0.35, df = 79, p<0.05). In the present study we quantified individual differences in cognitive and physical
effort costs and examined the relationship between them. To do so, we developed a novel Effort Foraging
Task with two variants - cognitive and physical - and then fit a computational model to individual
participants’ behavior in order to estimate the costs associated with each form of effort. Using this
model we evaluated the correlation between the estimated cognitive and physical effort costs. This task
was designed to leverage the strengths of the patch foraging paradigm, an ecologically valid sequential
decision and reward rate maximization problem with well developed theoretical tools for estimating costs.
By examining the relationship between individual differences in these costs, we can learn more about the
overlap between the computation of cognitive and physical effort. If individual differences in effort costs
for these domains are unrelated, this would suggest that costs are separately computed. Conversely, if
there is a strong relationship between them, this would suggest that cognitive and physical costs share
some common sources. Furthermore, to assess the extent to which these cost measures are related to
real-world behavior, we also used a data driven approach — canonical correlation analysis — to look for
relationships between task behavior and self-report surveys of motivation and affect (including measures
of apathy, anhedonia, depression, and others).

1.1 The Effort Foraging Task.

Valid and reliable measures of effort costs are needed to test theories concerning how individual differences
in effort costs affect behavior and everyday effort exertion, and that can be used to help identify and
characterize their neural underpinnings in future research. Here we introduce the Effort Foraging Task,
an indirect, experiential, foraging-style task, designed to improve effort cost estimation and predictive
validity compared to previous methods. Many previously reported tasks involved explicit effort-based
decision making; for example, participants are directly if they would rather complete a high or low effort
task (Kool et al., 2010; Lopez-Gamundi & Wardle, 2018; Westbrook et al., 2013). Such explicit decision
making may be subject to secondary demand characteristics, in which participants behave according to
what they think the experimenter wants, or with their self-image; decisions explicitly trading off numeric
quantities are also susceptible to idiosyncratic arithmetic heuristics (Marzilli Ericson et al., 2015). In
contrast, the influence of effort in the the Effort Foraging Task is measured indirectly; participants learn
about the environment reward rate and effort costs through experience, and their choices reflect their
ongoing evaluation of these quantities. In addition, some existing tasks concern hypothetical choices,
or choices separated in time from a later the realization of cognitive effort (Lopez-Gamundi & Wardle,
2018; Westbrook et al., 2013). In the Effort Foraging Task participants directly experience the effort
immediately after each choice to travel. Furthermore, foraging tasks are sequential decision tasks that
are ecologically valid, and have proven to be valuable in understanding decision-making in formally
rigorous terms, and relating it to underlying neural mechanisms, across a variety of species, including
rodents(Carter & Redish, 2016; Kane et al., 2021), non-human primates (Hayden, 2018; Hayden et al.,
2011) and humans (Constantino et al., 2017; Constantino & Daw, 2015; Kolling et al., 2012; Lenow
et al., 2017). The Effort Foraging Task adapts a version of the paradigm developed by Constantino &
Daw 2015, by embedding cognitive and physical effort costs into a patch foraging environment so as to
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quantify how these are traded off against monetary rewards.
In a standard patch foraging task the forager visits a ‘patch’ which can be harvested to yield rewards

(here, a simulated orchard with apple trees). Rewards in a patch (apples) deplete over time spent
harvesting, such that reward rate within the patch decreases over time. At any point the forager can
travel to a new patch, which has replenished rewards, but it takes time to travel there. Deciding when
to leave a patch in a foraging environment involves tradeoffs between harvesting rewards available from
the current patch, and the time (and/or effort) spent traveling to a different (but richer) one. For this
reason, the level at which the forager decides to exit the current patch (i.e., their ‘exit threshold’ or the
number of apples they have last received before quitting) reflects the reward they are willing to forgo by
leaving that patch and spending the time (and/or effort) to travel to another. In these respects, the exit
threshold reveals the point of equivalence in the tradeoff between the cost of harvesting with diminishing
rewards and the time (and/or effort) cost of traveling to a new patch.

These considerations are formalized in the Marginal Value Theorem (Charnov, 1976), which asserts
that a simple threshold policy maximizes reward rate. The forager simply has to maintain an estimate
of the average reward rate in the environment, and exit a patch when the instantaneous reward rate
falls below the long run average. Constantino & Daw 2015 found that human participants playing a
virtual foraging game used a threshold exit strategy consistent with the Marginal Value Theorem, which
explained behavior better than other reinforcement learning models (e.g., Temporal Difference learning).
Furthermore, they found that exit thresholds shifted reliably and in predicted ways when the environment
changed (e.g., when travel time and/or reward depletion was experimentally manipulated). For example,
when the travel time between patches was increased, participants’ exit thresholds decreased, reflecting
the increased opportunity cost of travel and an overall decrease in average reward rate.

For the Effort Foraging Task, we followed the design of 2015, but rather than manipulating travel
time, instead we varied the effort – cognitive or physical – required to travel between patches, and
compared exit thresholds in high versus low effort conditions. We predicted that contexts with higher
effort costs would decrease participants’ estimates of average reward rate, leading the exit threshold to be
lower; that is, a greater willingness to accept diminishing rewards to avoid effortful travel. Accordingly,
we used the difference in exit threshold between high and low effort conditions to infer the perceived
costs of travel. More specifically, we used participants’ decision thresholds to create a computational
model based on the Marginal Value Theorem to quantify the added cost of high compared to low effort
conditions in this task. Using this model, we found that most participants avoided the high effort
tasks, treating them as costly. We used these cost estimates to directly fit the correlation between
individual differences in cognitive and physical effort costs in the same currency (money) and found a
moderate positive correlation. In developing the task, we conducted validation experiments and results
confirmed that participants’ thresholds were sensitive to standard foraging manipulations (i.e., patch
resource richness) and also to two domains of cognitive effort (interference and working memory tasks).

We developed two effort variants of the Effort Foraging Task (Fig. 1, Experiment 1). Effort level was
manipulated block-wise (4 minute long blocks). The cognitive effort variant required performing trials
of the Multi-Source Interference Task (MSIT, Fig. 2 left panel, Bush & Shin, 2006). The high effort
condition required completing interference trials (demanding more cognitive effort), and the low effort
condition required completing congruent trials (demanding relatively less cognitive effort). The physical
variant of the task required participants to rapidly press a key to reach a new patch (Fig. 2 right panel,
based on previous research demonstrating that rapid key-pressing is considered to be physically effortful
and costly Treadway et al., 2009). The high effort condition required participants to press the key
the maximum number of times they could in the time allotted (individually-determined in a preceding
calibration phase), and the low effort condition required half that number of key-presses. Travel time
(i.e., time to complete the MSIT or key-pressing tasks) was fixed and the same across both variants of the
task and the high and low effort conditions of each. We predicted participants would have a lower patch
leaving threshold (in units of apples) in the high effort conditions compared to the low effort conditions,
since travel (effort) costs were greater in the former. The measure of effort cost for an individual was the
differential travel cost of the more effortful condition (incongruent MSIT, or Larger Number of Presses)
compared to the less effortful condition (congruent MSIT, or Smaller Number of Presses).

2 Results

The primary dependent variables in our analyses were exit thresholds, which reflect the point when the
cost of leaving just offsets the benefits of reaching a replenished patch (which is increasing as the current
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Figure 1: Foraging trial diagram. On each trial participants chose to harvest the tree they were at (down
arrow key) or travel to a new tree (right arrow key), during the travel they completed an effortful task,
after which they arrived at a new patch with a replenished supply of apples.

Figure 2: Effort travel tasks. Left panel: Cognitive Effort, Multi-source Interference Task. Participants
identified which number was the oddball in a list of three numbers. The background color differed for the
high effort (interference trials, orange) and low effort (congruent trials, blue) conditions. They responded
with the ‘1’, ‘2’, ‘3’ keys. The correct response for each example screen is displayed on the left of that
example screen. Right panel: Physical Effort, Rapid Key-pressing Task. Participants rapidly pressed
the ‘a’ key while holding down the ‘w’, ‘e’, ‘f’, ‘h’ and ‘o’ keys. Pressing the ‘a’ key moved the avatar
rightwards and filled up the grey horizontal bar with green. When participants reached the goal number
of presses ‘Complete!’ appeared in the horizontal bar and participants waited for the remainder of the
travel time. The background color differed for the high effort (smaller presses, purple)and low effort
(larger presses, green) conditions.
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patch yields progressively less). We assumed that participants set their exit thresholds to maximize the
rate of rewards minus costs per time step. This is given by the Marginal Value Theorem:

ρ =

∑
r −

∑
c

T
(1)

According to Eq. (1), the exit threshold (ρ, the reward the forager expects if they continue harvesting
a patch at the time they exit), is equal to the long run average reward rate, which includes the sum of
all rewards (

∑
r) minus sum of (non-time) costs incurred in the environment (

∑
c, i.e., energy spent

extracting rewards or traveling to the next patch), divided by the total number of harvest periods
(the time cost normalized by the harvest time, T = total time / harvest time). We implemented a
computational model based on the Marginal Value Theorem and fit it to participants’ exit thresholds
to quantify the relative increase in travel cost between the high and low effort conditions for each effort
type (see model methods in Section 4.4.1).

Summary of results. We found that differences in foraging decisions (viz., exit thresholds) is a
useful indirect measure of motivation to exert both cognitive and physical effort. Foraging decisions
were sensitive to task difficulty in both of the variants tested, in which travel costs were implemented as
cognitive or physical effort. Consistent with our prediction, average exit threshold was lower in the higher
travel effort than the lower travel effort conditions (Fig. 3). Participants (Experiment 1, N = 537) opted
to stay longer in a patch, accepting diminishing rewards, in the high travel effort conditions to avoid the
increased cost of travel. Validation experiments demonstrated that participants’ exit thresholds were
responsive to all of our manipulations; two types of cognitive effort (interference control in Experiment 1
(MSIT), working memory in Experiment 2 (N-Back)), environment richness (Experiment 3). Fits of the
Marginal Value Theorem model to trial by trial behavior (Experiment 1) further confirmed the presence
of high effort costs, and revealed an interesting mixture of effort-avoiding and effort-seeking participants.
We found that cognitive and physical effort costs were moderately positively correlated, and that both
effort costs had patterns of correlation to self-report measures related to motivation and affect.

2.1 Change in exit threshold by effort condition.

As a model-agnostic metric of high effort cost, we used the change in exit threshold from low to high
effort conditions. For each participant we computed the average exit threshold per condition, and the
difference between them (high effort - low effort mean threshold). We expected this value to be negative,
reflecting effort-avoidance. If threshold increased for a participant, this suggested effort-seeking. Across
participants, we found a mix of effort avoidance, effort seeking, and indifference to effort (values close to
zero) (Fig. 3 right panel). We computed the group average change in threshold (Fig. 3 left panel), and
used linear mixed-effects regression to test whether change in exit thresholds significantly differed from
zero. As predicted, on average participants exited trees later in the high relative to low effort conditions
(mixed-effects regression: interference - congruent MSIT, βcognitive = −0.236 apples, df = 460.071, F =
50.062, p < 0.001, Larger - Smaller Number of Presses βphysical = −0.379 apples, df = 474.041, F =
87.326, p < 0.001). Next, we used the foraging behavior to formally quantify the additional cost of the
high effort tasks using a model based on the Marginal Value Theorem.

2.2 Hierarchical Bayesian model to estimate effort costs for an individual.

We fit a hierarchical Bayesian logistic model based on the Marginal Value Theorem (Charnov, 1976),
which predicted harvest versus exit decisions by comparing expected reward on the next harvest against
the average reward rate (see model methods in Section 4.4.1). We defined the reward rate in terms
of known reward rate values of the foraging environment per effort condition per participant (apples
earned, time cost incurred, number of patches visited), as well as the unknown reward rate value (the
cost of travel). The cost of travel in high effort blocks was expressed as the marginal increase in cost
of travel from low to high effort. Defining this cost as a difference measure controls for any additional
biases individual participants may have (such as differences in the subjective value of the reward) which
are common to both conditions. The dependent individual differences measures in this task were the
inferred cognitive and physical effort cost parameters. The other model parameters were the travel costs
in the cognitive and physical low effort conditions, and the inverse temperature applied to the softmax
function.

5

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.21.517394doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517394
http://creativecommons.org/licenses/by-nc/4.0/


EFFORT FORAGING TASK

Figure 3: Change in exit thresholds by effort condition. Left panel: y-axis: Group-level mean change in
exit threshold for cognitive and physical effort. x-axis: effort type. As predicted, on average participants
exhibited lower exit thresholds in the high relative to low effort conditions. Error bars indicate standard
error of the mean. Right panel: Individual variation in change in exit threshold. Top row: Histogram
of participants mean change in exit threshold for cognitive high effort relative to cognitive low effort.
Bottom row: mean change in exit threshold for physical high effort relative to physical low effort.
Most participants were effort-avoiding (negative change in threshold), whereas some participants showed
indifference to effort condition (near zero) or were effort-seeking (positive change in threshold).

Parameter Mean Lower CI bound Upper CI bound
Cognitive Effort Cost 7.547 5.508 9.682

Cognitive Low Effort Travel Cost 94.646 90.706 98.761
Physical Effort Cost 13.527 11.045 16.061

Physical Low Effort Travel Cost 99.781 95.615 104.182
Inverse Temperature 0.260 0.238 0.282

Table 1: Group level posterior distributions. The group level average high cognitive effort cost was 7.5
apples. The group level average high physical effort cost was 13.5 apples. Table includes the mean of
the group-level posterior distribution and the credible interval (95% HDI).

Consistent with the model-agnostic change in threshold metric, the group-level posterior parameter
fit indicated that the high effort task was costly (Table 1). There was a range of individual differ-
ences (Fig. 4), cost was positive for most participants, some participants were indifferent to the effort
manipulation (cost near zero), and some participants had a negative cost, suggesting that effort was
valued.

Relationship between cognitive and physical effort costs. We computed the correlation between
the estimated cognitive and physical high effort costs (again, each estimated as reflecting the additional
cost of high effort relative to the low baseline), and found a moderate positive relationship (mean cor-
relation = 0.566, 95% HDI = 0.355 - 0.766, Fig. S.6). This suggests a potential common representation
for costs of different types used in effort-based decision-making.

2.3 Cognitive task performance predicts cognitive effort cost.

We tested whether cognitive task performance contributes to the cognitive effort cost measured by
foraging choices (see relationship between costs and performance in Fig. 6). We regressed the difference
in (log transformed) MSIT error rate and (log transformed) reaction time onto cognitive effort costs. We
found that the difference in error rate significantly predicted cognitive effort cost (estimate = 15.313,
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Figure 4: Individual differences in effort costs. There were individual differences in the high effort travel
costs (expressed as the additional cost of the high relative to the low effort condition). Paralleling the
pattern of exit thresholds most participants experienced the high effort conditions as effortful (positive
cost), whereas some participants were insensitive to the effort manipulation (cost near zero) and others
were effort seeking (negative cost).

SE = 3.684, t = 4.156, p < 0.001), indicating that participants with higher costs performed worse on
the MSIT. However the reaction time interference effect did not predict cognitive effort cost (estimate =
4.861, SE = 3.802, t = 1.278, p = 0.202). In this regression the intercept was not significantly different
from zero, suggesting that the effort cost measured are performance related (estimate = 4.861, SE =
3.802, t = 1.278, p = 0.202, compared to an intercept-only model estimate = 7.548, SE = 0.323, t =
23.38, p < 0.001). We see the same qualitative result using robust regression. This finding suggests
participants may adaptively calibrate their effort costs according to their error rates.

We also included individual differences in MSIT error rates in our test of relationships between task
performance and self-report surveys (see MSIT performance by participant in Fig. S.1). We did this to
compare the predictive validity of the cognitive task performance measures (error rates and reactions
times), versus the cognitive effort cost measure.

2.4 Relationship to self-reported motivation and affect.

Next we wished to examine the relationships between our task measures and self-report surveys, both
to validate the external validity of our measures and to investigate the broader context associated with
effort sensitivity. A practical issue with correlation or regression measures is the high dimensionality of
both the survey and task measures. In previous work, we and others have used dimensionality reduction
techniques such as factor analysis to summarize key dimensions of survey data prior to regressing them
on individual task measures. (Gillan et al., 2016). Here we take that approach a step further by using
canonical correlation analysis (CCA), a dimensionality reduction technique that simultaneously performs
dimension reduction on both domains of data, so as to identify summaries of each domain that maximally
relate to one another (here, the relationship between surveys and task behavior measures Wang et al.,
2020).

We performed CCA to test whether task behavior reliably predicts self-reported motivation and
affect (with data from Experiment 1, detailed in Methods Section 4.4.2, N = 430 participants who
completed the survey and passed attention checks). The dependent variables were all of the self-report
sub-scales (see Table 4). The predictor variables were all of the measures of task behavior of interest:
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Figure 5: Correlation between cognitive and physical effort. Top panel: posterior distribution of corre-
lation between high effort cost for cognitive and physical effort. Cognitive and physical effort costs are
positively correlated (correlation = 0.566, 95% HDI = 0.355 - 0.766). Bottom panel: x-axis: Individual
differences in cognitive effort costs, y-axis: Individual differences in physical effort costs. Error bars
indicate 80% HDI.

(log transformed) error rate on congruent and incongruent trials, cognitive and physical effort costs,
and overall threshold. Including all of the task behavior measures allowed us to explore the unique
contribution of (potentially mutually correlated) effort costs, cognitive task performance, and subjective
utility to proxies of real-world behavior by testing whether these variables fall on overlapping or separate
dimensions. This approach has the benefit of increasing sensitivity (by making use of all of the measures
simultaneously), while reducing the risks of multiple comparisons (by treating all of these factors in a
single omnibus analysis).

The first question addressed by CCA is the dimensionality of the subspace relating the domains.
Previous work (Moutoussis et al., 2021) found many self report measures related to many task measures
along only a single “decision acuity” dimension, raising concerns that the correlations were dominated by
nonspecific motivational or attentional variation. In the current dataset, CCA revealed three significant
dimensions (summarized in , and full result shown in Fig. S.2, Wilks’ Lamda (Wilks, 1935), using F-
approximation, dimension 1 to 5: stat = 0.797, F-approx = 2.189, df1 = 70, df2 = 3141.555, p <
0.001, dimension 2 to 5: stat = 0.877, F-approx = 1.691, df1 = 52, df2 = 2558.280, p < 0.0016,
dimension 3 to 5: stat = 0.926, F-approx = 1.424, df1 = 36, df2 = 1953.726, p < 0.0496). To interpret
which task behavior and/or self-report measures contributed most strongly to each of the significant
dimensions, we highlighted those that had a coefficient greater than 0.5 along each dimension Table 2.
The first loaded most heavily, on the task measure side, on cognitive effort task performance (increased
MSIT error rates) and decreased cognitive effort cost, which were associated, on the self-report side,
with increased behavioral activation, decreased (self-reported) cognitive function and decreased anxiety.
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Figure 6: Relationship between task performance and cognitive effort cost. Column 1: error rate on
the high effort task (log transformed), column 2: change in error rate from low to high effort condition,
column 3: change in reaction time from high to low effort condition. Cognitive effort cost negatively
related to error rate measures but not reaction time interference effect.

Canonical dimension
(correlation coefficient)

Task behavior (coefficent) Self-reports (coefficent)

Dimension 1 (0.30) ↑Congruent Error Rate (0.66) ↑Behavioral Activation (0.77)
↑Interference Error Rate (0.60) ↓Cognitive Function (-0.71)
↓Cognitive Effort Cost (-0.58) ↓Anxiety (-0.72)

Dimension 2 (0.23) ↑Physical Effort Cost (1.30) ↓Anxiety (-0.75)
↓Cognitive Effort Cost (-0.53) ↑Fatigue (0.72)

Dimension 3 (0.18) ↓Cognitive Effort Cost (-1.23) ↓Cognitive Function-Abilities (-0.93)
↑Physical Effort Cost (0.67) ↑Apathy-Social (0.62)

↓Anhedonia (-0.52)
↓Depression (-0.51)

Table 2: Significant canonical dimension (correlation coefficient). For each dimension coefficients larger
than 0.5 are displayed in column 2 (for task behavior variables) and in column 3 (for self-reports). Arrows
indicate positive or negative coefficients. Dimension 1 was most related to cognitive task performance,
whereas dimension 2 was most related to physical effort cost, and dimension 3 most related to cognitive
effort cost.

Taken together, this dimension may correspond to carefulness or conscientiousness, and may be closest
to “decision acuity” (Moutoussis et al., 2021). The second dimension appeared more closely related,
among task measures, to increased physical effort cost, and loaded heavily on this dimension, as well
as decreased cognitive effort cost, and was associated, among self-reports, with decreased anxiety, and
increased physical fatigue. The second dimension may correspond to physical fatigue and physical effort
avoidance, as distinct from cognitive effort avoidance, which is instead most heavily associated with
the third dimension. The third dimension was more closely related to decreased cognitive effort cost,
and loaded heavily on this dimension, alongside increased physical effort cost, and was associated, for
self-report measures, with decreased (self-reported) cognitive function-abilities, increased social apathy,
decreased anhedonia, and decreased depression. The third dimension may correspond to cognitive effort
avoidance having a role in anhedonia and depression. However the positive relationship between cognitive
effort cost and (self-reported) cognitive function-abilities is contrary to our expectations.

Of note, in all three significant dimensions, cognitive and physical effort loaded with opposite signs.
This suggests that they reflect distinct aspects of individual differences, associated with separate external
measures. Note that this is not inconsistent with the finding that they are nevertheless correlated with
each other, overall (Fig. 6): CCA strictly addresses the correlation across, rather than within, domains.
These results suggest that the correlation between cognitive and physical effort are not themselves driven
by one of the externally self-reported dimensions, such as conscientious performance.

2.5 Validation experiments.

Collateral predictions of the Marginal Value Theorem. In addition to the experiment presented
in this article (Experiment 1 (MSIT)), we tested two other versions (Experiments 2 and 3), both to
validate the Effort Foraging Task in different groups of participants (see Appendix Section 5.6), and
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to test its adherence to predictions of the Marginal Value Theorem not tested in Experiment 1. The
validation experiments confirm that participants adhere to predictions of the Marginal Value Theorem
across manipulations of cognitive effort type, and environment richness.

Effects of different types of cognitive effort. In Experiment 2 (N-Back), we tested a different
form of effort as the travel manipulation. Specifically, we compared foraging behavior when the travel
task was the 3-Back versus 1-Back level of the N-Back task (Nystrom et al., 2000). As predicted, on
average across participants exited trees later in the high (3-Back) relative to low (1-Back) cognitive effort
conditions; linear mixed-effects regression estimate for N-Back (3-Back - 1-Back): = −0.504 apples, df =
75.981, F = 30.339, p < 0.001, physical (smaller-larger) = −0.448, df = 75.170, F = 27.151, p < 0.001.

Effects of environment richness. In Experiment 3 (Richness), we tested for the effects of reward
richness predicted by the Marginal Value Theorem, in which leaner environments (yielding lower overall
mean reward rate) should be associated with lower exit thresholds. To test for this effect, we compared
two levels of reward richness, by adjusting the mean of a normal distribution used to draw the initial yield
of a patch. As predicted, we found that participants lowered their exit thresholds in the lean compared
to rich conditions (Richness contrast; sum sq. 0.788, mean sq. 0.788, DenDF = 27.95, F = 10.49, p <
0.0031).

3 Discussion

We developed the Effort Foraging Task to quantify the costs of cognitive and physical effort at the level
of the individual. Participants played a computer game in which they could forage for virtual apples
in a patch with diminishing returns, or abandon that patch for a new (initially) richer patch at the
expense of time and effort. Participants completed blocks of the task in which the travel cost was either
cognitive and physical effort, each at one of two difficulty levels (high and low effort). We measured
their ’exit threshold’ as the number of apples the participant could have expected to get on their next
harvest on trials in which they decided to travel instead. We found that on average participants lowered
their exit threshold (staying longer, accepting diminishing returns) in the high relative to low effort
conditions, consistent with the high effort task having a monetary cost. Further analyses in Experiment
1 demonstrated that these cognitive effort costs are correlated with differences in error rates between the
easier and harder tasks, suggesting that the costs may at least partially reflect error avoidance. Expected
Value of Control model simulations (Musslick et al., 2018) demonstrated the problem of identifiability of
effort costs versus other factors that contribute to cognitive effort allocation: skill and reward sensitivity.
That is, if someone avoids effort (i.e., restricts allocation of cognitive effort to a demanding task) this
could reflect a higher cost of effort, but it could also reflect poorer ability and/or weaker incentives.
These individual differences would impact both choices in the foraging task, and performance on the
cognitive effort travel task.

We also found that participants’ exit thresholds were responsive to all of our other manipulations as
well: two different types of cognitive effort (working memory in Experiment 2 vs. interference control
in Experiment 1), and environment richness (Experiment 3). Our findings also suggest that the Effort
Foraging Task task is suitable for use on crowd sourcing platforms (Prolific, Experiment 1), and for
Undergraduates remotely (Experiment 2), yielding results comparable to those found in the laboratory
(Experiments 3, as well as previous studies; e.g., Constantino and Daw, 2015).

We investigated the relationship between individual differences in cognitive and physical effort costs.
Our design allowed us to measure cognitive and physical effort costs in a common currency, revealing a
significant and substantial correlation between these within individuals. This suggests that a common
mechanism may compute costs across multiple domains, consistent with research showing overlap in brain
areas involved in cognitive and physical effort using human neuroimaging (Chong et al., 2017; Schmidt
et al., 2012), and research showing that cognitive fatigue impacts physical effort exertion and fatigue
(Giboin & Wolff, 2019; Marcora et al., 2009). Most goals carry multiple types of costs (i.e., cognitive
effort, physical effort, time costs), so it is reasonable that cost information would be integrated across
domains when evaluating potential goals.

Advantages compared to previous tasks. There are a number of benefits of the Effort Foraging
Task as a means of measuring effort costs. First, measure of costs is indirect. Participants are not directly
asked if they would rather complete a high effort task or a low effort task. Instead, this is inferred from
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their exit thresholds. This may mitigate confounds of demand characteristics. We consistently found a
subset of participants who were effort-seeking in our task (treating the low effort task as more costly,
and overharvesting more in the low compared to high effort conditions), which is not commonly seen in
direct tasks (i.e. Treadway et al., 2009; Westbrook et al., 2013).

Direct tasks, such as the Cognitive Effort Discounting Paradigm (Westbrook et al., 2013) may engage
real-world economic considerations (e.g., that one should be paid more to work more), which may pre-
clude effort seeking behaviors. This is consistent with the observation that ‘reverse discounting’ is not
reported in the Cognitive Effort Discounting Paradigm. A concern common to previous studies is the
presentation of two options simultaneously, as this may distort choices or complicate their interpretation
(Lopez-Gamundi & Wardle, 2018; Westbrook et al., 2013). Research in intertemporal choice has shown
that rats and humans are less impulsive decision makers when they are making sequential choices than
simultaneous choices (evaluating a single option and choosing to accept or reject it Carter et al., 2015;
Carter & Redish, 2016).

Another strength of the Effort Foraging Task is that participants learned about the environment
reward rate and effort costs through experience, and their choices reflected their ongoing evaluation of
these quantities. In some previous tasks, choices and the realization of cognitive effort were separated in
time (Chong et al., 2017; Westbrook et al., 2013), or choices were hypothetical (see a review in Lopez-
Gamundi et al., 2021). In the Effort Foraging Task participants experience the effort immediately after
each choice to travel. In addition to being ecologically valid, foraging tasks also lend themselves to formal
analysis using the Marginal Value Theorem, which provides a theoretically motivated, and quantitatively
rigorous approach to measuring costs.

Relationship between Effort Costs and Self-report Surveys. CCA revealed inter-relationships
between Effort Foraging Task variables and self-report proxies of real world motivation and psychiatric
symptoms such as depression, anxiety, fatigue, and anhedonia. Three significant dimensions were iden-
tified that weighted on multiple cognitive task variables and self-report measures Table 2. This method
may be useful in addressing measurement confounds identified by an Expected Value of Control theory
simulations (Musslick et al., 2018) which demonstrated the need to measure and account for multiple
factors that contribute to motivation for effort (e.g., task automaticity, reward sensitivity) in order to
isolate and study a particular component (i.e., effort cost). Multidimensional models like factor analysis
and canonical correlation analysis offer a richer view on the interrelationship between multiple variables:
in this case, for instance, suggesting that different external factors are most strongly associated with
cognitive vs. physical effort costs, vs. task performance (error rates) per se.

The first dimension most reflected cognitive task performance (both congruent and interference trial
error rate), the second most reflected physical effort cost, while the third most reflected cognitive ef-
fort cost. Higher cognitive effort task error rates and lower cognitive effort cost in the first dimension
were associated with increased behavioral activation, decreased (self-reported) cognitive function, and
decreased anxiety. Sensibly, we found that individuals who reported better cognitive function in the past
week (fewer reported cognitive difficulties on the survey) exhibited better performance in our cognitive
effort tasks and lower cognitive effort costs. The association with behavioral activation and anxiety may
reflect variability in attentiveness and carefulness to the cognitive effort task. Two aspects of this result
speak encouragingly to the external validity of our measures: first that unlike in some previous work
(Moutoussis et al., 2021) this attentiveness dimension does not exhaust the relationship between self-
report and task-measures. Furthermore, the finding that this dimension is associated with lower cognitive
effort costs but, less strongly, larger physical effort costs, suggests that such nonspecific attentiveness
is not driving the relationship between cognitive and physical effort costs. All this may be enabled
by our relatively careful exclusion of inattentive participants, who can otherwise drive uninformative
correlations and obscure more informative relationships (Zorowitz et al., 2021).

The second and third dimensions more closely addressed our primary interest, physical and cognitive
effort cost per se, suggesting they have somewhat distinct external correlates. The second dimension
was most heavily associated with increased physical effort cost, but also decreased cognitive effort cost.
Among the self-report measures it was associated with decreased anxiety, and increased fatigue. The
connection between physical effort cost and physical fatigue supports the face validity of the Physical
Effort Foraging Task. It could be of clinical relevance if a component of fatigue is due to increased
physical effort costs, which could be targeted by interventions which boost motivation.

The third dimension was dominated by decreased cognitive effort cost, but also increased physical
effort cost. Among the self report measures, it was most strongly associated with decreased cognitive
function-abilities, as well as increased social apathy, decreased anhedonia and decreased depression.
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The positive association between cognitive effort cost and cognitive function-abilities is contrary to our
predictions, and shows the opposite pattern as the first dimension relationship to cognitive function
(asked in terms of difficulties). The relationship between increased depression and anhedonia and higher
cognitive effort cost is consistent several other studies reporting increased cognitive effort costs associated
with depression (Hershenberg et al., 2016; Marchetti et al., 2018; Patzelt et al., 2019; Tran et al., 2021;
Westbrook et al., 2022). We are currently running a clinical study of depression to further decompose
the relationship between cognitive and physical effort decisions and specific domains of symptoms, based
on recent theoretical work within the Expected Value of Control framework (Grahek et al., 2019).

Cognitive effort seeking. In all of the experiments reported here, we consistently observed a subset
of participants who exhibited negative cognitive effort costs (i.e., a preference for the high effort option
over the low effort option), suggestive of cognitive effort seeking. This is a phenomenon that has been
consistently observed in the literature (for a review see Inzlicht et al., 2018), often referred to as the
“need for cognition.” Although this comprised a minority of participants in our experiments, nevertheless
it suggests the need for extensions to existing utility models (i.e., the Expected Value of Control model).
Cognitive effort seeking, prima facie, indicates positive value assigned to exerting cognitive effort, which
may reflect — directly or indirectly — longer term value attached to information-seeking and learning
that yield better future performance (e.g., Agrawal et al., 2019; Geana et al., 2016). In a related vein,
effort seeking may also have to do with boredom, which may hold a disutility that encourages application
of effort (e.g., Agrawal et al., 2022). This is adaptive because effort is valuable so doing nothing carries
an opportunity cost. Each of these factors likely comprise their own dimensions of individual variation
that were not measured in our experiments. Future research is needed to further investigate the factors
that drive effort seeking in this task and others.

Opportunities and future directions. Further work using the Effort Foraging Tasks to measure
cognitive and physical effort, and the relationship of these to one another, may be useful in furthering
our understanding of the nature of such costs and how they are evaluated, including the testing of
alternative accounts (i.e. opportunity cost, processing, and metabolic accounts Baumeister & Heatherton,
1996; Kurzban et al., 2013; Musslick & Cohen, 2021). For example, the Effort Foraging task could be
useful for testing opportunity cost accounts, by manipulating whether or not a low effort alternative
task is available (e.g., browsing social media instead of completing the effort foraging task for money).
Opportunity cost accounts would predict that the cognitive effort cost measured by foraging behavior
would be higher during periods in which an alternative was on offer (Kurzban et al., 2013). To test
cost of processing accounts, the travel task could involve multi-tasking. By these accounts, participants
should treat multi-task sets that recruit more shared representations as more costly than sets that recruit
more separated representations (Musslick & Cohen, 2021). Developmental studies using this task may
also help understand the interplay between learning, information-seeking, and effort (Chevalier, 2018;
Munakata et al., 2012; J. Niebaum & Munakata, 2020; J. C. Niebaum et al., 2019; Snyder & Munakata,
2010).

Future research could also use this task to integrate effort into the study of patch foraging in both
human and animal studies. For example, increasing vigor decreases opportunity costs of time while
increasing physical effort costs (Niv et al., 2007). Similarly, increasing attention during planning may
increase cognitive effort costs while reducing opportunity cost of time due to speeding up goal attainment.
There is much to be learned about these tradeoffs that must be managed by the forager. The present
study moves in this direction by adding a cognitive or physical effort task requirement to travel in a
virtual patch foraging environment with human participants.

Conversely, insights from patch foraging may prove useful in the study of effort-based decision making
and cognitive control, such as in task switching paradigms. When deciding whether to persist in pursuing
the current task or switch to an another, people may use a threshold rule based on average reward rate
(like the Marginal Value Theorem). Therefore the Effort Foraging Task could be used to advance
understanding of both foraging and effort-based decision-making, as well as the relationship between
them.

Our study also highlights the potential utility of the Effort Foraging Task for studying individual
differences in effort costs. For example, to what extent are effort costs trait-like or state-dependent, and
how generalizable are they are across different task domains (for example different types of cognitive
effort beyond that required for the interference and working memory tasks used here). Intriguingly,
research using the Cognitive Effort Discounting Paradigm suggests that cognitive effort motivation may
be trait-like, encompassing multiple domains of effort (Crawford et al., 2022). Variations on foraging
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tasks can be used to study a variety of domains of costs (i.e., risk, ambiguity, and delay preferences), and
the inter-relationships between domains of cost within an individual. In a related vein, our study also
illustrates the potential value in studying the relationship between empirically measured, quantifiable
forms of effort costs (both cognitive and physical) and affective factors relevant to mental health, such
as apathy, anhedonia and depression. One promising extension would be to combine this approach with
methods of ecological momentary assessment (Krönke et al., 2021; Strobel et al., 2020).

Effort-based decision-making has considerable importance in daily life. Critical questions remain
about how to disentangle aspects of motivation for effort, how these aspects are represented in the brain,
and the role they play in real-world behaviors. The cognitive computational study of motivation has
the potential to help people reach their goals by identifying the mechanisms of motivation and ways to
enhance motivation towards what matters most to an individual.

4 Materials and Methods

4.1 Trial structure

On each trial an image of a tree appeared on the screen, representing an immediately available source
of reward. Participants could choose to harvest that patch (tree) or travel to a new, replenished patch
(Fig. 1). When a tree was harvested it ‘shook’ and apples were displayed under it (apples were displayed
in a single, left justified, row). Reward depleted within a patch such that the more times a tree was
harvested the fewer apples it produced. When participants choose to leave the patch they had to “travel”
which consisted of completing a cognitively or physically effortful task. Participants had a fixed amount
of time to collect apples (money). Therefore they must balance the diminishing returns associated with
staying at a patch with the travel costs required to reach a new, replenished patch. To indicate the start
of a trial a circle below the tree turned white and participants were able to make their decision. The
circle below the tree was brown when participants could not make a decision (apples being displayed, or
waiting through harvest delay). If participants took too long to make a decision (1 second deadline) a
message “Too slow” appeared, after which they waited the harvest delay (2 seconds total). Participants
were instructed that the more “too slow” warnings they saw the fewer apples they would earn.

4.1.1 Block-wise manipulation

Patches were presented block-wise. We manipulated two factors that defined a block; effort type (cog-
nitive and physical) and effort level (low and high). Each block type was tested twice, making 8 blocks
total. The total duration of the block was fixed (4 minutes). Participants had a self-paced break between
blocks. Participants were instructed that the time in an block was fixed at 4 minutes, and that they
had to decide how to spend their time between harvesting and traveling. The cognitive and physical
variants of the task were completed separately (i.e. all cognitive effort blocks were completed in sequence,
as were all physical effort blocks). The order of cognitive and physical effort variants of the task was
counterbalanced across participants. Participants did not know when playing the first effort variant that
there would be a second variant upcoming in the experiment. Within blocks of an effort type, each effort
level was tested once during the first half and once during the second half. Given that constraint, the
effort level was fully counterbalanced, resulting in eight possible block orders. Which of the block orders
was used was randomly selected for each participant. Participants were explicitly instructed about which
travel task they had to perform in a particular block. In addition they were instructed that throughout
the task they could use the background color to know which effort level to perform (light blue for cog-
nitive low effort, light orange for cognitive high effort, light purple for physical low effort, light green for
physical high effort).

4.1.2 Task environment

The only difference between blocks was the effort travel task, all other variables of the foraging environ-
ment were fixed (Table 3). The time it took to harvest the tree (2 seconds) or travel to a new tree (8.33
seconds) were fixed. The apple yield of the first visit to a patch was drawn from a normal distribution
(N (15 apples, 1), maximum = 20 apples). Each following yield was the product of the previous yield
and the depletion rate. The depletion rate was drawn every harvest trial from a beta distribution (α
= 14.909, β = 2.033) and was on average 0.88 (minimum apple reward for a patch was 0.5 apples).
Participants had up to 1 second to respond, or else they were shown the “too slow” message. When
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Harvest time 2 seconds
Travel time 8.33 seconds

Cognitive Travel Tasks MSIT Congruent, Interference
Physical Travel Tasks Smaller (50%), Larger presses (100% max)

Block duration 4 minutes
Number of blocks per condition 2

Initial reward N (15, 1)
Decay rate β(14.13, 2.03)

Total Number of blocks 8

Table 3: Foraging environment parameters. First column: environment parameter. Second column:
Parameter values.

participants harvested the patch, apples appeared on the screen for 1 second. Regardless of the reaction
time, the total harvest delay was always 2 seconds long. When the participant decided to exit, the tree
moved from the center of the screen leftwards until it went off the screen (415 millisecond animation)
then the travel task occupied the screen (7.5 seconds), after which the tree reappeared from the right
side of the screen and moved leftwards towards the center of the screen (415 millisecond animation).

4.1.3 Foraging task training

The task began with training the travel task for the first effort cost variant for a particular participant
(this could be the cognitive or physical effort task). Next we administered instructions for the foraging
task in general (without mentioning the effortful travel requirement), and participants completed a
practice block (90 seconds) of the foraging task with no travel task. Then we instructed participants
that they would have to complete the effortful travel task when traveling, and they completed two practice
blocks (one per effort level, 90 seconds each). When training was complete participants completed the
main foraging task for the first travel task type (4 blocks, 4 minutes per block, with self-paced breaks
between blocks). After completing all of the blocks of the first travel task, participants began training
on the second travel task. Then they were instructed that they would continue to play the foraging task
but the travel task had changed. They practiced the foraging task with the second travel task type (one
practice block per effort level, 90 seconds each). Finally, they completed the main foraging task for the
second travel task type (4 blocks, 4 minutes per block).

4.2 Travel Tasks

4.2.1 Multi-Source Interference Task.

We used the Multi-Source Interference Task as the cognitive effort task. This task includes multiple types
of interference effects; Stroop, Flanker, and Simon effects, and is simple to administer with a standard
keyboard without the need for participants’ to learn novel key mappings (Bush & Shin, 2006). The MSIT
trial began with 250 ms fixation cross, then the stimulus appeared for 1000 ms and participants could
enter their response. After a total of 1250 ms the trial ended. Participants completed 6 trials per travel
for a total of 7.5 seconds of task time. If participants made two errors in a row they saw an attention
check (black dot) for 250ms instead of the fixation cross. Participants were instructed to avoid seeing
the black dot.

4.2.2 Rapid Key-pressing Task.

Participants performed rapid key-pressing as part of foraging task during travel between trees (7.5
seconds, Fig. 2 right panel). In the task participants rapidly pressed the keyboard with their non-
dominant pinky finger. All participants were right handed, and used their left pinky finger to press (the
‘a’ key). Each press filled a bar that spanned the horizontal extent of the screen. The horizontal bar
indicated progress towards the goal number of presses. There were two conditions referred to as the
“Larger number of presses” and “Smaller number of presses”. Travel time was fixed, so if participants
reached the goal presses before the travel duration they waited and saw the message ‘Completed!’ on
screen. If they failed to complete the goal number of presses a black dot appeared on the screen.
Participants were instructed to avoid seeing the black dot. To ensure within reason that participants
used their non-dominant pinky finger throughout the task, they were required to press ‘hold keys’ to
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occupy other fingers. The hold keys were ‘w’, ‘e’, and ‘f’ for the left hand, and ‘h’ and ‘o’ for the right
hand. To minimize cognitive demands the hold keys were always displayed at the bottom of the screen
during the rapid key-pressing task.

Rapid Key-pressing Task training. Key-press training began with a calibration phase (three rounds)
to determine the maximum number of presses participants were able to complete in the travel time (7.5
seconds of effort task time). A counter was displayed on the center of the screen showing how many
presses a participant had made. The instructions suggested participants were being compared to others,
and encouraged them to press as fast as possible, each round they were encouraged to press faster than
they had the previous rounds. Then we used a participants’ maximum number of presses of all of the
rounds and set this as their maximum number. The Larger Number of Presses condition demanded
participants complete 100% of their maximum, and the Smaller Number of Presses condition demanded
participants complete 50% of their maximum. Participants were only told there was a larger and smaller
number, and not what that number was or how it was determined. Then participants practiced a single
effort level. Effort level order was counterbalanced. Practice for an effort level began with a single
mini-block the duration of the foraging travel time. Then participants had to complete 5 mini-blocks
successfully (reaching the required number of presses) to move on. This was meant to establish the ex-
pectation that participants would perform well on the travel task, even though there were no incentives
or punishments associated with task performance during the foraging task.

4.3 Overview of experiment

The experiment was conducted over an hour session. Participants gave electronic informed consent to
participate in the study. All tasks and surveys were presented using the jsPsych library for JavaScript
(de Leeuw, 2015), and served with using NivTurk software (Zorowitz & Bennett, 2022) using the Flask
software package for Python. Participants began the experiment with self-report measures, followed by
the foraging training, the main foraging task, and lastly a debrief survey including demographics.

Participants 678 Prolific participants (18-56 years, mean = 24.5 years ± 6.7, 307 female, 365 male, and
6 prefer not to answer) volunteered for the study. The study was approved by the Princeton University
Institutional Review Board and participants were recruited from the Prolific platform for the large online
sample. Participants were compensated with $8.33 for one hour a performance bonus up to $4 (Prolific
bonus mean = $3.52, standard deviation = 0.78, range = $0.35 - 4). The total number of apples
harvested in the Effort Foraging Task were converted into real money at the end of the experiment, with
each apple being worth fractions of a cent (0.009 cents per apple). The conversion factor was set using
pilot data, such that the best performing participant (earned the most apples) would make the maximum
bonus. To accommodate both the physical effort task (completed with the non-dominant pinky finger)
and the foraging task within standard keyboard layout, all participants were right-handed. Participants
completed foraging decisions with their right hand and effort travel tasks with their left hand.

Self-reports Motivated by recent theoretical work (Grahek et al., 2019) we sought to test whether
cognitive effort costs were predictive of symptoms of depression. We created a comprehensive battery of
self-report surveys measuring many aspects of cognitive and physical amotivation (i.e., apathy, anhedonia,
depression, Le Heron, Apps., et al., 2018; Le Heron et al., 2019). At the start of the experiment
participants completed the self-report battery (Table 4). The first 98 participants were not given a
battery, leaving 458 participants who completed the self-reports and were not excluded based on their
foraging behavior. Of these, 28 participants failed at least one attention check item embedded in the
surveys and were excluded for self-report based analyses (see Appendix Section 5.3).

The first was the Need for Cognition scale (Cacioppo & Petty, 1982; Cacioppo et al., 1984). This self-
report scale measures the extent to which individuals are prone towards engaging in cognitively effortful
activities. Previous studies have shown that Need for Cognition negatively correlates with individual
differences in effort avoidance (Westbrook et al., 2013) so we predicted a negative relationship with
cognitive effort cost. This relationship would serve as evidence for convergent validity for the Effort
Foraging Task. Next was the Behavioral Inhibition, Behavioral Activation Scales (BIS/BAS Carver &
White, 1994) which measures an individuals’ sensitivity to the behavioral approach system and behavioral
avoidance system. We used the abbreviated form of the BIS/BAS to reduce the total number of items
(Pagliaccio et al., 2016). This measure was useful for several purposes, firstly, we used it as a measure of
reward sensitivity, which was a factor we wanted to capture as it is a potential confound. Research has
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Scale name N items Abbreviation Time scale
Patient Health Questionnaire-9 9 PHQ-9 last 2 weeks
Generalized Anxiety Disorder-7 7 GAD7 last 2 weeks

Apathy Motivation Index 14 AMI last 2 weeks
Snaith-Hamilton Pleasure Scale 13 SHAPS last few days

PROMIS Cognitive Function Short Form 4a 4 PROMIS-CF last 7 days
PROMIS Cognitive Function Abilities Short Form 4a 4 PROMIS-CFA last 7 days

PROMIS Fatigue Short Form 4a 4 PROMIS-F last 7 days
PROMIS General Self-Efficacy 4 PROMIS-SEFF last 7 days

Need for Cognition 18 NFC trait
Adult Temperament Questionnaire-Effortful Control 19 ATQ-EF trait
Behavioral Inhibition/Activation Scales - Abbreviated 12 BIS/BAS trait

Total 108

Table 4: Self-report battery. Self-reports were completed in the order listed in this table. Scales asking
about similar timescales were grouped together.

shown the BAS is predictive of striatal activation in anticipation of rewards (Costumero et al., 2016).
Secondly, research on depression shows that Behavioral Activation scores tend to be lower and Behavioral
Inhibition scores tend to be higher in more depressed participants (Alloy et al., 2008; Kasch et al., 2002;
McFarland et al., 2006; Pinto-Meza et al., 2006; Quilty et al., 2014). Third was the Apathy Motivation
Index (Ang et al., 2017) which measures apathy and motivation in the behavioral, social, and emotional
domains and was designed to be suitable for use in the general population. Lastly we administered the
Snaith–Hamilton Pleasure Scale (SHAPS, Snaith et al., 1995) which measures anhedonia by asking about
responses to common domains of pleasure. We administered the Patient Health Questionnaire-9 (PHQ-
9, Kroenke et al., 2001), a common measure of depression severity, and also the Generalized Anxiety
Disorder-7, a common measure of anxiety severity (Spitzer et al., 2006).

We administered four scales from the Patient-Reported Outcomes Measurement Information System
(PROMIS, Cella et al., 2007); the Cognitive Function Short Form 4a, the Cognitive Function Abilities
Short Form 4a, Fatigue Short Form 4a, and General Self-Efficacy. We were interested in cognitive
symptoms of depression such as slowed thinking and reduced concentration. To measure this we used
the PROMIS Cognitive Function Short Form 4a which measures subjective cognitive functioning. For
this sub-scale higher scores indicate fewer complaints about recent cognitive function. We also used the
complimentary PROMIS Cognitive Function Abilities Short Form 4a, for which higher scores indicate
better subjective cognitive function. We were also interested in physical fatigue symptoms of depression
which we hypothesized would be correlated with greater physical effort costs, we measured this using the
PROMIS Fatigue Short Form 4a. The theoretical work by Grahek and colleagues 2018 also identified
self-efficacy as a potentially relevant factor in cognitive control decision-making in depression. By this
account more depressed participants may be less likely to predict that exerting effort will lead to a
positive outcome. We made a first attempt at measuring this with the PROMIS General Self-Efficacy
sub-scale, however the ideal way to measure this factor would be with another cognitive task (see Frömer
et al., 2021). We also added a self-report measure of cognitive control capacity, which we hoped to
contrast with cognitive control motivation measures. We used the Adult Temperament Questionnaire -
Effortful control subscale (Evans & Rothbart, 2007) which has been related to depression in a previous
study (Marchetti et al., 2018).

4.4 Analysis methods

4.4.1 Hierarchical Bayesian Model Methods.

We created a model based on the Marginal Value Theorem (Charnov, 1976) to predict participants choices
to harvest or exit a patch. First we computed known reward rate values of the foraging environment
per effort condition per participant: total rewards harvested, number of harvest periods, and total
times travelled (see foraging environment parameters in Table S2). Then, we solved for the unknown
component of average reward rate; the cost of travel (c). We estimated the cost of the high effort task
(chigh effort) for an individual by predicting harvest versus exit decisions using a hierarchical Bayesian
logistic model (Eq. (3) and Eq. (5)). For each foraging trial, model compares the expected reward on
the next harvest (Re, defined as the average of the previous harvest and the product of the previous
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harvest with the mean depletion rate (0.88)) against the overall average reward rate for a block type
(ρ), using a softmax function (with inverse temperature parameter, β) to make a choice (harvest or
exit). The cost of travel in high effort blocks (chigh effort) was expressed as the marginal increase in cost
of travel (clow effort + chigh effort) from low to high effort. Defining this cost as a difference measure
controls for any additional biases individual participants may have which are common to both conditions
(i.e., consistently high exit thresholds for some participants and low thresholds for others). We used
(chigh effort) as the dependent measure of the effort cost for an individual.

For each effort level (low and high) and effort type (cognitive and physical) we predicted choices to
stay or exit a patch:

P (staylow effort) =
1

1 + exp (β(Re − ρlow effort))
, (2)

where,

ρlow effort =

∑
r −

∑
clow effort

Tlow effort
(3)

and,

P (stayhigh effort) =
1

1 + exp (β(Re − ρhigh effort))
, (4)

where,

ρhigh effort =

∑
r −

∑
clow effort + chigh effort

Thigh effort
(5)

There were five parameters in the model, the inverse temperature (β), the cognitive low (ccog low effort)
and high effort costs (ccog high effort), and the physical low (cphys low effort and high effort costs (cphys high effort).
The model included a full covariance matrix of the parameters (5-by-5 matrix) which consists of a cor-
relation matrix and a scale (standard deviation) matrix. Parameters were drawn from a multi-variate
Gaussian distribution. We used the covariance matrix to directly estimate the correlation between in-
dividual differences in high cognitive and physical effort costs. For both models the prior distributions
were clow effort ∼ N (0, 40), chigh effort ∼ N (0, 30), β ∼ N (0, 0.5). The prior on the correlation matrix
was unbiased as to the presence or absence of a correlation (LKJ Correlation Distribution prior = 1,
(Lewandowski et al., 2009)). Individual participant parameters and their group-level distributions were
estimated using Markov Chain Monte Carlo sampling, implemented in Stan with the CmdStanR package
(4,000 samples, 2,000 warm-up samples, across 4 chains, Stan Development Team, 2021).

4.4.2 Canonical correlation analysis.

To leverage the strength of our data in having many detailed individual differences measures of theoret-
ically related constructs we used Canonical Correlation analysis to preform a many to many correlation
(we used the cc function from the CCA package because it can handle missing data, González & Déjean,
2021, in the R language). The task measures included were; cognitive effort cost, interference and con-
gruent trial error rate (transformed as log(2-correct)), physical effort cost, and overall exit threshold
(estimated in log apples over all blocks by participant using linear mixed-effects regression). The self-
reports were the Need for Cognition, Executive Function (Adult-temperament questionnaire), PROMIS
Cognitive Function and Cognitive Function-Abilities, Behavioral Inhibition and Behavioral Activation,
the Apathy Motivation Index sub-scales, anhedonia (Snaith Hamilton Pleasure Scale), physical fatigue
(PROMIS Fatigue), Self-efficacy (PROMIS), anxiety (Generalized Anxiety Disorder-7), and depression
(Patient Health Questionnaire-9).

It is possible that using task parameter estimates fitted using a correlation matrix might have biased
the CCA. We re-ran the analysis with a conservative model that had no covariance matrix between
parameters. Everything in the model was the same except that participant parameters were drawn from
a normal distribution with the mean of the group-level parameter and standard deviation N(0.5, 0.5)
for the inverse temperature, N(40, 40) for the cognitive and physical low effort costs, and N(30, 30) for
the cognitive and physical high effort costs. We repeated the canonical correlation analysis with the
parameter estimates of the model without the correlation matrix.
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Initial Sample Size 678
Final Sample Size 537
Number of outlier participants
Did not complete experiment 5
Foraging trial response deadline missed (> 10% trials) 30
MSIT Congruent error rate (> 2SD) 10
MSIT Interference error rate (> 2SD) 51
Smaller number of presses uncompleted (%,>2SD) 12
Larger number of presses uncompleted (%,>2SD) 29
Number of exit trials per condition (<2SD) 11
Change exit threshold cognitive (<2SD | >2SD) 30
Change exit threshold physical (<2SD | >2SD) 31

Table 5: Effort Foraging Task Behavior Based Exclusion Methods. Column 1: basis of exclusion, column
2: numbers for Experiment. Number of participants outliers by exclusion criteria by experiment. Par-
ticipants could be excluded on multiple grounds, therefore the number of outlier participants are listed
but total don’t add up to the number of excluded participants in the top two rows.

4.4.3 Exclusion criteria.

Participants completed the study on their own outside of the laboratory. To ensure data quality we
used task behavior to constrain our sample to participants who completed the experiment in earnest.
The exclusion criteria were; not completing the experiment, missing the response deadline on a large
number of harvesting trials, poor cognitive or physical travel task performance, too few exit trials in a
condition, outlier in change in exit threshold from low to high cognitive and physical effort conditions.
Participants with very large shifts in thresholds produced strong outliers in our Marginal Value Theorem
model, furthermore, many of the excluded participants had very few exit trials in one condition (for
example harvesting each tree many times to avoid travel). Table 5 shows the number of participants
who were outliers as well as the overall number of participants excluded per study. In greater detail, a
participant was excluded if they missed a large number of harvest trials (if they did not respond after 1
second deadline in greater than 10% of all harvest trials). Participants were excluded if they performed
poorly on any of the travel tasks (using the metrics MSIT congruent and interference trial error rate,
percent smaller presses completed, percent larger presses completed). For each travel task we computed
the group mean and standard deviation, and excluded participants who were 2 standard deviations below
the group mean performance.
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5 Appendix

5.1 MSIT Performance Results

There were individual differences in MSIT performance Fig. S.1. Participants bonus earnings were not
influenced by their performance. In the main experiment we did not set a performance criterion because
that would have complicated the interpretation of the foraging behavior (we would have to estimate
not just costs but, for example, subjective efficacy estimates per participant). However in the training
established the expectation that participants had to try to be accurate while performing cognitive task
by tasking participants with completing a certain number of mini-blocks with high accuracy.

Figure S.1: Individual differences in MSIT performance. Histogram of individual differences in MSIT
performance for non-excluded participants in Experiment 1. Top row: error rate (computed as log(2-
correct)), bottom row: reaction time. Column 1: congruent trials, column 2: interference trials, column
3: interference effect (interference minus congruent).

5.2 Canonical correlation results

For ease of interpretation we created a table to display variables that were most associated with each
dimension (using a coefficient threshold of 0.5). Complete results for the canonical correlation are in
Fig. S.2.

5.3 Self-report attention checks

Infrequent attention check items were embedded in the self-report surveys to ensure participants were
reading the items (following Zorowitz et al., 2021). 28 participants were excluded from self-report analyses
(i.e., CCA) because they failed either of the attention check items embedded in the Apathy Motivation
Index, and Generalized Anxiety Disorder-7 self-reports (see items in Fig. S.3). We did not use the items
embedded in PROMIS-Cognitive Function or the Patient Health Questionnaire-9 self-reports because
response patterns indicated ambiguity in the questions.
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Figure S.2: Canonical correlation results. Top panel: canonical correlations by dimension. Bottom
left panel: dimension coefficients for task parameters (X coefficients). Bottom right panel: dimension
coefficients for self-reports (Y coefficients). Coefficients with absolute value larger than 0.5 shown in
black. Only coefficients from significant dimensions are displayed.

Figure S.3: Attention check items results. Correct answer was left-most responses. Participants were
excluded if they were inattentive on the Apathy Motivation Index, and Generalized Anxiety Disorder-7
items.

21

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.21.517394doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517394
http://creativecommons.org/licenses/by-nc/4.0/


EFFORT FORAGING TASK

Experiment 1 (MSIT) Experiment 2 (N-Back) Experiment 3 (Rich condition)
Best threshold 6.78 apples 4.65 apples 6.17 apples
Reward rate 3.39 2.32 2.37

Number of harvests µ 6.77 9.95 9
Number of harvests SD 1.69 2.01 2.56

Table S1: Best exit threshold policy in simulated data. Columns: Experiments. Row 1: Best threshold
from simulation. Row 2: Reward rate achieved with best threshold. Rows 3-4 How many harvests it
took to reach the best threshold.

5.4 Simulation to find best threshold.

We simulated the best foraging threshold by creating a foraging environment with an agent with a fixed
exit threshold and observing the resulting reward rate. We used a policy iteration algorithm to find the
maximal reward rate for a given foraging environment. The foraging environment was defined by the
following parameters from our experiments; the harvest time (2 seconds), travel time (8.33 seconds), the
distribution of initial rewards to a tree N(15, 1) distribution of the decay function (beta distribution,
β(14.90873, 2.033008)). We assumed the agent knew the mean depletion rate (0.88 multiplied by the
previous reward) and used this value to predict the expected reward on the current trial. If the predicted
reward was less than or equal to the agent’s threshold it exited the patch Re ≤ ρ, otherwise it harvested
the patch which yielded reward. We simulated 840 ‘seconds’ of foraging time for all experiments (though
the result should be robust to duration). The simulation outputs were the ‘best threshold’ (threshold
that yielded the highest reward rate, results vary slightly by simulation run), the resulting ‘best reward
rate’, as well as the mean and standard deviation number of harvests to reach that exit threshold.

The agents’ threshold parameter was initialized at 4 apples. For an iteration i, the threshold was
set as the mean reward rate observed in iteration i-1, this allowed the threshold to gradually improve in
terms of reward rate between iterations. The simulation stopped and the best threshold was determined
based on the stopping threshold of a 0.001 apple per second improvement in reward rate on iteration i
compared iteration i-1 (with a maximum of 200 iterations). Best exit threshold policy in simulated data
(not including effort costs) was 6.78 apples, the reward rate achieved with best threshold was 3.39 apples
per second, and on average it took 6.77 ± 1.69 harvests to reach the best threshold (Table S1).

5.5 Overall threshold results

We found that the mean exit threshold across all conditions in Experiment 1 was 6.30 apples (SE =
0.11, df = 615.95, t = 56.09, p < 0.001). The group average was close to the best threshold identified
by simulation (6.78 apples), however individuals varied widely. Using linear regression we estimated
the mean exit threshold across all conditions (“overall threshold”) per participant and included these
estimates as an additional dimension of individual differences in the task (when testing the relationship
between task behavior and surveys). The overall exit threshold may be a relevant individual difference
in representations of subjective reward rate (Fig. S.5), a benefit of this task is that it can simultaneously
measure exit thresholds and effort costs. Striatal dopamine is hypothesized to represent average reward
rate in foraging settings (Constantino et al., 2017; Le Heron et al., 2020). Consistent with this exit
thresholds are lower (more over-harvesting) in individuals with Parkinson’s (Constantino et al., 2017;
Le Heron, Plant, et al., 2018), when participants are chronically or acutely stressed (Lenow et al., 2017),
and in individuals with opioid dependence (Raio et al., 2022).

5.6 Validation Experiments

We developed two cognitive effort variants of the effort foraging task. In both versions we used a
cognitive and a physical effort manipulation. Experiment 2 (N-Back) was developed in an undergraduate
population. Experiment 1 (MSIT) was an abbreviated version developed for a large-scale online study.
This tested the generalizability of the task in terms of population as well as in the type of cognitive effort
(working memory versus inhibition).

5.6.1 Experiment 2 (N-Back)

Participants completed the study on their own outside of the laboratory. Participants were excluded if
they performed poorly on any of the travel tasks (using the metrics MSIT congruent accuracy, MSIT
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Figure S.3: Individual differences in overall threshold. Histogram of individual differences in mean
foraging exit threshold estimated using mixed-effects regression Experiment 1 (MSIT). Some individuals
over-harvest (exit threshold below best threshold, dotted line, 6.78 apples) while others under-harvest
(exit threshold above best threshold).

Parameter Experiment 1
(MSIT)

Experiment 2
(N-Back)

Experiment 3
(Richness)

Harvest time 2 seconds
Travel time 8.33 seconds 20 seconds
Cognitive Travel
Tasks

MSIT Congruent,
Interference

1-Back, 3-Back

Physical Travel
Tasks

Larger (100% max), Smaller (50%) number of presses)

Block duration 4 minutes 7 minutes
Number blocks
condition

2

Initial reward N (15, 1) N (15, 1), N (20, 1)
Decay rate β(14.13, 2.03)
Total Number of
blocks

8 8

Table S2: Foraging environment parameters comparison chart. First column: environment parameter.
Second column: Experiment 1 (MSIT). Third column: Experiment 2 (N-Back).
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Experiment Experiment 2 (N-Back)
Initial Sample Size 116
Final Sample Size 81
Number of outlier participants
Did not complete experiment 9
Foraging trial response deadline missed (> 10% trials) 7
1-Back accuracy (D’, < 2SD) 5
3-Back accuracy (D’, < 2SD) 5
Smaller number of presses uncompleted (%,>2SD) 9
Larger number of presses uncompleted (%,>2SD) 5
Number of exit trials per condition (<2SD) 12
Change exit threshold cognitive (<2SD | >2SD) 5
Change exit threshold physical (<2SD | >2SD) 6

Table S3: Experiment 2 (N-Back) Exclusion Methods. Column 1: basis of exclusion, column 2: numbers
for Experiment 2 (N-Back). Number of participants outliers by exclusion criteria by experiment. Par-
ticipants could be excluded on multiple grounds, therefore the number of outlier participants are listed
but total won’t add up to the number of excluded participants in the top two rows.

interference accuracy, 1-Back D’, 3-Back D’, percent smaller presses completed, percent larger presses
completed).

Methods 116 Undergraduate students volunteered for a two and a half hour self-guided remote exper-
iment (Experiment 2 (N-Back), 18-27 years, mean = 20 years ± 1.5, 70 female, 42 male, 4 prefer not to
answer). The study was approved by the Princeton University Institutional Review Board and partici-
pants were recruited from a pool maintained by the Princeton Psychology Department. Undergraduate
students were compensated with 2.5 psychology course credit hours and a performance bonus up to $10
in the form of an Amazon gift card (bonus M = $7.68, SD = 0.61, range = $4.41 - 8.35). The conversion
of apples to money was 0.11 cents per apple.

N-Back working memory task The N-Back task was performed as part of foraging task during
travel between trees. In the N-Back task letters are displayed on screen in a sequence. Participants
judge whether the stimulus that is currently on the screen matches the stimulus they saw a number
of screens back (N-Back). On every trial participants responded via keypress whether the letter was
a match (“s” key) or non-match (“d” key) to the letter on the previous screen (1-Back case) or three
screens before (3-Back case). A trial began with a fixation cross (for 250 milliseconds) followed by the
letter on screen (for 500 milliseconds) followed by a blank screen (for 950 milliseconds, total trial duration
= 1.7 seconds). During a foraging travel bog 10 letters were presented, of which, 2 or 3 were targets
(letter matches letter N-Back) and 2 or 3 were lures (matches current letter but not in position N-Back).
The number of targets and lures were selected randomly each time an N-Back stimulus sequence was
generated. We only used consonants to prevent participants from using mnemonics (letters were: ‘B’,
‘C’, ‘D’, ‘F’, ‘G’, ‘H’, ‘J’, ‘K’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’) and half of the letters
were presented in upper case and the other half lower case to prevent participants using iconic memory.
(Cohen et al., 1994)

N-Back working memory task training We trained the N-Back task extensively to try to bring
participants to highest possible levels of performance and minimize automaticity differences (in which
some participants would have more experience with the N-Back or similar tasks, making the task less
effortful for them compared to someone with little experience). Participants had to reach a certain
performance criterion to move on from training. After being instructed on the task participants began
practice for one of the effort levels (counterbalanced). First they completed two extended blocks (50 trials
with a self-paced break up to 45 seconds between) with feedback about error type (types of feedback:
“non-match”, “missed match”, “no response”, displayed in red font for 800 ms after the trial). Then
they performed one extended block without any feedback (50 trials).

We tasked participants with completing a certain number of mini-blocks with high accuracy to begin
the foraging task. We did so to establish the expectation that participants had to exert effort when
they chose to travel while foraging. A mini-block was a success when they saw no error feedback (large
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Parameter Mean Lower bound Upper bound
Inverse Temperature 0.425 0.383 0.469

Cognitive Low Effort Travel Cost 114.909 105.088 125.274
Cognitive Effort Cost 16.776 10.356 23.441

Physical Low Effort Travel Cost 124.295 112.371 136.350
Physical Effort Cost 15.943 8.915 23.007

Table S4: Experiment 2 (N-Back) Parameter posterior distribution values. Table includes the mean of
the group-level posterior distribution and the upper and lower bounds (95% HDI).

black dot), and they were told they were moving on to the next mini-block. The error feedback was
displayed when participants made two consecutive errors (including omission errors). If they did see one
or more error feedback symbols they had to repeat that mini-block. They had to successfully complete
8 mini-blocks of the 1-Back task, and 12 mini-blocks of the 3-Back task. This training also ensured
that participants could adequately perform the task. Participants had self-paced breaks in between all
mini-blocks (up to 60 seconds).

Figure S.4: Individual differences in effort costs Experiment 2. There were individual differences in
3-Back travel cost. Some participants were insensitive to the manipulation (3-Back cost near zero).

Explicit awareness of effort avoidance In Experiment 2 (N-Back), we asked participants if, and
how, the required travel task changed their decision to travel to a new tree. For the cognitive (N-Back)
variant, of those who completed the debrief survey (N = 113), 36% of participants (N = 41) reported
changing their behavior based on the travel task (saying in their own words that they avoided the high
cognitive effort [3-Back] task and stayed longer at a tree), whereas 64% of participants (N = 72) explicitly
stated that the travel task did not change their decisions. This supports the idea that, for the majority
of participants, the task is an indirect measure (i.e., participants whose behavior was influenced by the
travel task were not aware of doing so).

Overall thresholds by experiment. We computed the group mean overall exit thresholds separately
in Experiments 1 and 2 using mixed effect linear regression using only an intercept term. We compared
these observed group overall thresholds to best thresholds from simulations. The group level mean overall
threshold was 6.30 apples in Experiment 1 (SE = 0.12, df = 535.87, t = 54.36 , p < 0.001) which was
close to the best policy in simulation of 6.78 apples (see Fig. S.5, and Table S1). The group level mean
overall threshold was 4.02 apples in Experiment 2 (SE = 0.22, df = 80.22, t = 18.47, p < 0.001) which
was similar to the best policy in simulation of 4.65 apples.
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Figure S.5: Group level exit thresholds by Experiment. Left plot: Experiment 1, right plot: Experiment
1. x-axis: Foraging conditions indicated by the travel task required, y-axis: Group-level mean exit
threshold (apples), error bars indicate SEM. Effort level indicated by bar color (light gray = low effort,
dark gray = high effort). Group average thresholds near best threshold from simulation (best threshold
respect to reward rate was 6.78 apples in Experiment 1 (MSIT) and 4.65 apples in Experiment 2 (N-
Back)).

Relationship between cognitive and physical effort costs In the larger online sample we found
a significant positive correlation between cognitive and physical effort costs (Experiment 1 (MSIT), N
= 537, correlation = 0.55). In the smaller sample we did not find conclusive evidence for or against the
correlation (Experiment 2 (N-Back), N = 81, wide highest density interval). Encouragingly the credible
interval for the Experiment 2 (N-Back) model overlapped with the credible interval in Experiment 1
(MSIT). We speculated this may have to do with the Experiment 2 (N-Back) sample being less rep-
resentative of the general population. We found that the Undergraduate students had higher Need for
Cognition Scores compared to the Prolific sample. Princeton University students may have been admitted
for being exceptionally cognitive effort seeking (“intellectuals”) or for being exceptionally physical effort
seeking (“athletes”). Indeed Princeton University has a large percentage of student athletes, although
we did not collect data on how many participants were student athletes. Perhaps in these students there
is a decoupling of effort-based decision making in the cognitive and physical domain that is not typical
of the general population. Consistent with this account we observed many more participants who were
indifferent to one type of effort (effort cost near zero) but had high effort costs for the other domain
(see spreading along the x- and y-axes in the Experiment 2 (N-Back) but not Experiment 1 (MSIT)
sample Fig. S.6). Experiment 1 (MSIT) participants were also likely more representative of the general
population in that there was a wider age range and many more participants.

We directly fit the correlation between cognitive and physical high effort costs via a covariance matrix
of fixed-effects parameters. We did not find a reliable correlation in Experiment 2 (N-Back) (mean
correlation = 0.048, 95% HDI = -0.369 - 0.462). One explanation is that we were under powered to
detect a correlation (N = 81 in Experiment 2 (N-Back)). Indeed the highest density interval is very wide
in Experiment 2 (N-Back) model, and the 80% highest density interval does overlap with the posterior
distribution in Experiment 1 (MSIT) model.

5.6.2 Experiment 3 (Richness)

Methods In Experiment 3 (Richness) we conducted a study manipulating the tree richness as a bench-
mark of how participants adjust their exit threshold in response to reward rate (richness was not ma-
nipulated in Experiments 1 and 2). We compared two levels of reward richness by adjusting the mean
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Figure S.6: Experiment 2 (N-Back) Cognitive versus Physical Effort Correlation. Row 1: posterior
distribution of correlation between high effort cost for cognitive and physical effort. Cognitive and
physical effort costs are not correlated in Experiment 2 sample (95% HDI overlapping with zero) wide
confidence interval suggests sample is under-powered. Row 2: x-axis: Individual differences in Cognitive
Effort Costs, y-axis: Individual differences in Physical Effort Costs. Error bars indicate 80% HDI.

of a normal distribution used to draw the initial reward paid out by a tree. In the ’scarce condition’ the
initial reward mean was 15 apples N(15, 1) and in the ’rich condition’ the initial reward mean was 20
apples N(20, 1). We tested all combinations of the effort and richness orchard types and counterbalanced
block order within effort type. We predicted participants would lower their threshold (exit later) in the
scarce condition because reward rate is lower in the scarce compared to the rich condition. This would
confirm that participants still adhere to predictions of the Marginal Value Theorem even in our novel
experiment context where effort was added to the travel.

The richness manipulation was conducted during piloting studies of physical effort version of the
Effort Foraging Task. There were several differences between the pilot studies (Experiment 3) and the
main experiments (1 and 2). Pilot studies were conducted in the laboratory (rather than remotely). For
pilot studies we pre-screened participants to have relatively low Need for Cognition (we did not do so
in the main experiments). The pre-screen survey was completed online no later than 24 hours before
the study. Participants gave written consent to complete the pre-screen. To avoid explicit cueing of the
objective of the study we administered two foil self-report scales following the Need for Cognition scale;
the Individualism and Collectivism Scale (Triandis & Gelfand, 1998) and the Ambiguity Tolerance Scale
(Mac Donald, 1970). Participants with Need for Cognition scores less than or equal to 70 points (out of
90 possible points) were invited to the study. Participants again gave written consent to participate in
the study.

43 participants volunteered for Experiment 3 (Richness) (24 female, 19 male, 18-34 years old, mean
age = 21.5 years ± 3.7). Experiment 3 (Richness) includes two pilot studies in which richness was
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manipulated. In the ‘button-pressing rate’ version, participants had to maintain a fixed rate (smaller
number of presses per second vs. larger number of presses per second). In the ‘button-press count’
version, participants had to complete a smaller number or larger number of their maximum calibrated
presses (this was the same physical effort requirement as in the main experiments). The cognitive effort
requirement in both versions was the N-Back task (same as in Experiment 2 (N-Back)). There were 21
participants in button-pressing rate version and 19 participants in button-pressing count version. Three
participants were excluded due to poor button pressing performance (> 2SD uncompleted presses).
In both versions participants completed 4 N-Back blocks followed by 4 rapid button pressing blocks.
Orchard duration was 5 minutes in the button-press rate version, and 7 minutes in the button-press
count version. Harvest and travel time were the same for Experiments 1 (N-Back) and 3 (Richness).

To test whether participants responded as predicted to the richness manipulation, we fitted a mixed-
effects linear regression model to exit thresholds (using the lme4 pacakge in the R language, Bates et
al., 2022). The model predicted exit threshold (expected (log) apples) by orchard type separately fit
for all conditions (for cognitive high and low effort, and physical high and low effort, and scarce and
rich orchards) for all participants. Then we computed a multi degrees-of-freedom test on the linear
mixed-effects model (using contestMD function of the lmerTest package (Kuznetsova et al., 2020)). The
contrast tested whether the mean-value parameters are significantly different in the scarce compared to
the rich condition (collapsing over all of the different travel tasks).
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inhibition and behavioural activation systems in current and recovered major depression partic-
ipants [Place: Netherlands Publisher: Elsevier Science]. Personality and Individual Differences,
40 (2), 215–226. https://doi.org/10.1016/j.paid.2005.06.021

Quilty, L. C., Mackew, L., & Bagby, R. M. (2014). Distinct profiles of behavioral inhibition and activation
system sensitivity in unipolar vs. bipolar mood disorders. Psychiatry Research, 219 (1), 228–231.
https://doi.org/10.1016/j.psychres.2014.05.007

Raio, C. M., Biernacki, K., Kapoor, A., Wengler, K., Bonagura, D., Xue, J., Constantino, S. M., Horga,
G., & Konova, A. B. (2022, March 27). Suboptimal foraging decisions and involvement of the ven-
tral tegmental area in human opioid addiction [Pages: 2022.03.24.485654 Section: New Results].
https://doi.org/10.1101/2022.03.24.485654

Salamone, J. D., Correa, M., Yang, J.-H., Rotolo, R., & Presby, R. (2018). Dopamine, effort-based
choice, and behavioral economics: Basic and translational research. Frontiers in Behavioral Neu-
roscience, 12. Retrieved March 6, 2022, from https://www.frontiersin.org/article/10.3389/
fnbeh.2018.00052
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