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Abstract: AI-based methods such as AlphaFold have raised the possibility of using predicted 
models in place of experimentally-determined structures. Here we assess the accuracy of 
AlphaFold predictions by comparing them to density maps obtained from automated 
redeterminations of recent crystal structures and to the corresponding deposited models. Some 25 
AlphaFold predictions match experimental maps closely, but most differ on a global scale 
through distortion and domain orientation and on a local scale in backbone and side-chain 
conformation. Such differences occur even in parts of AlphaFold models that were predicted 
with high confidence. Generally, the dissimilarities exceed those between high-resolution pairs 
of structures containing the same components but determined in different space groups. 30 
Therefore, while AlphaFold predictions are useful hypotheses about protein structures, 
experimental information remains essential for creating an accurate model. 

One-Sentence Summary: AlphaFold predictions can be very accurate but should be treated as 
hypotheses as even high-confidence parts can be inconsistent with experimental data. 
  35 
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Main Text:  

 

Protein structure predictions using AlphaFold (1), RoseTTAFold (2), and related methods (3) are 
far more accurate than previous generations of prediction algorithms (4), bringing much closer to 
reality the biological understanding derived from knowing the three-dimensional structures of all 5 
macromolecules (1, 2, 5-8). AlphaFold predictions have been made available for 200 million 
individual protein sequences to further drug discovery, protein engineering and understand 
biology (9). The question that immediately arises is whether these predictions can substitute for 
experimental structure determinations (10).  

There is considerable discussion about limitations of AI-based models (10, 11). The accuracy of 10 
a prediction is typically assessed by how closely it matches a structure in the Protein Data Bank 
(12) (PDB) with the same sequence, but there are many ways to make such a comparison (4). 
Using comparisons that focus on local accuracy, predictions obtained with AlphaFold have been 
assessed as having “atomic accuracy” (13), as having accuracies competitive with “the best 
experimental results” (4) and being of comparable quality as an experimental crystal structure 15 
(7). It has been argued that AlphaFold predictions might be more accurate than estimated by 
comparison with models in the PDB, or even more accurate than the deposited models, because 
the deposited models are poorly defined in some places (4). This reasoning notes that side-chain 
positions and loops are sometimes not clear in crystallographic electron density maps(14), and in 
such cases a difference between an AlphaFold prediction and a deposited model would not 20 
indicate an error in the prediction. On the other hand, analyses carried out by the DeepMind team 
and others show that AlphaFold predictions vary substantially in their global and local agreement 
with deposited models and also in their coverage at the highest levels of confidence (1, 10, 15), 
with only about 40% of residues in the human proteome (16) modeled with high confidence.  

Here we address the accuracy of AlphaFold predictions by assessing how well they agree with 25 
experimental data (17). We put these results into context by examining how closely one crystal 
structure in the PDB can typically be reproduced by another crystal structure containing the same 
components, but crystallized in a different space group (resulting in different crystal contacts). 
 

Comparing AlphaFold models with crystallographic electron density maps 30 

We used a set of crystallographic electron density maps determined without reference to 
deposited models as standards for evaluation of AlphaFold predictions. The density maps were 
obtained (18) using iterated AlphaFold prediction and model rebuilding with X-ray 
crystallographic data deposited in the PDB. For the present work we selected a high-quality 
subset of 102 models and maps from this analysis consisting of those that had free R values of 35 
0.30 or better. The density maps in our analysis do not have any bias towards deposited models, 
as no information from deposited structures was used to compute these maps. Therefore, if 
features of a prediction are incompatible with the density maps and different from the deposited 
model, they are likely to be incorrect representations of the actual molecule in the crystal. 

Fig. 1 compares AlphaFold predictions, experimental density maps, and corresponding deposited 40 
models (predictions were superimposed on the deposited models). All the residues shown in Fig. 
1 were predicted with high confidence (pLDDT > 90) and the density maps range in resolution 
from 1.1 Å to 1.6 Å.  
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Figure 1. Comparison of details of AlphaFold predictions with density maps. AlphaFold predictions are shown 
in magenta with selected residues labeled; deposited models are shown in blue. Experimental electron density 
maps were taken from our previous work (19) and are contoured at 1.9 σ (A), (E), 1.1 σ (B), (F), 1.5 σ (C), 
(G), and 1.2 σ (D), (H).  Model coloring is bright for parts of the models outside the density contours and 5 
dimmed for parts that are inside the contours. (A) and (E): PDB entry 7waa showing a region with high-
accuracy prediction. (B) and (F): PDB entry 7s5L showing a region with incorrect prediction. (C) and (G): 
PDB entry 7t26 showing a prediction that does not match the density map, but where the density map is not 
fully clear. (D) and (H): PDB entry 7naz, showing a prediction that is distorted relative to the density map. 

Figure 1A shows an example of an AlphaFold prediction that superimposes closely on the 10 
corresponding density map (PDB entry 7waa (20)). For comparison, Fig. 1E shows the deposited 
model along with the same density map. The overall map-model correlation for the 
superimposed AlphaFold prediction is 0.72 and the rms Cα difference from the deposited model 
is 0.5 Å. 

Figure 1B shows a prediction for PDB entry 7s5L (21) which contained high-confidence regions 15 
that did not match the density map.  The main chain corresponding to residues N137 through 
F142 match the density map poorly. In contrast, the deposited model matches the map very 
closely (Fig. 1F). The overall map-model correlation for the superimposed prediction is 0.44, 
much lower than that for the 7waa prediction shown in Fig. 1A, and the rms Cα difference from 
the deposited model is 2.1 Å.  20 

Figure 1C shows an example of a prediction that does not match the density map but that might 
still represent a plausible conformation of the molecule. The prediction for PDB entry 7t26 (22) 
does not superimpose on the density near P101 and D102, while the deposited model does (Fig. 
1G). The density map is less clear in this region than in other parts of the map. A break in main-
chain density at D102 suggests that the chain adopts multiple conformations in this region. It is 25 
possible that the conformation in the AlphaFold prediction could be one of these alternative 
conformations, though not a dominant one as it does not appear in the density map. 

Figure 1D illustrates a case where the AlphaFold prediction is distorted relative to the density 
map (PDB entry 7naz). Residues in the vicinity of V156 match the density closely (Fig. 1D), 
while residues near L235 are shifted relative to the map. For comparison, the deposited model 30 
matches the map closely throughout the region shown (Fig. 1H). 
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Figure 2A (open bars) shows the overall compatibility of 102 AlphaFold predictions with their 
corresponding density maps, as measured by map-model correlation. The mean map-model 
correlation for AlphaFold predictions (open bars) after superimposing them on corresponding 
deposited models was 0.56, substantially lower than the mean map-model correlation of 
deposited models to the same maps of 0.86 (hatched bars). 5 

Figure 2. Overall comparison of AlphaFold predictions with density maps and deposited models. (A): Map-
model correlation between 102 AlphaFold predictions (open bars), morphed AlphaFold predictions (solid 
bars), or corresponding deposited models (hatched bars) and experimental density maps. (B): Filled circles, 
median differences between distances in 102 AlphaFold models and those in corresponding deposited models, 10 
binned by the Cα - Cα distances (bin width of 4 Å). Open circles, as filled circles, but comparing matched pairs 
of structures from the PDB in which the components are the same but the crystal form is different. (C): RMSD 
between AlphaFold predictions and deposited models (solid bars) and between pairs of matching PDB entries 
with the same composition (hatched bars). The category at the far right on the abscissa labelled “20” includes 
all values greater than 5 Å. (D): As in C except after morphing models to match. 15 

 

Distortion and domain movement in AlphaFold predictions 

Figure 1D illustrated that an AlphaFold prediction can be somewhat distorted relative to the 
actual structure. To determine whether this occurs for many AlphaFold predictions, we 
“morphed” each AlphaFold prediction to make it more similar to the deposited model (see 20 
Materials and Methods). This process reduces differences between predictions and deposited 
models that arise from either distortion or alternate locations of domains within chains. After 
morphing each predicted model, the predictions agree more closely with the electron density 
maps (Fig. 2A, solid bars, mean map correlation of 0.67 vs 0.56 before morphing), but still much 
less closely than the deposited models (Fig. 2A, hatched bars, mean map correlation of 0.86).  25 

 

rs 
D 

ch 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.21.517405doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517405
http://creativecommons.org/licenses/by-nc-nd/4.0/


Submitted Manuscript: Confidential 
Template revised February 2021 

5 
 

If two models are related by a long-range distortion or alternate locations of domains, inter-
atomic distances that are short will be similar in the two models, while those that are long will 
differ. We quantified this relationship by comparing inter-atomic distances in predicted models 
with matching distances in deposited models and examining the median differences as a function 
of distance. Fig. 2B shows that this median inter-atomic distance deviation between deposited 5 
models and moderate-to-high-confidence parts of AlphaFold predictions (pLDDT above 70) is 
about 0.1 Å for atom pairs that are close (between 4 Å and 8 Å apart) and increases to 0.7 Å for 
distant atom pairs (48 Å – 52 Å), indicating a typical distortion of about 0.5-1 Å over this range 
of distances. As a reference, we analyzed 926 pairs of high-resolution structures in the PDB that 
had identical sequences but were obtained in different crystallographic space groups (so that 10 
crystal contacts influencing conformation would differ). Fig. 2B shows that atom pairs in these 
matching structures had distances that differed by a rms of 0.1 Å for nearby residues and 0.4 Å 
for distant ones, about half the values found for AlphaFold predictions. 

As a third method of assessing distortion and differences in domain relationships in AlphaFold 
predictions, we compared them with the corresponding models from the PDB, calculating the 15 

rmsd of Cα atoms both before and after applying the distortion field described above. For this 
analysis we used all 215 structures analyzed in our previous work (19). Fig. 2C shows the 
distribution of Cα rmsd values for the AlphaFold predictions; the median rmsd is 1.0 Å. After 
applying the distortion field, the median rmsd is reduced to 0.4 Å (Fig. 2D, the median rsmd 
distortion applied was 0.6 Å). For matching pairs of structures in the PDB crystallized in 20 

different space groups, the median Cα rmsd was only 0.6 Å, and this could be reduced to 0.4 Å 
by applying a distortion field (median rms distortion applied of 0.2 Å). Overall, the Cα 

coordinates in AlphaFold predictions are considerably more different from PDB entries than 
deposits of high-resolution structures of the same molecule in different space groups are from 
each other (median rmsd of 1.0 Å vs 0.6 Å), and a substantial part of this difference consists of 25 
long-range distortion. 

Comparing AlphaFold side-chain predictions with experimental density maps 

As illustrated in Fig. 1, AlphaFold predictions often contain at least some regions that are similar 
to deposited structures, but even in these regions many details often differ. We used the 102 
electron density maps described above along with deposited models to evaluate side-chain 30 
conformations (the locations of atoms in side-chains relative to the atoms in the main-chain that 
they are connected to), an important local feature of a structural model. In order to analyze the 
local side-chain structure and remove confounding effects from domain shifts or distortions, we 
grafted the side-chain from each residue in an AlphaFold prediction onto the corresponding 
main-chain atoms residue of the deposited model. This yielded a composite model with the 35 
main-chain coordinates of the deposited models and side-chain conformations corresponding to 
the AlphaFold predictions.  
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Figure 3. Comparison of AlphaFold side-chain predictions with density map for PDB entry 7vgm. (A): PDB 
entry 7vgm showing hydrogen bonding network. (B): AlphaFold prediction (yellow) superimposed on 
deposited model for PDB entry 7vgm (magenta). (C): As in B, except the AlphaFold side-chains (yellow) are 
grafted on to the backbone for PDB entry 7vgm (main-chain atoms for each model are used to superimpose the 5 
side-chains). (D): Deposited model as in A superimposed on experimental density map (2.3 Å resolution). (E): 
AlphaFold prediction as in B superimposed on density map. (F): grafted AlphaFold model superimposed on 
density map.  

Figure 3A shows a local portion of PDB entry 7vgm, and Fig. 3B shows the AlphaFold 
prediction superimposed on the deposited model. Fig 3C shows the same region with the grafted 10 
side-chain and the composite model. The positions of several of the side-chains in the AlphaFold 
model (e.g., R32, D62, E530, E533, R494) are different from those in the deposited model. Fig. 
3D shows the deposited model for 7vgm along with the density map obtained for PDB entry 
7vgm, and Fig. 3E shows the AlphaFold model superimposed on the same density map. Even 
though the density map was obtained with the AlphaFold prediction and without reference to the 15 
deposited model, all the side-chains in the deposited model match the map closely. In contrast, 
side-chains in the AlphaFold prediction that were different from those in the deposited model do 
not match the density map, both before (Fig. 3E) and after (Fig. 3F) grafting, indicating that 
these side-chain conformations are likely to be incorrect. 

We carried out this side-chain grafting procedure for 102 AlphaFold predictions and the 20 
corresponding deposited models. For each pair of side-chains, we examined the agreement 
between atomic positions in that side-chain and the corresponding optimized density map. We 
identified pairs in which the AlphaFold side-chain prediction differed substantially from the 
deposited model (rmsd of side-chain atoms > 1.5 Å). Then based on estimates of the uncertainty 
of density values in each map and of the number of independent points sampled by side-chain 25 
atomic positions in that map, we identified AlphaFold side-chain predictions that differed from 
the deposited model and were highly unlikely (p < 0.01) to be as compatible with the density 
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map as the deposited model. We considered these AlphaFold side-chain predictions to be 
incompatible with the experimental data.  

Overall, we found that 20% of the side-chains in moderate-to-high confidence residues of 
AlphaFold predictions and not involved in crystal contacts had different conformations than in 
the corresponding deposited model (at least 1.5 Å rmsd), and one third of these (7% overall) 5 
were clearly incompatible with the experimental data. As the number of clearly-incompatible 
residues identified by our method is a lower estimate, we expect that the actual level of 
disagreement between AlphaFold predictions and conformations of the molecules in the crystals 
is somewhere between the 7% that are clearly incompatible with the data and the 20% that differ 
from the deposited models. 10 

To put the fraction of side-chain positions in AlphaFold predictions that are incompatible with 
the experimental data into perspective, we carried out a similar analysis, but using the set of 
high-resolution structures from the PDB containing the same components but crystallized in a 
different space group. For these tests we used experimentally-based density maps (2mFo-DFc 
maps (23) calculated using one model from each pair. Here, only 6% of the side-chains differed 15 
by 1.5 Å rmsd, and only 2% were in conformations that were experimentally incompatible with 
the corresponding conformations from the other set. Therefore, at a detailed level as well as an 
overall level, the differences between AlphaFold predictions and these crystal structures are 
substantially greater than for pairs of crystal structures determined in different space groups. 

We then analyzed whether the 7% of residues in AlphaFold predictions that were incompatible 20 
with experimental data included residues with functional significance. We extracted all the 
residues that were explicitly mentioned in the 49 publications describing the 102 analyzed 
structures, yielding a total of 733 named residues. Of these, 53 (7%) were among the residues we 
identified as being incompatible with experimental data, the same percentage that we found for 
all residues. For example, residues R32, D62, R497 and E533 in Fig. 3 are all in this group of 25 
functional residues that are incompatible with experimental data. 

As functionally significant residues are constrained by evolution it might have been expected 
that the evolutionary covariation that forms a central element of AlphaFold prediction (13) 
would be stronger than average. On the other hand, these same residues are more conserved than 
average (24), possibly balancing that effect. In our small sample, we do not see a substantial 30 
effect either way, rather we find that side-chains for residues in AlphaFold predictions with 
functional significance are about as likely to be incompatible with experimental data as other 
side-chains. 

Using confidence (pLDDT) to estimate errors in AlphaFold predictions 

As AlphaFold predictions can differ substantially from corresponding experimental models, 35 
straightforward methods to estimate coordinate uncertainties of these predictions would be 
useful. As a first step, we superimposed AlphaFold predictions on corresponding deposited 
models and determined the distance between the Cα atoms in the predicted and deposited models, 
as well as the confidence (pLDDT) for the predicted Cα atom.  
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Figure 4. Distribution of prediction errors for ranges of AlphaFold prediction confidence. Dark blue dots and 
line, pLDDT > 90, light blue, between 80 and 90, yellow, between 70 and 80, orange, less than 70. Ordinate is 
the fraction of cases in the ranges of rmsd indicated on the abscissa. Dashed line shows similar comparison for 
matching pairs of PDB deposits with different space groups. (A): errors estimated for structures as is. (B): 5 
Errors estimated after morphing. 

Figure 4A shows the distribution of prediction errors for various ranges of the confidence 
measure. For comparison, the dashed line in Fig. 4A shows the distribution of differences 
between matching Cα atoms in pairs of structures containing the same components but 
crystallized in different space groups. The median prediction error for high-confidence (pLDDT 10 
> 90) residues was 0.6 Å, while for residues with pLDDT between 80 and 90 it was 1.1 Å, and 
for those between 70 and 80 it was 1.5 Å (Table I). By comparison, matching Cα atoms in pairs 
of structures in different space groups differed by a median of 0.3 Å. Fig. 4B shows that 
morphing one member of each pair as described above reduces the differences over all 
confidence ranges, but differences between matching pairs of structures in the PDB are reduced 15 
similarly. 

 

Table I. Median prediction error and percentage with prediction error over 2 Å by AlphaFold confidence. 

We note these distributions do not resemble the expected Maxwell-Boltzmann distribution for 3-
dimensional Gaussian errors (excess kurtosis of over 200 for errors in prediction vs an expected 20 
value of 0.1). The distributions have a small fraction of values that are very large (long tails in 
the distributions), so describing uncertainties in terms of rms errors may not ordinarily be 
effective. Instead, it may be more useful to note the median errors described above as a measure 
of typical errors, and to also take into account the percentage of instances where the error is very 
large (i.e., completely wrong). The definition of very large errors will depend on the situation, 25 

AlphaFold confidence 
(pLDDT) 

Median prediction error (Å) Percentage with error over 2 Å 

>90 0.6 10 

80 - 90 1.1 22 

70 - 80 1.5 33 

<70 3.5 77 
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but often atomic positions that deviate by more than 2 or 3 Å are of limited value. For the 
structures analyzed here, about 10% of Cα atoms with pLDDT over 90 are found to be in error by 
over 2 Å, along with 22% of those with pLDDT between 80 and 90, 33% of those between 70 
and 80, and 77% of those with pLDDT under 70 (Table I). For comparison, just 5% of Cα atoms 
in the matched pairs of structures in the PDB crystallized in different space groups we analyzed 5 
differ by over 2 Å. 

The lack of agreement between AlphaFold predictions and experimental data is consistent with 
results of the uncertainty quantification carried out by DeepMind during the development of 
AlphaFold (25). That analysis estimated that 7% (for pLDDT > 90) to 30% (for 70 < pLDDT < 
90) of side-chains have a χ1 angle deviation of at least 40o. Such a deviation typically leads to an 10 
rmsd of side-chain atoms of over 1.5 Å. In our analysis, the average pLDDT was 94, with 12% 
of residues having a pLDDT between 70 and 90. Therefore, the errors estimated in AlphaFold 
development are generally consistent with our observation that between 7% and 20% of side-
chains with pLDDT of 70 or above are incompatible with experimental data. 

Conclusions 15 

While some AlphaFold predictions are astonishingly accurate (e.g., Fig 1A), we find that many 
parts of these predictions are incompatible with experimental data from corresponding crystal 
structures. In particular, our results show that AlphaFold predictions are not better 
representations of the contents of a crystal than the models deposited in the PDB, as the 
deposited models agree much more closely with experimental data where the predicted and 20 
deposited models differ. Our results also show that AlphaFold predictions differ from 
corresponding models deposited in the PDB by much more than pairs of high-resolution 
structures in the PDB that were crystallized in different space groups, indicating that AlphaFold 
predictions are in error by more than the amount that might be expected due to flexibility. We 
conclude that while AlphaFold models are good hypotheses for protein structures, they have 25 
major limitations.  

Despite their limitations, AlphaFold predictions are already changing the way that hypotheses 
about protein structures are generated and tested (1, 2, 5, 6). Indeed, even though not all parts of 
AlphaFold predictions are accurate, they provide plausible hypotheses that can suggest 
mechanisms of action and allow designing experiments with specific expected outcomes. Using 30 
these predictions as starting hypotheses can also greatly accelerate the process of experimental 
structure determination (18, 26, 27). AlphaFold predictions often have very good stereochemical 
characteristics, making them excellent hypotheses for local structural features. For example, for 
the 102 structures analyzed here, the mean percentage of residues with “favored” Ramachandran 
configurations was 98%, greater than that of the corresponding deposited models (97%), and the 35 
mean percentage of side-chain conformations classified as outliers was just 0.2%, compared with 
1.5% for deposited models (19). Such AlphaFold predictions with highly plausible geometry 
could be used in later stages of experimental structure determination as potential conformations 
for segments of structure that are not fully clear in experimental density maps. 

 40 
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7Lbk, 7e6v, 7b3n, 7bLL, 7djj, 7dms, 7dqx, 7drh, 7dri, 7e1d, 7e85, 7edc, 7ejg, 7es4, 7esi, 10 
7eus, 7ew8, 7exx, 7f2a, 7fjg, 7kzh, 7Lsv, 7mku, 7naz, 7ncy, 7nxg, 7o51, 7o5y, 7oc3, 7oom, 
7oq6, 7qs4, 7rm7, 7t7j, 7tbs, 7tem, 7tfq, 7tj1, 7tL5, 7tmu, 7tog, 7toj, 7trv, 7trw, 7tt9, 7twc, 
7tzp, 7unn, 7w3s, 7wdq, 8cuk.  All models are downloadable from the PDB with links such 
as: https://files.rcsb.org/download/7tzp.pdb or (for larger models that are not available in this 
format) https://files.rcsb.org/download/7tzp.cif . We used the Phenix tool fetch_pdb to 15 
download models and crystallographic data for each structure. Predicted models, rebuilt 
models, and density-modified map coefficients are available at: https://phenix-
online.org/phenix_data/terwilliger/alphafold_crystallography_2022/ along with a spreadsheet 
that contains all the raw data and analyses described in our previous work (19) and described 
here. The directory terwilliger/alphafold_crystallography_2022/ contains a README file 20 
describing the contents of the site, the spreadsheet, and a data/ directory with one compressed 
archive for each structure containing models and crystallographic data files. This directory 
also contains a compressed archive (alphafold_crystallography.tgz) containing all the data 
and all the scripts used to create the spreadsheet.  

 25 

Code Availability: All code for the Phenix version of the AlphaFold2 Colab is freely 
available on GitHub at https://github.com/phenix-project/Colabs.  All code for Phenix is 
available at phenix-online.org.   
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Supplementary Materials 

 

Materials and Methods 

 

Experimental data, models, AlphaFold predictions, and density maps 5 

We used the results of our automated structure redeterminations (19) for crystallographic PDB 
deposits in this work.  The structures in that study were chosen based on the method of structure 
solution (single-wavelength anomalous diffraction, SAD), used as a proxy for relatively 
challenging structure determinations.  The anomalous data were not used in our structure 
redeterminations, i.e., the Bijvoet pairs were averaged. All the unique, protein-containing 10 
structures in a 6-month period (Dec. 2021-May 2022) were analyzed (215 structures). Structures 
were determined with molecular replacement using trimmed AlphaFold predictions (28) as 
search models, followed by iterative model rebuilding and AlphaFold prediction (18). In this 
work we use the initial AlphaFold predictions (made without templates) and the final density-
modified electron density maps (29) from those analyses.  Except as noted, in this work we used 15 
only structures yielding a free R value of 0.30 or lower (102 structures) to ensure that the 
density-modified electron density maps used as a reference were of high quality. 

 

Model morphing with a distortion field 

We used a morphing procedure based on a smoothed distortion field (30) to modify one model to 20 
make it globally more similar to another model, while retaining local differences.  In this 
procedure any point in space has an associated shift vector, the shift that is to be applied to any 
atom located at that point in space.  This association of a vector to each point in space amounts to 
a shift or distortion field.  To create a smoothly-varying distortion field relating a pair of 
structures, we first create an exact distortion field that maps one structure onto the other, then 25 
this field is smoothed. 

First, the two structures are superimposed.  Then a set of positions in space and corresponding 
shift vectors is created, with the positions in space yi corresponding to Cα atom coordinates in 
one structure, and the shift vectors vi corresponding to the differences between matching Cα 
atoms in the two structures.  At this point, each of these positions in space has the property that if 30 

the associated shift vector is added, it will match the corresponding Cα atom coordinate in the 
other structure.  This exact distortion field is defined only at the Cα atom coordinates of the first 
structure.  

Then we create a smoothed distortion field v(x) that is defined at any point in space x by 
averaging all the shift values in the exact distortion field, weighting individual shifts vi with a 35 
weight wi based on the distances between their positions in space yi and that point x, 

wi = exp(-||yi – x||2/u2), 

where the scaling factor u determines the distance over which smoothing occurs, typically set to 
15 Å. 

 40 
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Analytical procedures 

Map-model correlations for predicted models were calculated after superposition on the 
corresponding deposited models.  

For structures with more than one chain, only the first chain was included for each structure in 
comparisons.  5 

 

Side-chain grafting  

The grafting procedure was carried out using the model_building.graft_side_chains method in 
Phenix.  This function identifies matching residues in two models, then uses the coordinates of 
atoms in the main-chain for a residue in one model to position the main-chain and side-chain 10 
atoms in a matched residue from another.  We excluded residues with low confidence (pLDDT < 
70, 2% of the total residues), and residues that participate in crystal contacts (any atom in the 
residue within 6 Å of any atom in a symmetry-related molecule, 23% of all residues). 

 

Evaluation of compatibility of side-chain positions with density maps 15 

We identified side-chain conformations in AlphaFold predictions that were incompatible with 
corresponding electron density maps as cases where the predicted side-chain conformation 
matched the density map much more poorly than the deposited model and differed substantially 
from that found in the corresponding deposited model.  To focus on the side-chain conformation 
separately from the overall location and orientation of each residue, we used the side-chain 20 
grafting procedure described above to orient the main-chain of each residue from an AlphaFold 
prediction to match the main-chain of the corresponding residue in the deposited model.  We 
considered side-chains to differ substantially if the rmsd of side-chain atoms beyond the Cβ atom 
was greater than 1.5 Å.  

We then identified incompatible AlphaFold side-chain conformations as those that were highly 25 
unlikely (p < 0.01) to be as compatible with the density map as the deposited model. This 
probability was estimated from the uncertainty of density values in each map and the number of 
independent points sampled by side-chain atomic positions in that map. To obtain the uncertainty 
of density values, we calculated the rms difference between Fobs and Fcalc maps obtained from 
the phenix.refine (31) software using the deposited model and crystallographic data to calculate 30 
the maps.  To estimate the number of independent points sampled by side-chain atomic positions 
for a particular side-chain, we counted the number of side-chain atoms that could be selected 
where each atom is separated from all others by at least the resolution of the data.  

As an example of this procedure, for the 7vgm example shown in Fig. 3, the mean electron 
density map value at atoms in the side-chain of residue R32 in 7vgm was 2.8 and the mean 35 
density for the side-chain from the AlphaFold model was 0.1 (the map is normalized to have a 
mean of zero and rms of 1). These side-chains differed by an rmsd of 3.9 Å and the 6 side-chain 
atoms corresponded to approximately 4 unique positions in the map (4 positions that are each 
separated from the others by the resolution of the map). The map, adjusted to have a mean of 
zero and rms of 1, had an estimated uncertainty of 0.8 (based on agreement between the 40 
calculated and observed structure factor amplitudes), leading to a probability of p < 10-10 that the 
AlphaFold prediction is actually in better agreement with the map than the deposited model. 
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Supplementary text 

 

Control experiments and limitations 

Our analysis of side-chain conformations is based on the premise that the backbone 
conformation of the deposited model is largely correct. However, it is possible that the backbone 5 
is systematically distorted at residues with incorrect rotamers, as the main chain atom positions 
might compensate for errors in the side-chain. We checked for this scenario by refitting the side-
chains for all 102 structures, and applying a “backrub” correction to the main-chain to correct for 
these distortions if necessary (32). A repeat of our analysis, skipping the 4% of side-chains 
where a backrub correction was applied (Cβ shift (32) of more than 0.2 Å), yielded very similar 10 
results, with 18% of residues differing in side-chain orientation and again 7% overall clearly 
incompatible with experimental data.  

We also checked for the possibility that backbone conformations might differ in the two models 
for some residues, making the grafting procedure inappropriate. We repeated our analysis, 
removing all residues where the Ramachandran angles differed in the two structures by more 15 
than 30o (10% of all residues). Once again, the results were similar, with 17% of residues 
differing in side-chain orientation and 7% overall clearly incompatible with experimental data. 

Our test set (102 for most analyses, 215 for some) is a small fraction of those in the entire PDB, 
so it could be useful to analyze a larger, more representative set. Most of the residues in our 
analysis had high confidence, with 86% having pLDDT values above 90, 10% from 80 to 90, 2% 20 
from 70 to 80 and 2% under 70. In contrast, in the AlphaFold prediction of the human proteome 
(25), only 38% of residues had pLDDT values above 90, and 42% were under 70. The small 
fraction of residues with predictions under 80 may lead to some uncertainty in the error estimates 
for moderate and low-confidence predictions in Table I. The median rmsd between AlphaFold 
predictions and deposited models in the PDB in our analysis (1.0 Å, see Fig. 2C in main text) 25 
was considerably lower than that obtained in a large-scale analysis of recent structures by 
DeepMind(1) (2.3 Å for all Cα atoms, 1.5 Å excluding the largest 5% of differences), perhaps 
due to the high confidence in prediction in our sample.  

As we wanted to estimate the accuracy of the 200 million predictions made with the standard 
version, we did not remove predictions that might be better-predicted with a multimer version of 30 
AlphaFold (33). For example, PDB entry 7e1d is a domain-swapped dimer (34) that was 
predicted by AlphaFold to be a compact chain.  

In some instances, domain-swapping or other incorrect connections between domains resulted in 
very large differences between predictions and deposited models. Therefore, we attempted to 
reduce the effect of these outlier structures by quoting median values where possible.  35 

We used a local installation of AlphaFold for our predictions and did not use templates from the 
PDB in prediction, which could reduce the accuracy of the predicted models. This effect is likely 
to be small however. We identified 81 models in the AlphaFold database (9) that corresponded to 
the first chains in one of our 102 analyses.  The median Cα atom rmsd between our initial 
predicted models (19) and the corresponding chain in the AlphaFold database was just 0.54 Å. 40 
The predictions from the AlphaFold database had a median rmsd of 1.15 Å compared to 
deposited models; our predictions without templates also had a value of 1.15 Å. 
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