
k2v: A Containerized Workflow for Creating VCF
Files from Kintelligence Targeted Sequencing Data

Stephen D. Turner
Signature Science, LLC
Charlottesville, Virginia

Michelle A. Peck
Signature Science, LLC
Charlottesville, Virginia

November 21, 2022

Abstract

The ForenSeq Kintelligence kit developed by Verogen is a targeted Illumina sequencing assay
that genotypes 10,230 single nucleotide polymorphisms designed for forensic genetic genealogy,
forensic DNA phenotyping, and ancestry inference. We developed k2v, a containerized
workflow for creating standard specification-compliant variant call format (VCF) files from
the custom output data produced by the Kintelligence Universal Analysis Software. VCF files
produced with k2v enable the use of many pre-existing, widely used, community-developed
tools for manipulating and analyzing genetic data in the standard VCF format. Here we
describe the k2v implementation, demonstrate its usage, and use the VCF produced by
k2v to demonstrate downstream analyses that can easily be performed with pre-existing
tools using VCF data as input: concordance analysis, ancestry inference, and relationship
estimation. k2v is distributed as a Docker container available on Docker Hub. Documentation
and source code for k2v is freely available under the GNU Public License (GPL-3.0) at
https://github.com/signaturescience/k2v.
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1 Introduction

Kinship analysis using single nucleotide polymorphisms (SNPs) is a cornerstone of forensic genetic genealogy
(FGG) analysis (Greytak, Moore, and Armentrout 2019; Kling and Tillmar 2019; Glynn 2022). Originally
used by hobbyist and professional genealogists, databases populated with direct-to-consumer DNA tests
such as GEDmatch and Family Tree DNA are now widely used by law enforcement agencies to generate
investigative leads on unknown crime scene samples or unidentified human remains by finding distant relatives
of the unknown DNA sample. The technique has gained enough traction in the community to prompt the
Federal Bureau of Investigation (FBI) to call for self-regulation and development of guidelines for practicing
responsible genetic genealogy (Callaghan 2019).
FGG routinely relied on genome-wide SNP data using whole genome sequencing or microarrays (Russell et
al. 2022; de Vries et al. 2022; Davawala et al. 2022; Tillmar et al. 2020). However, targeted sequencing
assays have recently been developed that leverage a sparse set of SNPs for kinship analysis, including
the community-developed FORCE panel (Tillmar et al. 2021) and the commercially available ForenSeq
Kintelligence kit (Verogen, Inc., San Diego CA), which we internally validated (Peck et al. 2022).
The Kintelligence kit provides genotypes on 10,230 SNPs, of which 9,867 are kinship-informative SNPs used
for SNP-based kinship analysis across populations, while the remaining 363 are used to inform biogeographical
ancestry, identity, hair and eye color, and biological sex (Snedecor et al. 2022). The Kintelligence kit integrates
data analysis in a browser-based application, and also produces Excel and text file outputs containing genotype
data in a custom format.
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The Variant Call Format (VCF) is the de facto standard file format for storing genetic variant data that
has been used by genetics and bioinformatics community for over a decade (P. Danecek et al. 2011). A vast
ecosystem of widely used, community-developed, and community-supported tools exist for managing and
analyzing variant data in VCF files including tools for general data manipulation and analysis (Petr Danecek
et al. 2021), and tools specifically designed for forensic genetics-focused analysis (Turner et al. 2022; V. P.
Nagraj et al. 2022b).
In this paper we describe a new tool, k2v, for converting Kintelligence data into a standard specification-
compliant VCF, which enables the use of a vast pre-existing infrastructure for genetic data manipulation
and analysis. The k2v workflow is implemented as a Docker container, and can be run on any system where
Docker or Singularity is available. We provide a demonstration of the k2v workflow and several example
forensic genetics-relevant analyses that can easily be accomplished using standard tools that use VCF data as
input.

2 Implementation

k2v is implemented as a Docker container and is distributed to run directly from a command line interface.
The k2v Docker image has bcftools (Petr Danecek et al. 2021), htslib (Bonfield et al. 2021), and R (R Core
Team 2017) installed on a lightweight Alpine Linux base image. Running the k2v container instantiates
a script inside the container that takes as input the custom *.SnpResult.txt file that is produced by
Kintelligence, joins that data to a table of reference and alternate alleles obtained by extracting Kintelligence
sites from the GnomAD site VCF (Karczewski et al. 2020) to create an intermediate tabular file, which
is then converted to VCF using bcftools, and written out to the host filesystem after being compressed
with bgzip and indexed with tabix. Documentation and implementation details are available in the project
repository at https://github.com/signaturescience/k2v.

3 Use cases

3.1 Validation data analysis

With only the custom format text file produced by the Kintelligence platform, custom analysis workflow
development would be required for basic data analysis tasks such as call rate, concordance, and heterozygosity
analysis that may be used in a validation study. Instead, we can convert the Kintelligence data into VCF
then use pre-existing tools for data analysis to streamline analysis.
In this example we convert Kintelligence data generated on the NIST Standard Reference Material sample
HG002 (NA24385) to VCF using k2v. We first use bcftools (Petr Danecek et al. 2021) to calculate simple
statistics on the VCF. We then use the previously published nrc tool (V. P. Nagraj et al. 2022b) to
get a detailed analysis of how the Kintelligence genotype data differs from the benchmark callset from
NIST/Genome-in-a-Bottle. Additional details on k2v usage and getting example data can be found on the
k2v GitHub README. This analyses required less than one second of compute time. Table 1 shows the
count of the number of substitutions and variant types in sample HG002. Table 2 shows a subset of results
from running the nrc tool on the VCF produced by k2v, comparing the Kintelligence VCF to the GIAB
high-confidence call set.
# Convert kintelligence data (HG002.SnpResult.txt) to VCF using the k2v container
docker run -v $(pwd):$(pwd) -w $(pwd) sigsci/k2v HG002.SnpResult.txt
# Simple statistics with bcftools
bcftools stats HG002.vcf.gz
# Use the nrc docker container to calculate concordance stats with GIAB sample data
docker run -v $(pwd):$(pwd) -w $(pwd) sigsci/nrc HG002.giab.vcf.gz HG002.vcf.gz

3.2 Ancestry inference

The use of principal components analysis (PCA) for studying genetic variation data was introduced over
40 years ago (Menozzi, Piazza, and Cavalli-Sforza 1978). Since its introduction PCA has been widely used
in population and medical genetics for biogeographic ancestry analysis (Patterson, Price, and Reich 2006;
Novembre et al. 2008; Li et al. 2008; Wellcome Trust Case Control Consortium 2007; Tian et al. 2008;
Price et al. 2008; Shriver and Kittles 2004), and has recently gained in the forensic genomics community for
statistical inference of an unknown DNA donor’s ancestry (Phillips 2015).
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There are several existing tools for conducting PCA with genetic variant data including EIGENSTRAT
(Price et al. 2006) and PLINK (Purcell et al. 2007), both widely used and well-supported by the genetic
epidemiology community. The Ancestry and Kinship Tools (AKT) developed by Illumina is a permissively
licensed open-source implementation of PCA (and other analyses relevant for forensic genomics), which uses
the htslib API allowing it to work directly with VCF files.
In this example we use AKT to perform PCA on the HG002 VCF produced by Kintelligence against the
2,504 individuals in the 1000 Genomes Project phase 3 release data. In this example we start with the 1000
Genomes data on the kintelligence sites, merge in the HG002 VCF produced by k2v, then run PCA using
AKT. We read in the output into R, annotate the 1000 Genomes samples with continental ancestry (Turner
2022). This analysis required less than 10 seconds of compute time. Figure 1 shows a PCA biplot showing the
first two principal components, with HG002 highlighted against the background of 1000 Genomes samples.
# Merge HG002 with the 1000 Genomes Project reference samples using bcftools
bcftools merge 1000g.kintelligence.vcf.gz HG002.vcf.gz | bcftools sort -Oz -o pca.in.vcf.gz
tabix -f pca.in.vcf.gz
# Conduct a principal components analysis using AKT
akt pca --force pca.in.vcf.gz -Oz -o pca.out.vcf.gz > pca.txt

3.3 Relationship estimation

Relationship inference methods using genome-wide SNP data typically fall into two broad classes of methods:
measures that directly infer relatedness genome-wide, and identity by descent (IBD) segment approaches
(Ramstetter et al. 2017). These approaches to relationship inference have been benchmarked using data
generated in ideal conditions (Ramstetter et al. 2017), and more recently assessed using low-quality microarray
data on forensic samples (Turner et al. 2022) or with low-coverage whole genome sequencing data followed by
imputation (V. P. Nagraj et al. 2022a).
In this example, we use the KING-robust estimator (Manichaikul et al. 2010) implemented in the PLINK 2
software (Chang et al. 2015) to estimate relatedness between two Ashkenazi Jewish individuals from the
Personal Genome Project: HG002 (NA24385; the son), and HG004 (NA24143, the mother), using VCFs
produced by k2v from Kintelligence data. This analysis required less than 50 milliseconds of compute time.
# Convert each Kintelligence text file to VCF
docker run -v $(pwd):$(pwd) -w $(pwd) sigsci/k2v HG002.SnpResult.txt
docker run -v $(pwd):$(pwd) -w $(pwd) sigsci/k2v HG004.SnpResult.txt
# Merge with bcftools
bcftools merge HG002.vcf.gz HG004.vcf.gz > merged.vcf.gz
# Estimate relatedness
plink2 --make-king-table --vcf merged.vcf.gz

The kinship coefficient between these two samples as inferred using the KING-robust estimator is φ = 0.2384,
which clearly indicates that this sample pair is a first-degree relationship. The proportion of loci where zero
alleles are shared identical by state is κ0 = 0.0039. Because parent-child offspring are expected to share
κ0,1,2 = (0, 1, 0) while full siblings are expected to share κ0,1,2 =

( 1
4 ,

1
2 ,

1
4
)
, we correctly infer that HG002 and

HG004 are a parent-offspring pair.

4 Conclusion

To use data from a sequencing or genotype assay that produces variant calls in a custom format requires either
(a) custom development of new analysis tools for each downstream analysis task, or (b) development of a single
tool to convert data to a common format for which tools already exist. k2v takes the latter approach, enabling
the rapid conversion of Kintelligence variant data in a custom format to a standard specification-compliant
VCF file. Once data exists in a VCF, nearly any downstream analyses and manipulation tasks can readily
be achieved with existing infrastructure. k2v is currently limited to SNPs only, and cannot capture the one
insertion that Kintelligence targets (rs796296176).
k2v is freely available under the GNU Public License (GPL) v3 at https://github.com/signaturescience/
k2v with further documentation on the repository README. A pre-built Docker image is available on Docker
hub and can be installed via docker pull sigsci/k2v.
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Table 1: Count of the number of substitutions and variant types in sample HG002.

Substitution / variant type Count
A>C 288
A>G 1,439
A>T 4
C>A 289
C>G 4
C>T 1,614
G>A 1,515
G>C 2
G>T 302
T>A 1
T>C 1,424
T>G 307
Homozygous REF 2,897
Homozygous ALT 2,590
Heterozygous 4,599
Transitions 5,992
Transversions 1,197
Missing 55

Table 2: Subset of output from the nrc tool comparing the Kintelligence data
converted to VCF using k2v against the high-confidence GIAB callset from HG002.
The table shows the total number of biallelic SNPs compared between the two
samples, discordance and concordance statistics, non-reference discordance (NRD),
non-reference concordance (NRC), and the full array of each type of genotype match
and mismatch. The vector of match/mismatch counts can be interpreted as follows:
RRRR = number of genotype matches where the GIAB and Kintelligence calls are
both homozygous for the reference allele; RRRA = number of genotype mismatches
where the GIAB call is homozygous reference (Ref/Ref), but the Kintelligence VCF
is heterozygous (Ref/Alt); RARA = number of genotype matches where both the
GIAB callset and the Kintelligence VCF are both heterozygous (Ref/Alt); etc. See
(V. P. Nagraj et al. 2022b) for definitions of NRD and NRC. Note that the total
number of SNPs compared is fewer than the number of SNPs assayed by Kintelligence
– this is because the GIAB call set only includes autosomes, and the high-confidence
regions do not cover all the Kintelligence-assayed sites.

Metric Value
Total 9,802
Discordance 0.00867
Concordance 0.991
NRD 0.0121
NRC 0.988
RRRR 2,779
RRRA 2
RRAA 0
RARR 40
RARA 4,511
RAAA 42
AARR 0
AARA 1
AAAA 2,427
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Figure 1: Principal components analysis (PCA) biplot, showing the first two principal
components highlighting the HG002 VCF produced by k2v against the 2,504 samples
in the 1000 Genomes Project phase 3 release data.
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