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ABSTRACT

The calculation and use of Haralick texture features has been traditionally limited to imaging data and gray-level co-occurrence

matrices calculated from images. We generalize the calculation of texture to graphs and networks with node attributes, focusing

on cancer biology contexts such as fitness landscapes and gene regulatory networks with simulated and publicly available

experimental gene expression data. We demonstrate the potential to calculate texture over multiple data set types including

complex cancer networks and illustrate the potential for texture to distinguish cancer types and topologies of evolutionary

landscapes through the summary metrics derived.
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Introduction2

Topology and texture have been studied widely across biomedical research, with textural and topological analysis methods3

providing insight in medical imaging, in the analysis of biological signalling networks, and genotype-phenotype maps of4

evolution (Fig. 1). Across these fields textures and topologies have been used to identify biologically meaningful structures or5

patterns and have, in some applications to cancer, been associated with clinical outcomes.6

Within medical disciplines, traditional image analysis heavily utilizes “texture” features, derived from a staple within7

imaging, the gray-level co-occurrence matrix (GLCM)(Haralick 1979). GLCMs are 2D histograms that record the frequency of8

neighboring pixel gray-level values in an image. The Haralick texture features summarize this distribution of value pairs and9

include measures that reflect heterogeneity, homogeneity and contrast within images. These are very commonly used in medical10

physics where texture features from CT and MRI images have been related to tumor type, severity and prognosis (Mohanty,11

Beberta, and Lenka 2011; Yang et al. 2012; Zulpe and Pawar 2012; Jain 2013; Torheim et al. 2014; Novitasari et al. 2019). We12

note that co-occurrence matrices, although most commonly used in imaging, have also been used within NLP fields (Momtazi,13
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Khudanpur, and Klakow 2010; Benoit et al. 2018), audio processing (Terzopoulos 1985; Sayedelahl et al. 2011; Muhammad14

et al. 2017) and recently in pathology in a form derived by Saito et. al., describing the co-occurrence of nuclear features in15

physical cell neighborhoods (Saito et al. 2016).16

Figure 1. Illustration of areas in which topology is studied in biomedical research. Textural and topological studies are carried out in medical imaging,
protein folding, signalling network and fitness landscape analysis.

Recent interdisciplinary work has successfully extended different graph-based topological analyses to image derived point17

clouds and more recently to images themselves, including the use of cubical complexes to derive prognostic topological18

features from medical images (Lawson et al. 2019; Hajij, Zamzmi, and Batayneh 2021; Somasundaram, Litzler, et al. 2021;19

Somasundaram, Wadhwa, et al. 2022).20

Topology has also shed light on biological networks. As increasing amounts of proteomic and transcriptomic data become21

available, there arises a wealth of information about gene expression and protein-protein interaction networks. Within cancer,22

the frequent dysregulation of signalling pathways and modified interactions between mutant proteins means that holistic23

network analyses may have the potential to identify critical features in these data sets. Topological analysis of gene and protein24

networks has identified regulating gene sub-networks for potential drug targeting, improved understanding of the stability of25

gene signalling networks and even given prognostic indications in breast cancer (weaver2021network; Sardiu et al. 2019;26

Kumar, Blondel, and Extavour 2020; Guo and Amir 2021; Yin et al. 2021).27

Another area within biology in which topology has been of interest is in the study of fitness landscapes(Lum et al. 2013), a28

special subclass of networks. Fitness landscapes typically encode a genotype space and their associated fitnesses. In cancer29

these are of particular interest as fitness landscapes encode the constraints of Darwinian evolution and are informative in the30

modelling of resistance and optimization of treatment (J. Scott and Marusyk 2017; Nichol, Rutter, et al. 2019; King et al. 2022).31

As the topology of a landscape can restrict or promote access to certain evolutionary trajectories, constraining the accessibility32

of local and global maxima (Levinthal 1997) measures have been developed to evaluate landscape “ruggedness” (Barnett et al.33
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1998). Modelling of “tunably rugged” landscapes has allowed the direct exploration of the effect of topology and texture upon34

evolution, demonstrating strong associations with evolutionary timescales and outcomes (Kauffman and Weinberger 1989;35

Barnett et al. 1998; Franke et al. 2011). As the ability to engineer and measure fitness landscapes experimentally has become36

easier, the nature of fitness landscapes is of growing interest; particularly in modern studies of evolutionary cancer therapies,37

drug resistance and biological control(Nichol, Jeavons, et al. 2015; Diaz-Uriarte 2018; Nichol, Rutter, et al. 2019; Hosseini38

et al. 2019; Iram et al. 2021; Hsu et al. 2022).39

The aim of this work is to extend topological research by bringing the tools of image analysis to analyze network structures.40

In particular we believe we can gain new perspectives on networks in biological contexts. We present our method and associated41

package for calculating GLCM-equivalents and Haralick texture features and apply it to several network types. We developed42

the translation of co-occurrence matrix analysis to generic networks for the first time. We analyze networks with accompanying43

categorical and continuous node attributes, demonstrating this method on examples of social networks, protein-interaction44

networks in cancer and evolutionary fitness landscapes(see Fig. 1 for illustration).45

Our R package for calculating texture of graphs, gtexture, is available at https://github.com/sbarkerclarke-phd/gtexture.46

Methodology47

We show how co-occurrence matrices and texture calculations can be generated from and applied to graph objects. Co-48

occurrence matrices are 2D histograms, traditionally reflecting the pairwise distribution of neighboring pixel values in images.49

To apply this method to graphs or networks they must have node attributes or weights. These weights can be in the form of50

discrete weights or ordered categorical attributes. We consider node attributes to be analogous to pixel values and a nodes’51

edges to be equivalent to pixel neighborhoods. Co-occurrence matrices can be described in network terms as node-weight52

adjacency matrices.53

Network examples54

To demonstrate the method, we used multiple network examples. We utilize social networks, gene expression networks and55

fitness landscapes. The Cross-Parker networks (Cross and Parker 2004) from the tnet R package (Opsahl 2009) provide an ideal56

example for demonstrating methods on graph structures. These networks are from a manufacturing company (77 employees)57

and a consulting company (56 employees). We used these structures to compare the original network structure to bootstrapped58

networks with randomised node attributes.59

In order to analyse gene expression within graphical structures of established human protein-protein interaction networks,60

we used STRINGDB, the KEGG database and the KEGGGraph package(Szklarczyk et al. 2015; Zhang and Wiemann 2009;61

Ogata et al. 1998). These frameworks were used to obtain pathway specific subnetworks and to convert between gene and62

protein identifiers to assign gene expression to network nodes. To look at experimental gene expression on these networks63

we used the publicly available Cancer Cell Line Encyclopedia (CCLE) gene expression dataset (Barretina et al. 2012). For64

comparison to experimental data we also used the R package graphsim as a method of simulating gene expression values on65
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PI3-Kinase and TGF-Beta co-expression networks with varying correlation strength(Kelly and Black 2020).66

Another specialized network type is the evolutionary fitness landscape. Genotypes in the fitness landscape are neighbors,67

connected by an edge if they are accessible through a single evolutionary timestep (eg. mutation). The underlying network68

structure is defined by this evolutionary access and the node weights are the fitness values. The number of experimental fitness69

landscapes that have been published is limited and as such we lacked graphically connected landscapes with measured fitnesses70

under different conditions to compare metrics across. We therefore utilized basic landscapes networks with specific fitness71

distributions to demonstrate our methodology. Utilizing the R package OncoSimulR (Diaz-Uriarte 2017) we generated three72

classes of basic model landscape and sets of NK landscapes and converted these into fitness landscape objects using the R73

package fitscape.74

Additive model landscapes In the additive model, mutations have a specific fitness increase or decrease and multiple75

mutations increase or decrease fitness in a linear, additive fashion.76

Eggbox model landscapes In the eggbox model there are only 2 different possible fitness values, the base fitness and base77

fitness + e (the “height” of the eggbox), each mutation swaps a genotype from low to high fitness, neighboring genotype fitness78

values are always distinct.79

House of cards model landscapes The House of Cards (HOC) model is a name for a random fitness model, here the80

fitnesses of different genotypes are uncorrelated and not dependent on the genotype, this is an effective null/random model.81

The outline of the method and approach underlying the discretization, co-occurrence and texture calculations, follow below.82

Discretization83

Given a number of nodes n, a network’s adjacency matrix is size n× n. If the number of distinct node weights is w, the84

dimension of the co-occurrence matrix, C, is w×w. Co-occurrence matrices summarize a network when the number of distinct85

node weights is less than the number of nodes, w < n. Although this is already the case for some networks, we provide methods86

to reduce the number of unique node weights, including node weight binning options for continuous node weights within the87

package. Continuous data can be transformed via several discretisation methods.88

The following methods are useable within the package and several are demonstrated within Fig. 2.89

Equal: We can use a breaks method to slice the node weights into n equally spaced levels containing potentially different90

proportions of the data.91

Quantiles: In this method the values are split into n groups containing equal numbers of values.92

k-means: Values are split into n = k groups using 1D kmeans clustering.93

Co-occurrence matrix calculation94

For any graphical structure, the edges between nodes are captured in an adjacency matrix. These edges are used for the95

calculation of the distribution of co-occurring neighbor pairs. In an undirected network (symmetric adjacency matrix), the96

4/17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.21.517417doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517417


Figure 2. A demonstration of different discretization methods for continuous node values is shown. One example of a randomly generated undirected
network with different random continuous expression values attributed to the nodes is shown. Discretization with 9 quantile levels matching the number of
unique values and 3 levels with both equally spaced numerical bins and with 3 levels assigned to tertile groups are shown.

Figure 3. Co-occurrence matrices calculated on a toy gene regulation network. In the case of a directed graph only directions included are counted. In
directed activation and repression graphs two separate co-occurrence matrices can be calculated.

neighboring node values are summed over all edges. In a directed graph, the adjacency matrix is used directly to iterate through97

pairs of connected node values in a single direction. The element Ci j of the co-occurrence matrix is the number of times within98

the network a node with weight i shares an edge with a node of weight j. Examples of two separate co-occurrence matrices for99

a toy gene regulation network with four bins of expression values are shown in Fig. 3.100

Haralick feature metrics and comparison101

Standard image analysis practice uses the co-occurrence matrix to generate texture features for the image. Haralick defined102

several statistical features and these calculations on the co-occurrence matrix traditionally reflect properties of an image’s103

texture (Haralick 1979). The definitions of eight of these key texture features calculated in this paper are shown in Table 1.104

Our package extracts these features and in order to compare these features across different categories of network, metrics are105

normalized across compared groups. -5mm106
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Feature Term Definition
Energy ∑i ∑ j p(i, j)2 p(i, j) Probability neighboring

nodes have weights (i, j)

Contrast ∑
Ng−1
n=0 n2(∑

Ng
i=1 ∑

Ng
j=1 p(i, j)) px(i, j) Marginal probability

where |i− j|= n distribution over rows

Correlation ∑i ∑ j(i j)p(i, j)−µxµy
σxσy

py(i, j) Marginal probability
distribution over columns

Entropy −∑i ∑ j p(i, j) log(p(i, j)) µx mean of px(i, j)

Autocorrelation ∑i ∑ j(i · j)p(i, j) µy mean of py(i, j)

Homogeneity ∑i ∑ j
p(i, j)

1+(i− j)2

Cluster Shade ∑
G
i=0 ∑

G
j=0(i+ j−µx −µy)

3 p(i, j)

Cluster Prominence ∑
G
i=0 ∑

G
j=0(i+ j−µx −µy)

4 p(i, j)

Table 1. Definitions of a selection of Haralick texture features and variables needed to calculate them.

Results107

In order to demonstrate both the efficacy and potential of texture analysis as applied to networks we apply our method to a108

selection of biological and cancer specific networks. Networks and graphs, as a general mathematical structure, have been109

great tools for encapsulating biological information which has underlying connected structure, we utilize several categories of110

graphs in order to demonstrate co-occurrence calculation and texture feature generation. Due to the intrinsic heterogeneity and111

complexity of biology, we include an example of organisational social network before analysing gene expression networks112

with simulated and publicly available data for node values and fitness landscapes, all randomly generated, with defined fitness113

distributions and tunable ruggedness.114

Application to Organization Social Networks115

Social networks have been collected and analysed across many social structures, these networks typically contain hierarchical116

information but options for the joint analysis of both node labels and network structure are limited. In order to demonstrate how117

these metrics can be applied to graphs with ordered categorical node attributes we applied our pipeline to the Cross-Parker118

consulting and manufacturing networks (Cross and Parker 2004). These networks consist of nodes representing personnel.119

Edges represent familiarity of people with each other in the network, in the original data set these edges are weighted. We120

removed these weights for the purpose of our analysis. These graph datasets included node attributes, reflecting organisational121

level, the manufacturing company dataset also included information on tenure. In these networks analyses we weighted122

all connections equally. We created the co-occurrence matrices for these networks and compared the original graph to 100123

bootstrapped graphs with randomisation of the allocation of original node values (Fig. 4).124

When comparing the Haralick features generated for the same network structure with different node values, we can see125

clearly that the original network is a signficant outlier, suggesting the neighboring node values, differences in tenure and126
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Figure 4. Haralick features in real-world networks differ greatly from random. Plots of Haralick features shown for two different social networks
within a company, within manufacturing and consulting departments. Node values or attributes are organisational level and length of tenure where available.
Edges reflect connected people within the network. Comparison distributions of metrics using bootstrapped node values are shown (n=1000). Clear departures
from random distribution of node values between connected nodes are seen.

organizational status, in the manufacturing company lie outside the random distribution. This is reflective of a very hierarchical127

structure and a strong association with length of tenure demonstrates organisational and tenure-based structure.128

In the case of the consulting company, autocorrelation is an outlier within the distribution, but other features are more129

randomly distributed, suggesting a less hierarchical organisational structure.130

Application to fitness landscapes131

Fitness landscapes encode the fitness (often considered as the growth rate) for an underlying distrbution of genotypes. As132

genomic processes such as mutation can allow the range of genotypes to be accessible via evolution, the different fitness values133

and connectivity (ie topology and texture) of a genotype landscape is associated with evolvability. Co-occurrence matrices and134

texture metrics may be valuable information generated from a fitness landscape, as these encode properties of the distribution135

of neighboring fitness values. Whilst the number of currently available experimental fitness landscapes is limited, statistically136

generated landscapes are available within packages such as fitscape. In order to assess the ability of co-occurrence matrices and137

7/17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.21.517417doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517417


Haralick features to extract meaningful data from fitness landscapes we carried out our analysis pipeline to compare three basic138

landscape types and to compare tunably rugged landscapes. We modelled these landscape types with 4 alleles (16 genotypes).139

Application to model landscapes140

We utilized MAGELLAN, a fitness landscape analysis toolset, (Brouillet et al. 2015) to generate some standard models of141

fitness landscapes; additive, eggbox and house of cards. Single, illustrative examples of these landscapes are shown in Fig.142

5a. We tested our pipeline on these models using 4 level node weight equal discretization on 4 allele (16 genotype) model143

landscapes.144

(a) Illustrative examples of three allele landscape types (A) additive, (B) eggbox and (C) House of Cards (HOC) landscapes in
projected 3D MAGELLAN output form (fitness increasing in y direction) and in 2D landscape representation are shown
(lowest fitness black to high fitness blue).

(b) Scaled autocorrelation, contrast, correlation, energy, entropy and homogeneity are shown to differ in value and distribution
across these types of artificial landscape.

Figure 5. Illustration of landscapes and distribution of GLCM metrics on them. a) Illustrative landscapes are shown for each type. b) “Eggbox”
landscapes collapse under discretization and normalization. The eggboxes have highest contrast and lowest homogeneity as neighboring genotypes have
alternating fitnesses, the additive model shows highest correlation, homogeneity and lowest contrast whereas the house of cards (HOC) model with its random
fitnesses shows the largest range of values due to a wider spread of neighboring fitness pairs.

Traditional landscape models145

For each basic network type we generated a set of 4 allele, 16 genotype fitness landscapes for analysis. We create sets of ten146

random additive, eggbox and House of Card landscapes. The Haralick texture features are calculated on these landscapes, and147

the normalized metrics are shown in Fig. 5b for comparison.148
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As expected the eggbox landscapes show the highest contrast and lowest homogeneity, the additive landscape shows the149

highest correlation and the random “House of Cards” landscape shows the largest variation in all the metrics.150

Tunably rugged “NK” model landscapes151

In order to demonstrate these metrics on some more realistic simulated fitness landscapes, we analysed a simulated set of152

tunably rugged “NK” landscapes. Our simulated landscapes had 4 alleles (16 genotypes) and we varied K from 1 to 3. For a 4153

allele system, we generated 500 random “NK” landscapes for each value of K (1 to 3). We looked at the distribution of the154

Haralick features for these different landscape classes (Fig. S1). We compared these to some traditional measures of landscape155

ruggedness. As epistatic interactions increase, the contrast between neighboring fitness values decreases (therefore dissimilarity156

decreases). At K=0, the landscape is smooth and additive. As K is increased, the landscape becomes more rugged as epistatic157

interactions increase, the correlation increases with K.158

Application to Gene Expression on PPI Networks159

The development of biological networks has been driven by growing works in transcriptomic and proteomic studies. Protein160

protein interaction (PPI) networks have been built based upon experimental evidence probing the interaction of different161

proteins.162

We hypothesized that our technique may be useful in assessing experimental data gathered in different samples for163

established biological networks, in particular as a way of summarizing expression patterns across different topologies of protein164

interaction networks.165

We examined the phosphoinositide-3-kinase (Pi3K) cascade network and assiged gene expression values to nodes, using166

both the CCLE experimental dataset and simulated through the graphsim package. In order to evaluate our metrics under167

varying simulated gene expression, we varied the correlation parameter of the underlying expression simulation from 0.2 to 0.8.168

Expression levels from both the simulation and the CCLE data were discretized into 4 equal levels and these expression values169

used as node weights.170

Fig. 6 shows the PI3K network and how the Haralick metrics vary with increasing expression correlation. In the network171

describing Pi3K regulation we see the expected results, that contrast decreases, correlation increases, entropy decreases and172

homogeneity increases as correlation in the underlying expression simulation increases. When the gene expression data173

from the cancer cell lines in the CCLE is compared, we see that these are significantly different (more extreme) than metrics174

upon the simulated expression, showing results that correspond to increased correlation strengths, lying outside the simulated175

distributions.176

We decided to examine the distribution of metrics within the CCLE in more detail, analysing a biological sub-network with177

expected differences in expression patterns between cell lines. We calculated the metrics using the EGFR signalling pathway178

subnetwork and the metrics on this network with the expression values for some of the most common cancer subtypes within179

the dataset.180

EGFR (epithelial growth factor) dysregulation is associated with solid tumors and we see corresponding differences in181
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Figure 6. Pi3Kinase gene network. Texture features generated with simulated expression data and experimental CCLE gene expression data (pink). Plots
of Haralick features shown for simulated gene expression on the Pi3K gene network with different strengths of co-expression correlation show a trend across
node value correlation strength.

metric values between the epithelial (solid - lung, breast, ovary, central nervous system, prostate and skin) and non-epithelial182

(blood, lymphoctye) cell line samples (Fig. 7). EGFR amplification is a particularly common feature of glioblastoma, a large183

proportion of the CNS tumors and we see this reflected in more extreme metric values for CNS tumors. To assess whether there184

are differences between the metrics for primary and metastatic samples in tumors with likely EGFR dysregulation, we also185

analysed the same metrics between primary and metastatic cell-lines with central nervous system origin (Fig. S2). We find186

significant differences in the metric distributions between primary and metastatic cell lines.187

Discussion188

Network studies in cancer are generating increasing numbers of experimental datasets and provide a rich resource for novel189

analysis methods. With the generation and availability of many types of cancer-related models and networks, including the190

generation of fitness landscapes and bulk and single cell gene expression and protein expression datasets, comes a need for191
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Figure 7. Metrics calculated from gene expression in primary samples of different lineages within the EGFR subnetwork. Gene expression data from
the CCLE database was extracted for the genes in the EGFR pathway. Metrics were calculated on this sub-network across 6 of the most represented cancer
lineage types in the dataset. Epithelial tumors are separated from non-epithelial tumors in the dataset.

cross-disciplinary analysis methods. Network analysis techniques and summary statistics typically assess edge properties and192

topology but experiments contain large amounts of additional data about the nodes of a network, for example a gene or protein193

or cell-line. In order to analyze these node properties in tandem with the network, we must look beyond the most traditional194

network techniques. We demonstrate, for the first time, the generation of co-occurrence matrices and Haralick texture features195

as summary features of general networks. Suitable networks for this metric must have ordered node attributes or discrete or196

continuous node weights.197

Our results demonstrate stark differences in texture between network types across social networks, cancer gene expression198

networks and simulated fitness landscape networks. We also demonstrate differences in texture between cell lines when199

using experimental data from different cancer types. As this is a new methodology, we decided to present these metrics upon200

interpretable and well understood network examples, leaving further biological research questions to future work.201

Co-occurrence matrices upon networks reflect the relative occurrence of different pairs of node-values that are connected202

within a network or graph object, examples including gene expression of neighboring genes in a network or neighboring fitness203

values in a fitness landscapes.204

Our method showed that the Haralick features calculated on different landscapes and networks of the same size but with205

different topologies vary. We demonstrate that these features correspond to properties of node value neighborhoods and graph206

topological features. The Haralick method can therefore successfully be applied to networks with node attributes and can207

measure network or fitness landscape topologies. The package provides a framework for the future study of the optimization208

of parameters such as number of discrete levels chosen to encode node values such as expression or fitness values. Although209

highly specific methods designed for detecting landscape ruggedness exist, this discretization and co-occurrence matrix method210

is more generalizable.211
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Although the GLCM texture features are well characterized in imaging, the true utility of these metrics upon networks has212

yet to be explored. By utilizing these ideas from image analysis, this method provides a simple analysis and summary technique213

that is particularly effective for larger network types with node-specific intensities. As the fitness landscape data generated214

and collected becomes larger, methods such as this that can reduce the dimensionality of complex networks while retaining215

information about structure may be useful. As such, this package provides an efficient computation of summary statistics for216

graphs with edges and discretizable node attributes.217

We believe that this package can be applied to many network types, not just those represented here and may be able to218

derive statistics reflective of important network characteristics. This method can be applied, for example, to fitness and growth219

rate data, gene expression, protein expression, time series data and cross-sectional data. We encourage the use of this package220

in exploratory network analyses and cancer network analysis and communication of any findings with the authors and the wider221

community.222
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Supplementary Information321

When we vary the tunable ruggedness of simulated landscapes by varying K in the OncosimulR package, we see changes in the322

texture metrics (Supplementary Figure S1).

Figure S1. Metrics across NK landscapes. Haralick measures differ across different K for tunably rugged landscapes (5 alleles). Haralick features show
distinct bimodal distributions of metrics for tunably rugged landscapes with fitnesses binned into 4 groups. The roughness-slope metric outperforms these in
terms of separating landscapes with a single measure, but metrics contain information about landscape structure. Lines connect the same landscapes across
different metrics.

323

The EGFR network and associated expression data shows significantly different texture between primary and metastatic324

central nervous system tumors (Supplementary Figure S2)325
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Figure S2. Primary vs Metastatic central nervous system samples for EGFR expression subnetwork using expression values from the CCLE database
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