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Abstract 
Spatially-resolved gene expression profiling provides valuable insight into tissue organization and 
cell-cell crosstalk; however, spatial transcriptomics (ST) lacks single-cell resolution. Current ST 
analysis methods require single-cell RNA sequencing data as a reference for a rigorous 
interpretation of cell states and do not utilize associated histology images. Significant sample 
variation further complicates the integration of ST datasets, which is essential for identifying 
commonalities across tissues or altered cellular wiring in disease. Here, we present Starfysh, the 
first comprehensive computational toolbox for joint modeling of ST and histology data, dissection 
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of refined cell states, and systematic integration of multiple ST datasets from complex tissues. 
Starfysh uses an auxiliary deep generative model that incorporates archetypal analysis and any 
known cell state markers to avoid the need for a single-cell-resolution reference in characterizing 
known or novel tissue-specific cell states. Additionally, Starfysh improves the characterization of 
spatial dynamics in complex tissues by leveraging histology images and enables the comparison 
of niches as spatial “hubs” across tissues. Integrative analysis of primary estrogen receptor-
positive (ER+) breast cancer, triple-negative breast cancer (TNBC), and metaplastic breast cancer 
(MBC) tumors using Starfysh led to the identification of heterogeneous patient- and disease-
specific hubs as well as a shared stromal hub with varying spatial orientation. Our results show 
the ability to delineate the spatial co-evolution of tumor and immune cell states and their crosstalk 
underlying intratumoral heterogeneity in TNBC and revealed metabolic reprogramming shaping 
immunosuppressive hubs in aggressive MBC. Starfysh is publicly available 
(https://github.com/azizilab/starfysh). 

 

Introduction 
In multicellular systems, the function of diverse cell types is strongly influenced by their immediate 
surroundings. Uncovering the spatial organization and communication between cell types in 
tissues provides insight into their development, function, maintenance, response to stimuli, and 
how they adapt to their microenvironment or transform into malignant or diseased cells1. By 
sampling the entire transcriptome, recent advances in spatial transcriptomics (ST) enable 
unbiased gene expression mapping in a spatially-resolved manner, thus providing an 
unprecedented opportunity to study the spatial arrangement of cells and microenvironments2. 
These technologies have been employed in diverse fields, including organ development, disease 
modeling, and immunology3, 4, 5. However, sequencing-based methods (Visium, DBiTseq6, Slide-
seq7, etc.) are limited in cellular resolution due to technical artifacts from lateral RNA diffusion2. 
Measurements from capture locations (spots) thus involve mixtures of multiple cells leading to 
analytical challenges in dissecting the cellular disposition, particularly in complex systems such 
as cancerous tissues. 

  Accurate characterization of cell types and refined cell states is particularly critical for 
comparing spatial organization and intercellular communications across tissues, e.g., for studying 
changes in cellular wiring and organization during development or disease progression. For 
example, in complex tumor tissues, the signal from patient-specific tumor cells is mixed with that 
from shared immune cell types, hindering the comparison of anti-tumor immune mechanisms 
between patients, disease subtypes, or diseases. The majority of existing computational methods 
for analyzing ST data (Cell2location8, DestVI9, Tangram10, Stereoscope11, RCTD12, BayesPrism13, 
etc.) require paired and annotated single-cell sequencing data as a reference to overcome this 
challenge and are not capable of integrating tissue samples. The references, whether from the 
same tissue or public databases, could introduce biases without accounting for sample or batch 
variation as well as variability in cell density across spots.  

Importantly, access to paired single-cell data may not be cost-feasible or practical, e.g., in 
the case of clinical core biopsy samples, further motivating reference-free methods capable of 
integrating prior knowledge of cell type markers and data from multiple tissues to improve 
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statistical power. Proposed reference-free methods such as STdeconvolve14, Smoother15，and 
CARD16 deconvolve spots into latent factors. However, some factors cannot be explicitly mapped 
to refined cell states in tumor tissues (Supplementary Fig. 1). These methods also do not allow 
the integration of multiple ST datasets, and batch correction methods designed for single-cell 
RNA sequencing are not feasible in ST samples dominated by sample-specific cell types such as 
tumor cells. While some methods have utilized histology images to align spots between replicate 
tissues8 or to predict high-resolution gene expression from histology17 current methods fail to 
utilize spatial dependencies and paired histology for improving cell state deconvolution.  

To address this major need, we developed a comprehensive toolbox for multi-modal 
analysis and integration of ST datasets dubbed Spatial Transcriptomic Analysis using Reference-
Free auxiliarY deep generative modeling and Shared Histology (Starfysh). Through joint modeling 
of transcriptomic measurements and histology images, Starfysh infers the proportion of fine-
grained and context-dependent cell states, as well as the spatial distribution of cell density, while 
obtaining cell type-specific gene expression profiles for downstream analysis. Integration of gene 
expression and histology accounts for tissue architecture, cell density, structured technical noise, 
and spatial dependencies between measurements, which improve the characterization of cell 
states and their arrangement. Importantly, by integrating multiple tissues, Starfysh can identify 
shared or sample-specific niches and their underlying cell-cell crosstalk.  

The innovation of our machine learning approach is in incorporating archetypal analysis 
and any known cell type markers as priors in an auxiliary deep generative model that maps both 
transcriptomic and histology to a joint latent space. Archetypes, intuitively capturing spots with 
the most different expression profiles, are used to construct or refine cell type markers, as 
opposed to conventional clustering of spots which obtain markers corresponding to aggregated 
cell types18. This feature empowers Starfysh to characterize novel or context-specific cell states 
and present a hierarchy among them.  

The performance of Starfysh on simulated data demonstrates successful, robust 
deconvolution without requiring single-cell references. Using Starfysh, we recapitulate the cell 
proportions of published datasets of breast tumors19. Additionally, we profiled tumor samples from 
ER+, TNBC, and MBC patients to demonstrate the utility and power of Starfysh for spatial mapping 
of inter- and intra-tumoral heterogeneity of human cancer and to investigate the role of 
microenvironmental niches in determining immune infiltration. Using the archetypal analysis 
feature of Starfysh, we successfully characterized patient-specific tumor cell states and their 
spatial arrangement within the primary tumor, revealing how the underlying biology of tumor states 
and environmental signals alter the immune response. We further identified metabolic 
reprogramming and communication enriched in the rare and aggressive MBC subtype by 
integrating our data with previously published ST datasets. Starfysh thus presents a powerful 
analytical platform for systematic interrogation and comparative studies of complex tissues in 
health and disease through the lens of spatial transcriptomics and histology.    
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Results 
Starfysh performs reference-free deconvolution of cell states by combining spatial 
transcriptomics and histology   

Starfysh is an end-to-end toolbox for multi-modal analysis and integration of ST datasets (Fig. 
1a). In short, the Starfysh framework consists of reference-free deconvolution of cell types and 
fine-grained cell states, which can be improved with the integration of paired histology images of 
tissues, if available. To facilitate the comparison of tissues between healthy or disease contexts 
and deriving differential spatial patterns, Starfysh is capable of integrating data from multiple 
tissues and further identifies common or sample-specific spatial “hubs”, defined as niches with a 
unique composition of cell states. To uncover mechanisms underlying cell communication, 
Starfysh performs downstream analysis on the spatial organization of hubs and identifies key 
genes with spatially varying patterns as well as co-evolving cell states and co-localization 
networks.  

To circumvent the need for a matched or external single-cell reference in deconvolving 
cell types, Starfysh leverages two key concepts to determine spots with the most distinct 
expression profiles as “anchors” that pull apart and decompose the remainder of spots (Fig. 1b). 
First, Starfysh incorporates a compendium of known cell state marker genesets as well as any 
additional custom markers of choice. Assuming that the spots with the highest overall expression 
of a geneset corresponding to a cell state are likely to have the highest proportion of that cell 
state, these spots form an initial set of anchors. Second, since cell state markers can be context-
dependent or not well-characterized, Starfysh utilizes archetypal analysis to refine the initial 
anchor set and add any non-overlapping archetypes as additional anchors to enable the discovery 
of novel cell states or a hierarchy of cell states (Methods, Supplementary Fig. 2). This feature 
is paramount in characterizing context-specific cell states such as patient-specific tumor cell 
states, their phenotypic transformation and dynamic crosstalk within the microenvironment. 

Inspired by successful implementations of deep generative models in single-cell omics 
analysis (scvi-tools20, scvi21, totalVI22, scArches23, trVAE24, scANVI25, MrVI26), Starfysh jointly 
models ST and histology as data observed from a shared low-dimensional latent representation 
while incorporating anchors as priors (Fig. 1c; Supplementary Fig. 3a, b; see Methods). The 
innovation in our variational inference is in using the cell-state proportions as auxiliary variables27, 
and in integrating the transcriptomes with the histology (see Methods; Supplementary Fig. 3c).  

To test the performance of Starfysh, we simulated ST data from real single-cell RNA-
sequencing data from primary breast tumor tissues19 with and without spatial dependencies 
(Supplementary Fig. 4; Methods).  We found the successful recovery of cell types proportions 
(R2 score=0.85, Pearson correlation = 0.93 with p<1e-30) and cell density (Pearson correlation 
= 0.90 with p<1e-30) (Supplementary Fig. 5, 6; Fig. 1b).  
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Figure 1. Starfysh overview and performance on simulated data.  (a) Overview of the Starfysh workflow. From left 
to right: Starfysh input: spatial transcriptomics (ST) dataset, signature gene lists for cell types or cell states, and paired 
histology image (optional); Deconvolution: Starfysh defines anchor spots representative of cell types or states with the 
aid of archetypal analysis (Supplementary Fig. 2), and infers cell type/state proportions and densities by accounting 
for ST technical artifacts; Sample Integration and downstream analysis: Upon deconvolution, Starfysh jointly integrates 
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multiple samples and characterizes spatial “hubs”, and further infers cell-cell interactions within each hub. (b) Left: 
UMAP of ST data with 2,500 spots, 29,631 genes, and 5 cell types simulated from mixtures of single-cell RNA-seq data 
of breast tumor tissues, colored by the proportion of most enriched cell type in the ground truth. Starfysh collectively 
utilizes signature gene sets and archetypal analysis to identify anchor spots, refine marker genesets, and discover 
potential novel cell states.  Right: Comparison of ground truth cell-type proportions and densities in simulated data and 
Starfysh reconstruction (Methods, Supplementary Fig. 4). (c) Graphical representation of the deep generative model 
integrating transcriptomic data and paired histology image to infer a joint latent space. (d) Spatial distribution of ground 
truth and inferred cell types with the same parameters in (b) and histology (Methods). The integration of histology 
image improves the deconvolution performance in spatially-dependent simulated ST data (Supplementary Fig. 8; 
Methods). (e) Benchmarking Starfysh against other methods on the data shown in (b,d): Pearson correlation of ground-
truth and estimated proportions per cell type in data (Supplementary Fig. 9; Methods). The performance of each 
method is summarized by computing the distance between the correlation matrix and an identity matrix (Methods). 
Benchmarking on real breast tumor ST data is shown in Supplementary Fig. 1. 

Starfysh is capable of integrating histology to correct for artifacts in transcriptomic 
measurements by accounting for spatial dependencies between spots and incorporating tissue 
structure which improves the estimation of cell density and in turn, characterization of cell types 
and neighborhoods, in particular in complex tissues. The integration of two data modalities is 
accomplished using the product of experts (PoE28), which calculates the joint posterior distribution 
for gene expression and images (Fig. 1d; see Methods). We simulated ST data with spatial 
dependencies using a Gaussian Process model8 (see Methods) and simulated images by training 
a ResNet1829 encoder followed by a decoder to paired ST expression and histology images 
(Supplementary Fig. 7; see Methods). Simulated ST data harbored cell clumps and histology 
patterns resembling real tissues (Supplementary Fig. 4). PoE integrates the latent factors from 
transcriptomic and histology data, and shows significantly improved performance in predicting the 
proportion of cell types (e.g., myeloid cells) and reconstructs high-density regions (Fig. 1d,e; 
Supplementary Fig. 8). The deconvolution performance of Starfysh is comparable to existing 
state-of-the-art methods that require a single-cell reference including  DestVI9, Cell2Location8, 
Tangram10 and BayesPrism13 (Fig. 1e; Supplementary Fig. 9). Additionally, compared to 
reference-free methods such as CARD16, BayesTME30, Starfysh shows a significant improvement 
in deconvolving major cell types (Fig. 1e; Mann Whitney U test p=2.6e-5; see Methods). 
Importantly, Starfysh shows substantial improvement in disentangling fine-grained cell states 
(Mann Whitney U test p<1e-30) and runtime compared to other methods (Supplementary Fig. 
1). These results confirmed the ability to extract signal corresponding to relatively smaller cells 
such as tumor-infiltrating immune cells and constructing hierarchies of cell types and states. Such 
distinctions are not possible with other methods and are crucial in understanding heterogeneous 
immune responses in healthy and pathological tissues31.  

 

Starfysh dissects the spatial heterogeneity of primary breast tumors  

To demonstrate the capability of Starfysh to characterize heterogeneous and complex tissues, 
we sought to examine the spatial dynamics of immune response in primary breast 
adenocarcinomas. Heterogeneity in the immune cell composition of individual tumors has been 
connected to the variability of patient responses to cancer treatments, including 
immunotherapies32, 33, 34. We previously showed that the tissue of residence is a significant 
determinant of the diversity of immune phenotypic states, and that T and myeloid lineage cells 
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exhibit a continuous phenotypic expansion in the tumor compared to matched normal breast 
tissues35. Heterogeneous T cell states were highlighted by combinatorial expression of genes 
reflecting responses to various microenvironmental stimuli while being tightly associated with T 
cell receptor (TCR) utilization35. These data thus suggested that TCR specificities may contribute 
to the spatial organization of T cells through the disposition of cognate antigens, facilitating their 
exposure to niches differing in the extent of inflammation, hypoxia, expression of activating 
ligands and inhibitory receptors, and nutrient supply.  

To investigate this hypothesis, we performed ST profiling of 8 primary tumors from an ER+, 
a classic TNBC, and two metaplastic TNBC breast cancer (MBC) patients (2 biological replicates 
for each) (Supplementary Table 1; Methods). The resulting data, alongside published datasets19 
from 6 ER+ and TNBC breast cancer patients (1 biological replicate for each patient) were 
analyzed using Starfysh.  

We first dissected the spatial heterogeneity in a classic TNBC tumor and characterized 29 
diverse cell states, including normal epithelial, cancer epithelial, immune cells (naive CD4+ T cell, 
effector memory CD4+ T cell, myeloid-derived suppressor cells - MDSC, macrophages, CD8+ T 
cells) and stromal cells (endothelial, PVL immature, PVL) (Fig. 2a,b; Methods, Supplementary 
Table 2, Supplementary Fig. 10, 11). Importantly, due to the heterogeneity of tumor cells36, 
Starfysh defined patient-specific tumor cell states by aligning spots enriched for known tumor cell 
genesets with archetypal spots that capture extreme phenotypic states, resulting in a refined 
anchor set that guided the deconvolution of spots (Fig. 2a-d). The process of identifying example 
anchors, including regulatory T cells (Tregs), and two tumor cell states, showed an improved 
separation of cell states after updating genesets according to aligned archetypes (Fig. 2a-d, see 
Methods). Additionally, the estimated cell density and reconstructed image were consistent with 
the histology (maximal information coefficient = 0.33; compared to 0.18 for shuffled pixels in 
histology) (Fig. 2e; see Methods).   

To understand the association between the tumor cell phenotypes and the TME, we 
defined spatial “hubs” as groups of spots with similar composition by applying Phenograph37 to 
the inferred composition of spots (Fig. 2f; Supplementary Fig. 12). This analysis revealed that 
heterogeneous tumor cell states reside in different spatial hubs with more basal-like tumor cells 
enriched in hub 3 while a second tumor cell state expressing a subset of luminal A markers (e.g., 
MTDH, SMARCB1, FOXA1) are present in hub 0 (Fig. 2f; Supplementary Fig. 12), and the two 
states correspond to two terminal branches in the inferred latent space (Fig. 2g). This analysis 
also uncovered regions with varying composition of infiltrating immune cell types exemplified by 
hub 1 and hub 4 composed of Treg-enriched spots (Fig. 2f, g; Supplementary Fig. 10, 11). 
Altogether, these findings showed the capability of Starfysh in elucidating intratumoral 
transcriptional heterogeneity and characterizing diverse and patient-specific tumor cell states, in 
part determined by their spatial context in the tissue and co-localization with immune subsets.  

 
Starfysh delineates a co-evolving tumor-immune transition in TNBC 

Further analysis of spots enriched for tumor cells using diffusion maps38, 39 (Supplementary 
Fig.13; see Methods) revealed a surprisingly continuous transition between the two tumor cell  
states which also corresponds to a spatial gradient (Fig. 2h). The inferred pseudo-space axis is 
associated with upregulation of extracellular matrix organization and ECM-receptor interaction 
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pathways and loss of IFN and cytokine-mediated signaling related gene expression (Fig. 2i, j). 
Furthermore, the tissue-repair (M2) macrophage signature was also increased along the 
transition. These tumor-associated macrophages (TAMs) have been implicated in promoting the 
invasion, migration, and proliferation of TNBC cells40. This observation, indicative of locally 
induced epithelial-mesenchymal transition and up-regulation of collagen genes, associated with 
metastatic potential41，42, 43, reproduced in the adjacent tissue sample (Supplementary Fig. 14), 
suggests that intratumoral heterogeneity is a continuum rather than two extreme states of tumor 
cells. Indeed, projecting all anchors enriched for tumor genesets as “tumor-associated anchors” 
(TAAs), showed they are uniformly distributed along the pseudo-space axis (Fig. 2h), thus 
representing different stages of this transformation.  

We then sought to investigate whether different immune cell states are associated with 
regions with varying tumor phenotypes. Remarkably, we found a compositional shift from central 
memory and precursor exhausted T cell states44 to effector memory, terminally exhausted and 
Treg states, as co-localized tumor cells lose basal properties along the pseudo-space axis 
spanning intratumoral hubs, while activated T cells are observed at the tumor margins (Fig. 2k, 
Supplementary Fig. 13). Interestingly, the tumor state transformation axis coincides with a loss 
of stemness, down-regulation of WNT signaling pathway, and changes in metabolic states from 
hypoxia and glycolysis to glucose deprivation and tissue repair (Fig. 2l, Supplementary Fig. 15). 
This observation indeed suggests that different T cell states are associated with various niches 
of the TME shaped by varying nutrient supply, oncogenic signals and tumor cell differentiation 
states (Supplementary Fig. 16). For example, WNT, NOTCH, HIPPO, PI3K, NRF2, TP32, RAS 
pathways are depleted, while TGFβ is enriched along this tumor transformation. In parallel, we 
see a shift from monocytes to MDSCs and TAMs, thus showing the ability of Starfysh to spatially 
resolve tumor immune response and identify co-evolving tumor-immune phenotypic changes that 
underlie tumor heterogeneity.   

 

Starfysh enables quantification and comparison of tumor heterogeneity across tissues 

The patient-specific characterization of tumor states also enables the quantification of intra- and 
inter-tumor heterogeneity. Specifically, we used differential gene expression analysis to identify 
markers characterizing tumor associated anchors (TAAs) in all breast tumor samples as well as 
published samples19. We found that marker genesets corresponding to tumor states in biological 
replicates originating from the same patient tumor are significantly overlapping as expected, while 
distinct modules of non-overlapping markers illustrate intra-patient heterogeneity (Fig. 2m). 
Quantifying the overlap in top marker genes associated with tumor states in each sample, 
exhibited greater divergence in markers representing MBC tumor states, implicating higher inter-
tumoral heterogeneity among MBC samples compared to TNBC and ER samples (Fig. 2n), in 
line with the known morphological heterogeneity of MBCs45. This result was further supported by 
comparing the ranking of differentially expressed genes, where we found a lower correlation 
between TAA gene rankings in MBC patients compared to TNBCs (Fig. 2o,p).   
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Figure 2. Characterizing spatial tumor heterogeneity in breast carcinoma. (a)  UMAP 2D projection of ST gene 
expression data from a TNBC patient (sample P2A), with each dot representing a spot (grey). Spots enriched for four 
example cell types are highlighted in color. (b) Mapping all archetypes to the cell types shown in (a). The mapping 
score is defined by the percentage of overlap between neighborhoods of archetypal spots and anchor spots (Methods). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.21.517420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

(c) Archetypal spots associated with cell types in (a) with mapping score >=35% (Methods, Supplementary Fig. 10). 
(d) Spots enriched for cell types are combined with archetypes to achieve a refined anchor set e.g. identifying patient-
specific tumor states. (e) Histology for P2A_TNBC, and reconstructed histology and tissue density using Starfysh. (f-
g) Spatial hubs, distribution of anchors, and inferred proportions, for two tumor cell states and Tregs, in the spatial 
context of the tissue (f) and UMAP projection of inferred latent factors from Starfysh (g). (h) Diffusion map analysis 
revealing a continuous trajectory between spots enriched for tumor cell states. Tumor-associated anchors (TAAs) are 
shown with red stars. The dominant trajectory was inferred with Scorpius46 and shown in the tissue context representing 
a pseudo-space axis. (i) Top row: Tumor states identified with Starfysh. Second row: Pseudo-space for spots sorted 
along the trajectory inferred in (h). Bottom: Heatmaps of expression of modules of genes with positive or negative 
correlation with the projection of cells along the trajectory and select pathways enriched with gene set enrichment 
analysis (GSEA).  (j) Expression of marker genes in pathways shown in (i) in spots projected on the trajectory. (k) 
Changes in the proportion of tumor and immune cell states across the pseudo-space axis inferred in (h). (l) Expression 
of genesets demonstrating enrichment in any intratumoral hub. (m) Heatmap of expression of top 20 gene markers 
(rows) differentially expressed in TAAs (columns) grouped by sample. (n) Overlap between top N marker genes 
differentially expressed in TAAs in any pair of patients. (o-p) Kendall’s Tau correlation between rankings of genes 
according to differential expression scores in TAAs (o), and grouped by patient subtype (p) (S: correlations among 
sample patients; D: correlations among different patients). 

 

Starfysh characterizes spatial hubs from the integration of breast tumor samples 

To demonstrate the potential of Starfysh in deriving commonalities among heterogeneous 
samples and disease subtypes, we performed an integrated analysis of 37,517 spots from all 14 
samples of 10 patients (Supplementary Table 3; see Methods). UMAP dimensionality reduction 
of ST data without Starfysh revealed no overlap among patients, partly due to patient-to-patient 
variation, given that replicate samples overlap (Fig 3a). Moreover, the aggregation of patient-
specific tumor cells with other cell types within spots hindered the comparison of shared immune 
states and spatial neighborhoods between patients. While batch correction methods designed for 
single-cell data failed in correcting the variations between patients (Supplementary Fig.17), 
Starfysh successfully integrated all datasets (Fig 3b). It yielded more mixing of shared immune 
states quantified with the entropy of the local distribution of patients (see Methods), yet preserved 
differences between patient-specific tumor cells (Fig. 3c, d). Overall, this analysis showed that 
luminal B tumors displayed lesser heterogeneity compared to basal and luminal A tumors. 

To understand the similarities and differences in the organization of cell states among 
patients and samples, we identified spatial hubs by merging and clustering spots from all samples 
according to inferred cell state proportions (Fig. 3e). The majority of hubs were detected in more 
than one patient (Fig. 3f). The distribution of hubs, however, varied between disease subtypes 
and patients. The spatial arrangement of hubs showed a marked similarity to expert-annotated 
histology, including in rare normal epithelium regions, tumor infiltrated regions, and immune cells 
enriched regions (Fig. 3g,h), which was quantified using maximum information coefficient (MIC) 
(Fig. 3i, see Methods). As expected, hub distributions had similar patterns between biological 
replicates, i.e., adjacent sections of tumor tissues (e.g., P1A_ER and P1B_ER), whereas hubs 
dominated by tumor cells were different between patients (e.g., P1 and P2) (Fig. 3j, k).  
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Figure 3. Characterizing tumor-immune hubs from the integration of samples. (a)-(b) UMAP visualization of gene 
expressions of 4 MBC samples, 6 TNBC samples, and 4 ER+ samples before (a) and after (b) Starfysh integration. (c) 
UMAP visualization of Starfysh inferred proportions from integration of spots from all samples colored by the proportions 
of a tumor cell state and an example immune cell state (Treg) in the integrated space. (d) UMAP of integrated space 
colored by Shannon’s entropy in each spot and boxplots of entropy grouping spots by disease subtype. (e) UMAP of 
integrated space colored by hubs identified by clustering spots based on inferred cell-type proportions.. (f) Spatial hub 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.21.517420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

distribution for each sample (g)-(h) Spatial arrangement of hubs (g) and pathological histology annotation of sample 
44971_TNBC (h). Inferred hubs align well with annotated ductal carcinoma in situ (DCIS) (red hub), lymphocyte 
infiltrated (olive green hub), and stroma (yellow hub) regions. (i) Maximum information coefficient (MIC) for alignment 
of hubs with histology. (j) Paired histology and spatial arrangement of hubs for a TNBC and ER patient showing 
consistencies between replicates of the same patients and with histology. (k) Number of spots assigned to intratumoral 
hubs in each patient. 
 
Metabolic remodeling shapes an immunosuppressive niche in metaplastic breast tumors 

Through the integration of ST datasets, we performed a systematic comparison of tumor 
heterogeneity and its interplay with tumor-immune characteristics across subtypes of breast 
cancer.  Specifically, we investigated potential differences in the cellular organization in MBC 
tumors compared to other TNBCs that might explain their worse clinical outcomes 47. MBC is a 
rare and aggressive subset of breast cancers, making for 1-2% of all breast cancer41. MBC is 
typically characterized as TNBC because these tumors largely lack the expression of estrogen 
receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 receptor 
(HER2). However, MBCs have a worse prognosis compared to conventional TNBC and exhibit 
greater resistance to chemotherapy41, 48, 49. A hallmark of MBC is its significant morphological 
heterogeneity reflected in its name45, 50. This distinguishing feature alongside enrichment in 
macrophages and immunosuppressive Tregs51 motivates the spatial characterization of tumor-
immune crosstalk in the MBC TME to help guide the development of novel therapeutic 
approaches tailored to MBC’s unique biology.  

We partitioned hubs according to their spatial arrangement around tumor regions (Fig. 4a, 
Supplementary Fig.18, 19) into intratumoral, peritumoral, and stromal hubs, representing hubs 
with enriched tumor cells, regions adjacent to intratumoral hubs, and distant regions, respectively 
(Fig. 4a, Supplementary Fig. 20). Notably, tumor samples did not show significant overlaps in 
intratumoral hubs, supporting heterogeneity of tumor cells across patients (Fig. 3k, Fig. 4b). To 
understand phenotypic differences in MBC tumor states, we projected TAAs in the inferred joint 
space from the integration of all samples provided by Starfysh (Methods). Using diffusion map 
analysis, we found a tumor state transition trajectory from a TNBC-enriched state to an MBC-
specific state (Fig. 4c, Supplementary Fig. 21) which correlated with the regulation of tumor 
growth and reduction of glycolytic process signature. Importantly, MBC-specific states were 
associated with inflammatory response, hypoxia, EMT, and tumor necrosis (Fig. 4d, 
Supplementary Fig. 22). The expression of EMT and hypoxia-related gene sets, and the 
distribution of samples along the trajectory also confirmed the enrichment of EMT and hypoxia in 
MBC intratumoral hubs (Fig. 4e, f). Oncogenic pathways such as PI3K/AKT and p53 were also 
enriched in MBC intratumoral hubs, while G1/S and G2/M pathways were down-regulated 
(Supplementary Fig. 23). Interestingly, the spatial distribution of EMT and hypoxia indicated a 
gradual diminution in their prominence in peritumoral and stromal regions in MBC (Fig. 4g), while 
TNBC and ER did not show this trend (Supplementary Fig. 24).  

In agreement with increased hypoxia in the intratumoral hub, we observe an enrichment 
of Tregs and perivascular-like cells in MBC (Fig. 4h). In fact, the enrichment of Tregs in 
intratumoral hubs was only detected in MBC, implicating Treg-infiltration as a potential hallmark 
of this subtype of breast cancer. Besides Tregs, other immunosuppressive cells such as M2-like 
macrophages, MDSC, and cancer-associated fibroblasts (CAFs), in addition, perivascular-like 
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cells were uniquely enriched in MBC intratumoral hubs compared to TNBC and ER (Fig. 4i; 
Supplementary Fig. 25). Previous literature has shown hypoxia affecting EMT in cancer by 
regulating EMT signaling pathways, EMT-associated miRNA, and lncRNA networks52. Both 
hypoxia and EMT were reported to modulate the TME by recruiting immunosuppressive cell types 
such as Tregs53,54. In line with this observation, a negative correlation was observed between 
CD8+ tumor-infiltrating lymphocytes and EMT markers in MBC tumors (Fig. 4i, Supplementary 
Fig. 25). Hypoxia is also known to confer therapy resistance by inducing cell cycle arrest, inhibiting 
apoptosis, and mitochondrial activity55. Therefore, a subpopulation of tumor cells that survive 
hypoxia may be those responsible for resistance to chemo- and radiotherapy. 

To understand communication patterns utilized by MBC tumor-infiltrating Tregs, we 
predicted receptor-ligand interactions potentially supporting crosstalk between Tregs and other 
cell states enriched in intratumoral hubs, using CellPhoneDB56 (Fig. 4j, Supplementary Fig. 26, 
27; see Methods), revealing immunosuppressive pathways such as FGF2, TIMP1, FGFR1, 
CD44. Notably, FGF2 is a pro-tumor angiogenesis factor and induces drug resistance in 
chemotherapy in breast cancer57. TIMP1 is also found to be correlated with cancer progression 
and significantly increased in tumor-infiltrating lymphocytes (TILs) and Tregs 58 59. FGFR1 induces 
the recruitment of macrophages and MDSCs in the tumor via CX3CL160, while CD44 is a known 
marker of breast cancer stem-like cells and stabilizes Treg persistence and function61. 
Interestingly, the diffused expression of these receptors with distance from Treg-enriched spots 
was only observed in MBC (Fig. 4k) further supporting their involvement in intratumoral Treg 
communication. Moreover, co-localization of cell states quantified using the spatial correlation 
index (SCI62, Methods, Supplementary Fig. 26, 27) indicates the potential involvement of Tregs 
in triads with tumor cells and terminally-differentiated exhausted T cells. These results 
demonstrate complex crosstalk in response to the immunosuppressive signals generated by 
Tregs.  

Gene enrichment analysis in MBC intratumoral hubs also revealed EMT, hypoxia, p53 
pathway, IL-2/STAT5 signaling, ECM, and PI3K-AKT signaling in MBC samples (Fig. 4l). Notably, 
the genomic landscape of MBCs shows frequent mutations in TP53 and genes related to the 
PI3K/AKT/mTOR pathway63, 64. Our data thus suggests possible coordination of nutrient uptake 
including glucose through HIF1 and PI3K/Akt pathways65 supporting enhanced growth and 
proliferation66 in intratumoral MBC hubs66 while this metabolic reprogramming is associated with 
immunosuppressive crosstalk (Supplementary Fig. 28). The diffused expression of HLA genes 
with distance from Tregs suggests the selection of adaptive Tregs could be allowed by increased 
MHCII driven by EMT (Supplementary Fig. 28).    
 
Spatial organization and interactions in the stromal breast TME  

To dissect the stromal TME responding to the unique microenvironment niches, such as 
gradients of EMT and hypoxia in MBC, we characterized the cellular composition of peritumoral 
regions including hubs 1, 2, 3, 7, 10, 12 (Supplementary Fig. 20, 25). Intriguingly, Treg-enriched 
hub 3 (Fig. 4b, red), was present in all samples but showed unique patterns in each disease 
subtype. For example, it enveloped tumor hubs in the ER sample while being spatially scattered 
in the TNBC tumor (Fig. 4b; Supplementary Fig. 29). In contrast, in MBC, hub 3 was 
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concentrated at certain locations close to intratumoral hubs, and the proportion of Tregs was lower 
than in intratumoral hubs, confirming Treg infiltration into MBC tumor regions.  
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Figure 4. Intratumoral inflammation and heterogeneity in MBC epithelia. (a) Classification of spatial hubs 
according to distance from the tumor and matched histology. Percentage of spots from subtypes in each hub. (b) The 
spatial arrangement of hubs. (c) Diffusion map analysis reveals a continuous trajectory between TAAs across different 
patient samples. Archetypes are shown with red stars to represent the most distinct states for TAAs. The dominant 
transition trajectory was inferred with Scorpius46.  (d) Top row: Spots ordered by inferred pseudo-time using Scorpius 
based on diffusion component in (c). Second row: Pseudo-time for spots sorted along the trajectory inferred in (c). 
Bottom: Heatmaps of expression of modules of genes with positive or negative correlation with the projection of cells 
along the trajectory and select pathways enriched with gene set enrichment analysis (GSEA). (e) The expression of 
EMT and hypoxia-relevant genesets show highly correlated dynamics along pseudo-time. (f) Percentage of ER+, 
TNBC, and MBC spots along the inferred pseudo-time. (g) Contour map showing the expression gradients of EMT- 
and hypoxia-related gene sets. Upper: sample P3A_MBC; Lower: sample P4A_MBC. (h) Expression of hypoxia 
geneset and predicted proportions of Tregs and PVLs (binned and sorted by stromal (left) to intratumoral (right) hubs. 
(i) Comparison of inferred intratumoral cell-state proportions across tumor subtypes. (j) Predicted significant receptor-
ligand interactions between Tregs (ligand) and other cell types (receptor) in MBC intratumoral regions. (k) Expression 
of FGF2 and CD44 averaged across spots in each tumor subtype after binning according to distance from Treg-
enriched hub 3.  (l) Enrichment analysis for MBC intratumoral hubs. Significant pathways with FDR<0.05 are shown.  

 

Activated CD8+ T cells were enriched in peritumoral hub 3 in MBC samples compared to 
intratumoral regions, in contrast to their enrichment in intratumoral hubs in TNBC and ER+ (Fig. 
5a). In addition to the spatial shifts of T cell states, endothelial cells were also enriched in hub3 in 
MBC, indicative of heightened angiogenesis in the stromal TME of MBC (Fig. 5a), which was 
particularly apparent in the histology of the region (Fig. 5b, 4g) likely as an adaptation to hypoxia. 
Predicted Treg interactions in hub 3 show expression of CCL5, CXCR3, and CXCL11, CXCL2 in 
TNBC (Fig. 5c), compared to the predicted expression of neuropilin 1 and 2 NRP1/2 uniquely in 
MBC (Supplementary Fig. 30) which has been associated with stimulation of angiogenesis, 
consistent with the identification of interaction of VEGFA in our samples, enriched 
immunosuppressive roles, and worse prognosis of MBC patients67. Cytotoxic CD8+ T cells failing 
to infiltrate MBC tumors were associated with a unique ligand-receptor predicted link between 
SPP1 mainly secreted by tumor epithelia, CD8+ T cell deletional tolerance68, cDC, and MDSC 
cells, and CD44 expression on cytotoxic CD8+ T cells. SPP1/OPN interacting with CD44 has been 
identified as a process for T cell suppression69, associated with epithelial cell migration, activation 
of PI3K/AKT signaling, and a hallmark of lower patient survival and chemo-resistance69,70,71. 
GAS6/AXL interaction72, uniquely shown in MBC, is also known to promote tumor cell 
proliferation, survival, migration, and angiogenesis73 (Fig. 5d).  

Overall, Starfysh enabled the characterization of the spatial TME in MBC differing from 
TNBC and ER which is also summarized in Fig. 5e. We illustrate the enriched tumor suppressive 
cells possibly blocking CD8+ T  cell infiltration, and underlying enriched hypoxia, EMT potential, 
and angiogenesis in the MBC TME.  
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Figure 5. Spatial heterogeneity of the stromal breast TME (a) Treg, activated CD8 T cell, and endothelial cell states 
in peritumoral hub 3 in ER, TNBC, and MBC samples. (b) The spatial arrangement of hubs and corresponding histology 
indicate blood cells and vessels around hub 3 in MBC. (c) Predicted interactions with Tregs in TNBC stromal hub 3. (d) 
Interactions involving activated CD8 T cells in hub 3 in TNBC and MBC tumors (e) Summary diagram.  

 

Discussion 

By incorporating archetypal analysis and prior knowledge of markers of cell states in a deep 
generative model, Starfysh dissects the spatial heterogeneity of complex tissues from the 
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combination of spatial transcriptomic and histology imaging data, without the need for a single-
cell reference. Deconvolution of refined cell states is accomplished through the introduction of 
auxiliary variables in the inference scheme and is improved with the integration of histology, 
providing information on the tissue architecture, cell density, and spatial dependencies between 
transcriptomic measurements. Importantly, Starfysh can integrate multiple heterogeneous tissue 
samples, disentangle fine-grained cell states, and identify shared or tissue-specific cell states and 
spatial hubs to understand their role in tissue function and disease pathogenesis. These key 
features make Starfysh an ideal tool to discover and query spatial hubs from integrated large-
scale datasets, increasing our power to detect features of complex and rare diseases that could 
drive future therapeutic strategies.  

We applied Starfysh to investigate the role of spatial breast tumor heterogeneity in defining 
the continuous phenotypic expansion of tumor-infiltrating immune cells35. We showed the ability 
to characterize patient-specific heterogeneous tumor cell states and identified a tumor cell state 
transition within a complex TNBC tumor. Remarkably, the tumor cell transformation from basal 
states to mesenchymal states dovetails with a shift in the distribution of immune cell states. 
Specifically, a T cell activation axis coincided with moving farther away from tumor cells that 
exhibit stemness features and reside in hypoxic regions, supporting the hypothesis that the spatial 
orientation of tumor cell subsets determines immune differentiation.  

We demonstrate the power of Starfysh in integrating multiple complex tissue samples 
using our newly generated data alongside previously published ST datasets, to quantify intra- and 
inter-tumoral heterogeneity, and identify spatial hubs as regions with a similar composition of cell 
states. Importantly, integrating samples enabled the comparison of rare chemo-resistant 
metaplastic breast tumors to other breast cancer subtypes. Notably, we found intratumoral 
infiltration of Tregs, M2-like macrophages, and MDSCs in MBC shaping an immunosuppressive 
niche enriched in EMT and hypoxia (Fig. 5e). Crosstalk with immunosuppressive Treg and 
MDSCs was predicted to be mediated through FGF2, TIMP1, FGFR1, CD44 signaling pathways 
which would be top candidates for future functional studies. Indeed, FGFR signaling is known to 
maintain EMT-mediated drug-resistant populations74. Enrichment of p53 and PI3K-AKT pathways 
in MBCs also suggests reprogramming of metabolic activity in MBC tumors. Our data thus 
motivates further investigation of FGFR inhibitors75 as well as other approaches for targeting 
glucose metabolism76 and immunosuppressive Tregs for the treatment of metaplastic breast 
cancers.  

In addition to the spatial characterization of the TME specific to this rare subtype of breast 
cancer, this integration identified a stromal hub shared across breast cancer subtypes while 
exhibiting varying spatial patterns. Within this stromal hub, we observed compositional shifts with 
the replacement of Tregs with activated CD8+ T cells in MBC compared to other TNBCs. 
Additionally, our observation of enriched endothelial cells in MBC stroma alludes to mechanisms 
of local adaptation to hypoxic regions through possible vascular formation. Altogether, these 
results imply that the underlying biology of the tumor impacts stromal response and immune 
infiltration.  

Overall, Starfysh has shown the capability to analyze complex spatial transcriptomics, 
integrate patient samples with distinct microenvironments and tissue sources, and demonstrate 
robustness in characterizing spatial interactions in within-sample, across-sample replicates as 
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well as across-patient analyses. These features enabled the extraction of new biological insights 
from a limited cohort of breast cancer patients. In a recent study, we applied Starfysh to 
disentangle the spatial dynamics of activated and exhausted T cell subsets in Slide-Seq V277 data 
from anti-PD-1 treated melanoma tumors78, showing its applicability to other ST technologies and 
cancer systems. In future work, the incorporation of archetypal analysis in the probabilistic 
framework and extensions to multi-omics integration with proteomics or chromatin accessibility 
will improve our ability to achieve comprehensive characterization of spatial heterogeneity. 
Additionally, integration with high-resolution images can explicitly account for cell morphology 
(e.g., nucleus density, nucleus/cytoplasm ratio, etc.), which can be incorporated with priors in the 
integrative model. 

 

Methods  
 
Starfysh model 

Model overview 

Deep generative models parameterized by neural networks have proven effective in analyzing 
single-cell RNA expression data (scvi-tools20, scvi21, totalVI22, scArches23, trVAE24, scANVI25, 
MrVI26, etc). However, the presence of multiple cell types in each spot in ST data makes it difficult 
for these models to disentangle the cell-type-specific features. To overcome this limitation, 
Starfysh introduces a novel generative model with a special variational family that is structured to 
model the presence of multiple cell states per spot in ST data. The generative model uses geneset 
signatures (either existing signatures or signatures computed with archetypal analysis) as an 
empirical prior to help disentangle cell types. The inference method combined with the Starfysh 
generative model forms an auxiliary deep generative model27. We first detail the generative model 
of Starfysh and then introduce the structured variational family with cell state proportions as 
auxiliary variables.  

Starfysh generative process 

Starfysh models the vectors of gene expression 𝑥! ∈ ℜ" (with 𝐺 being the number of observed 
genes) for each spot 𝑖 with a generative model. In the Starfysh generative process (Fig. 1c, 
Supplementary Fig. 3a), each spot 𝑖 is associated with a low-dimensional latent variable 𝑧! ∈
ℜ#	 (default 𝑀 set to 10 dimensions). This latent variable is a compressed representation of all 
the cell states contained in the spot. The latent variable 𝑧! is transformed with a neural network 𝑓 
into the normalized mean expression of each gene for the spot 𝑖.  This normalized gene 
expression is then scaled by the library size of the spot 𝑙!. The library sizes are sampled from a 
log-normal distribution with the mean set empirically to 𝑙$+, the average observed library size 
(defined as the sum of counts per spot) in the adjacent spots (detailed in the construction of the 
empirical prior below). The observed transcripts 𝑥!% of the gene 𝑔 for the spot 𝑖 are finally sampled 
from a negative binomial distribution with the previously calculated means and 𝑥! denotes the 
vector of expression of all genes in the spot 𝑖. In addition to 𝑧!, Starfysh associates each spot 𝑖  
with a vector of cell state proportions 𝑐! ∈ ℜ&. The number of cell states 𝐾 is computed in advance 
with our archetypal analysis. For each cell state 𝑘 = {1, . . . , 𝐾} that is discovered during our 
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archetypal analysis, we compute the score of the associated gene expression signature 𝑠', 
denoted by 𝐴(𝑥! , 𝑠') (detailed in the construction of the empirical prior below). In each spot, the 
proportions of cell states are then sampled from a Dirichlet prior distribution with a prior parameter 
set empirically to the observed scores (𝐴(𝑥! , 𝑠'))' of the cell state signatures for the spot. As an 
example, if 𝑥! highly expresses gene 𝑔′, a known marker for cell state 𝑘′, then the score 𝐴(𝑥! , 𝑠'() 
will be high and our empirical Dirichlet prior parameter will place a higher probability on cell state 
𝑘′. Additionally, a parameter 𝛼 controls the strength of this prior. The generative model is defined 
as 𝑝(𝑙! , 𝑧! , 𝑥! , 𝑐!) = 𝑝(𝑙!; 	𝑙$+)𝑝(𝑧!)𝑝(𝑥!|𝑧! , 𝑙!)𝑝(𝑐!; 	𝛼) with 

𝑝(𝑧!) = 𝑁𝑜𝑟𝑚𝑎𝑙(0), 𝐼)) 

𝑝(𝑙!; 	𝑙$+) = 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝑙$+		,1) 

𝑝*(𝑥!%|𝑙! , 𝑧!) = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑙! ⋅ 𝑓(𝑧!), 𝜃%	) 

𝑝(𝑐!; 	𝛼) = 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼 ⋅ 𝐴(𝑥! , 𝑠))	. 

In the generative process above, the average library size observed in spot 𝑖’s spatial 
neighborhood is defined by 𝑙$+ 	=

+
|-!|

		∑ ∑ 𝑥!%%.	∈-!  where 𝑁! is the set of spots physically located 

adjacent to spot 𝑖, and also includes 𝑖. The negative binomial dispersions 𝜃%	 are gene-specific 
parameters learned during the inference. The parameters of the neural network 𝑓 with the default 
including two linear convolution neural layers, followed by ReLU and Softplus activation function 
respectively, are also learned during inference.  

Integration with histology image 

Though histology H&E images are usually provided along with ST data (e.g., from the commercial 
Visium platform that aligns spots between replicate tissues), current methods fail to combine the 
transcriptomic information with the paired histology of the tissue in deconvolving cell types. 
Histology, however, can provide useful information about morphology, tissue structure, cell 
density, and spatial dependency of cells. Integrating histology and transcriptomes in a joint model 
is challenging as the two data modalities are very different: the genome-level transcripts are high-
dimensional vectors whereas the histology data consists of three-color channel images. Thus the 
integrative approach should address the mismatch of these two types of data while preserving 
the cell-type specific information of gene expression, and cell morphology-specific information of 
histology images. The integration with histology image in our model is formulated with a deep 
variational information bottleneck approach28.  

In the generative model, the histology image is introduced as the variable 𝑦! representing 
image intensity and is assumed to be generated from the same latent variable 𝑧! that informs 
gene expression (Supplementary Fig. 3b) with a distribution 𝑝(𝑦! 	|	𝑧!) parametrized by two 
neural networks 𝑔1,𝑔2 each consisted of one linear convolutional neural layer followed by a batch 
normalization layer, for mean and variance of distribution for 𝑦! respectively:  

𝑝(𝑦!	|	𝑧!) = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑔1(𝑧!), 𝑔2(𝑧!)	) 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.21.517420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Construction of the empirical prior 

Based on marker genesets for cell states expected to reside in the tissue, Starfysh first evaluates 
the feasibility of the provided marker genes and filters genes not expressed in any spots to obtain 
binary variable 𝑠' ∈ 	ℜ", 𝑘 = {1, . . . , 𝐾}. Then, spots enriched for cell states are determined by 
those ranked in the top N according to mean expression (without normalization) of marker genes 
for each cell state, forming an initial anchor spot set that can be updated with archetypal analysis 
explained below. Two priors are calculated before running Starfysh, including a prior for the cell 
state proportion, and a prior for the library size: 

1. Prior for the cell type proportion 𝐴(𝑥! , 𝑠'): 

 𝐴(𝑥! , 𝑠') is defined as the z-scored mean expression: 𝐴(𝑥! , 𝑠') = (
∑ 4!"⋅6#""∈[&,..,)]

∑ 6#""
− 𝑢')/𝜎'  

if 𝑖 is an anchor spot and 0 otherwise, where 𝑢' and 𝜎' denote the expectation and standard 
deviation of mean expression for cell state 𝑘. Notably, the prior weight is different between anchor 
spots and non-anchor spots to enhance the effects anchors, as purest spots with the least mixing, 
in disentangling cell states in spots with relatively more mixing of cell states.     

2. Prior for the library size: 

 Stafysh also considers the spatial dependency of spots when generating the prior for 
library size. 𝑙$+ 	=

+
|-!|

		∑ ∑ 𝑥!%%.	∈-!  where 𝑁! is the set of spots physically located around the spot 

𝑖, also includes 𝑖, which denoted as |𝑟-$VVVVV⃗ − 𝑟$VV⃗ | < 𝑤. 𝑤 is an adjustable parameter for window size 
(default set to 3). 𝑟-$VVVVV⃗  is the coordinate vector for neighbors of spot 𝑖, and 𝑟$VV⃗  is the coordinates for 
spot 𝑖.     

Archetypal analysis 

Marker genes representing cell states may be context-dependent or unknown. To address these 
limitations and enable the discovery and improved characterization of tissue-dependent and 
heterogeneous cell states, we developed a geometric preprocessing step, leveraging archetypal 
analysis79, to refine marker genes and identify novel cell states.  

Archetypal analysis fits a convex polytope to the observed data, finding the prototypes 
(archetypes) that are most adjacent to the extrema of the data manifold in high dimension. 
Previous works80,81,82 have applied archetypal analysis on single-cell RNA-seq data to 
characterize meaningful cell types. In the context of spatial transcriptomics, we hypothesize that 
the archetypes identify the purest spots that contain only one or the fewest number of cell states, 
while the rest of the spots are modeled as the mixture of the archetypes.  

We applied the PCHA algorithm83 to find archetypes that best approximate the “extrema'' 
spots on a low-dimensional manifold. Specifically, let 𝑋789) ∈ ℜ:×" be the log-normalized spot 
(𝑆) by gene (𝐺) spatial count matrix such that 𝑥789)!,% =𝑙𝑜𝑔 (𝑥!,%	/	𝛴%	𝑥!,% + 1). We selected the 
first P=30 principal components (PCs) (𝑋′ ∈ ℜ:×=	) to denoise the data. We denote matrices 𝑊 ∈
ℜ:×&, 𝐵 ∈ ℜ&×:, and 𝐻 = 𝐵𝑋′ ∈ ℜ&×=, where 𝐾 represents the number of archetypes. The 
algorithm optimizes the parameters of 𝑊 and 𝐵 alternately, minimizing ║𝑋′ −𝑊𝐻║> = ║𝑋′ −
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𝑊𝐵𝑋′║
> subject to 𝑊:,! > 0	&	∑ 𝑊:,! = 1'

!@+ , and 𝐵:,! > 0	&	 ∑ 𝐵:,! = 1:
!@+ , where 𝑆 spot counts and 

𝐾 archetypes are convex combinations of each other84. To find a suitable choice of 𝐾, we applied 
Fisher Separability analysis85 to infer the Intrinsic Dimension (ID) as its lower bound, and iterate 
through different 𝐾 values until the explained variance converges. We also implemented a 
hierarchical structure to fine-tune the archetypes’ granularity with a resolution parameter 𝑟	86 
(default set to 20). For archetype 𝑎! , 𝑖 ∈ 2, . . . , 𝑘, if it resides within euclidean distance of 𝑟	 from 
any archetype 𝑎. , 𝑗 ∈ 1, . . . , 𝑖 − 1, we merge𝑎! with the closest 𝑎. . The archetypes distant from each 
other are kept after the shrinkage iteration and used in subsequent steps.  

We define archetypal spots as the N-nearest neighbors to each archetype by constructing 
𝑘 clusters. Then, for each cluster 𝑖, we identify the top 30 marker genes by performing a Wilcoxon 
rank sum test between in-group and out-out-group spots with Scanpy87. We then designed an 
iterative pipeline to refine cell state markers according to archetypes. First, we align the archetypal 
spots with the best 1-to-1 overlap (default 1AB!%7CD= 0.35 (Supplementary Fig. 1e, 
Supplementary Fig. 10) with the initial anchor spots consisting of those with the highest 
expression of markers for a given cell state, and then append its signature gene list with the 
archetypal marker genes. Then, we update the anchor spots according to the updated gene list. 
In practice, the refinement of signature genes to anchor spots can be updated in multiple iterations 
if needed. Alternatively, to find novel cell states, we rank the archetypal clusters from the most 
distant to the least distant to the anchor spots of known cell states, and the archetypal clusters 
distant from all anchor spots represent potential novel states for further study.  

The overall archetypal analysis algorithm in Starfysh is summarized as follows: 

1. Estimate the Intrinsic Dimension (ID) of the count matrix, and find 𝑘 archetypes that 
identify the hypothesized purest spots. 

2. Find the N-nearest neighbors of each archetype, and construct archetypal spot clusters. 

3. Find the most highly and differentially expressed genes for each archetypal spot cluster, 
and select the top 𝑛 genes (default: 𝑛 = 30) as the “archetypal marker genes”. 

4. If the signature gene sets are provided: align the archetypal spot clusters to the anchor 
spots of known cell types, update the signature genes by appending archetypal marker genes to 
the aligned cell type, and re-calculate the anchors.  

5. If the signature gene sets are absent: apply the archetypes and their corresponding 
marker genes as the signatures. 

We found that archetypes alone are not sufficient for disentangling cell states (Supplementary 
Figure 1e), however, used as empirical priors to the deep generative model, they can guide the 
successful deconvolution of cell states (Supplementary Fig. 1a; Fig. 1e). 

  

Starfysh structured variational inference without the histology 

Given observed ST data, the Starfysh generative model induces a posterior on its parameters. 
We use variational inference to approximate the posterior. We first describe the inference 
procedure without the histology integration (no variable 𝑦!). The variables 𝑐! and 𝑙! (cell states and 
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library size) are approximated by amortized mean-field distributions 𝑞(𝑐!|𝑥!) and 𝑞(𝑙!|𝑥!). For the 
latent variables 𝑧! of the spots, we use a specially structured variational distribution 𝑞(𝑧!|𝑐! , 𝑥! , 𝑙!) 
that uses the cell-state proportions as an auxiliary variable to sample the latent variables 𝑧!. 
Because each spot contains multiple cell states with proportions 𝑐!, the structured variational 
distribution is assumed to decompose as a combination of cell-state-specific terms (denoted by 
𝜁(𝑘, 𝑥! , 𝑙!) for each cell type 𝑘), weighted by the proportion of cell-states 𝑐!. The variational family 
factorizes in the form 𝑞(𝑧! , 𝑐! , 𝑙!|𝑥!) = 𝑞(𝑐!|𝑥!) ⋅ 𝑞(𝑙!|𝑥!) ⋅ 𝑞(𝑧!|𝑐! , 𝑥! , 𝑙!) (Supplementary Fig. 3b). 
The three distributions are parametrized by neural networks 𝜆, 𝛾 and 𝜁 as follow: 

𝑞(𝑙!|𝑥!) = 𝑁𝑜𝑟𝑚𝑎𝑙(𝜆1(𝑥!), 𝜆2(𝑥!)) 

𝑞(𝑐!|𝑥!) = 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛾(𝑥!)) 

𝑞(𝑧!|𝑐! , 𝑥! , 𝑙!) = 𝑁𝑜𝑟𝑚𝑎𝑙 ij𝑐!' ⋅ 𝜁1(𝑘, 𝑥! , 𝑙!)
'

,j𝑐!' ⋅ 𝜁2(𝑘, 𝑥! , 𝑙!)
'

k 

In summary, for each cell state 𝑘, the function 𝜁(𝑘, 𝑥! , 𝑙!) deconvolves the contribution of cell-state 
𝑘 to the latent representation of 𝑧!. Each 𝑧! is a combination of the cell-state contributions 
𝜁(𝑘, 𝑥! , 𝑙!) weighted by the proportions 𝑐!. The cell-state proportions are inferred with the neural 
network 𝛾, which is guided toward the prior to match the cell-type genesets. 

Then, the standard variational inference that maximizes the Evidence Lower BOund (ELBO) is 
performed88. The ELBO in our case can be written as: 

𝐸𝐿𝐵𝑂(𝑞) 	= 	𝐸E(G	,H	,B	|4	)𝑙𝑜𝑔	𝑝(𝑥	|𝑙	, 𝑧	) − 𝐷&J(𝑞(𝑧	|𝑐	, 𝑥	, 𝑙	)||𝑝(𝑧	)) − 𝐷&J(𝑞(𝑙	|𝑥	)||𝑝(𝑙))
− 𝐷&J(𝑞(𝑐	|𝑥	)||𝑝(𝑐)) 

We find the 𝑞 that maximizes the ELBO by running stochastic gradient descent. 

Starfysh structured variational inference with the histology 

To integrate the histology in the inference method, we use the deep variational information 
bottleneck approach28 which models the approximate posterior over the latent variables with the 
Product of Expert distributions (PoE). For the latent variables 𝑧!, the posterior distribution 
𝑞(𝑧!|𝑐! , 𝑥! , 𝑙!) becomes dependent on 𝑦! and we parameterize it as a Product of Expert distribution 
as described in the original method28: 

𝑞(𝑧!|𝑐! , 𝑥! , 𝑙! , 𝑦!) ∝ 𝑞(𝑧!|𝑐! , 𝑥! , 𝑙!)𝑞(𝑧!	|	𝑦!)𝑝(𝑧!)	 

where 𝑞(𝑧!|𝑐! , 𝑥! , 𝑙!) is as described above without the histology, 𝑝(𝑧!) is the prior, and 𝑞(𝑧!	|	𝑦!) is 
the contribution of the histology image, parameterized as 𝑞(𝑧!	|	𝑦!) = 	𝑁𝑜𝑟𝑚𝑎𝑙(ℎ1(𝑦!), ℎ2(𝑦!)	) with 
a neural network ℎ. 

 The previous ELBO can be updated with this new variational approximation for the joint 
modeling of histology and transcriptome. To train such an inference model, we use the information 
bottleneck approach28 instead of just maximizing the ELBO. With this approach, not only the 
ELBO of the joint model is maximized, but also the ELBO of the transcriptomic model alone, and 
the ELBO of the histology model alone are optimized. These objective functions are added 
together to form one objective function to be maximized (Supplementary Fig. 3c).  
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Starfysh implementation 

The Starfysh model is implemented as a Python package using PyTorch89, and optimizations are 
performed via Adam90. The data input is structured to be compatible with Scanpy87. 
Hyperparameters such as early stopping, training times for achieving the best performance, and 
the number of epochs is adjustable in the Starfysh package with default values provided. Starfysh 
and tutorials on simulated and real data are publicly accessible 
(https://github.com/azizilab/starfysh).   

Prediction of cell-state-specific expression 

To predict the cell-state-specific expression, we utilize the decoder in which the parameters have 
been learned and optimized by the variational inference. The proportion 𝑐! is adjusted to 1 for a 
specific cell state, and 0 for other cell states. The reconstructed expression and histology are 
considered as the cell state-specific expression and histology.   

 

Simulation of ST data 

We construct our ST simulation using mixtures of single-cell RNA-seq data previously collected 
from primary TNBC tumor tissues (CID44971_TNBC)16 with three levels of constraints, each 
building upon the previous one to emulate real-data effects.  

Spatially-independent simulation  

We modify the approach used in Stereoscope11 to construct a 5-cell type (Cancer Epithelial, 
Normal Epithelial, T-cells, CAFs, Myeloids) synthetic ST data. Each spot is independently 
assigned with the number of cells (5-15) and the number of cell types (1-5) uniformly, and the 
final cell-type assignment is determined by a uniform Dirichlet distribution. Then, we randomly 
sample cell indices (with replacement) with the assigned cell type from the scRNA-seq reference. 
To construct the synthetic ST matrix, selected single-cell expressions for each spot are added 
and multiplied with a global capture rate parameter.  

Spatially-dependent simulation 

To address the spatial dependencies among neighboring spots, we adopt the pipeline from 
Cell2Location8. Specifically, we define a 50 × 50 matrix, with each pixel representing a synthetic 
ST spot. We select 5 major cell types (CAFs, Cancer Epithelial, Myeloid, Normal Epithelial, T-
cells) from the reference scRNA-seq, and apply 2D Gaussian Process models to simulate their 
spatial proportions in each spot, respectively. We further assign an expected library size for each 
synthetic spot with a Gamma distribution fit to the real ST dataset, representing the spatial 
variation of capture rates among spots. For each spot, we sample single-cell transcriptomes from 
the reference by searching for candidate cells with a library size closest to the expected library 
size. The synthetic ST simulation pipeline compares results to the ground-truth cell-type 
proportions in each spot. 
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Spatially-dependent simulation with paired histology image 
To test the impact of multi-modal integration and accounting for spatial dependencies between 
measurements, cell density, tissue structure, and technical noise effects, we further generate 
pseudo-histology images paired with the synthetic ST expression counts. Specifically, we design 
a supervised encoder-decoder neural networks model (Supplementary Fig. 7), with real ST 
expression as input and their histology images as output. First, the expression matrix is projected 
to a low-dimensional latent space with a ResNet18 encoder, and the histology image is 
reconstructed with a standard linear decoder with dimension transformation.  Around 2000 image 
patches and corresponding expression matrices are trained from 14 ST samples. A mean-
squared loss (MSE) is implemented to fit the predictions to the real ST images. During the 
generative phase, we use the synthetic ST expression matrix as input to the trained model to 
obtain their paired synthetic histology image. 

Signature gene set retrieval in simulated data 

For a fair benchmarking not favoring Starfysh, we build the signature gene sets in an unbiased 
fashion by choosing the top 30 differentially expressed genes (DEGs) for each cell type (highest 
logFC scores) in single-cell data reported by Wu et al.16.  

 

Benchmarking of Starfysh and comparison to other methods with simulated ST data 

We benchmarked Starfysh against reference-based (DestVI, Cell2Location, Tangram, 
BayesPrism) and reference-free (CARD-free, BayesTME, STDeconvolve) deconvolution 
methods with the aforementioned simulations. For the reference-based method, we used paired 
scRNA-seq data for sample TNBC sample CID44971 as the reference. For reference-free 
methods without inferred cell state annotations, we report the best alignment with the ground-
truth proportions upon permutation. We report cell-type specific correlations (ground-truth vs. 
predicted proportions per spot) as the benchmark metric for each method.  

Starfysh. We trained Starfysh with 3 independent restarts, where Kaiming initialization is applied 
to all neural network parameters in Starfysh (Supplementary Fig. 2). In each restart, we trained 
100 epochs with early-stop, and selected the model with the lowest ℒH. The variational mean 
𝑞K(𝑐!' 	|	𝑥!%, 𝑙!) is used as the inferred cell-state proportions. 

BayesPrism. We followed the tutorial on the BayesPrism website: 
https://www.bayesprism.org/pages/tutorial_deconvolution. We subsetted the common protein-
coding gene between the scRNA-seq and ST data with further highly variable gene selection, as 
the default setting suggested. We ran the BayesPrism Gibbs Sampler run.prism with 4 cores and 
extracted the updated cell-type fractions 𝜃7 as the final deconvolution output. 

Cell2Location. We followed the tutorial on the Cell2Location website: 
https://cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.html. We trained 
the reference regression and Spatial mapping models with 1,000 epochs and 8,000 epochs, 
respectively. Both parameters were set with converged ELBO loss. The predicted cell-type 
proportions were obtained from the normalized 5% quantile values of the posterior distribution 
𝑤r6L =

M,-
N-M,-

.  
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DestVI. DestVI is a single-cell reference and conditional generative model which aims to identify 
continuous variation in cells that are of the same type via continuous latent variables. We followed 
the tutorial athttps://docs.scvi-tools.org/en/stable/tutorials/notebooks/DestVI_tutorial.html. 

Tangram. We followed the Tangram tutorial using default settings: 
https://github.com/broadinstitute/Tangram/blob/master/tutorial_tangram_with_squidpy.ipynb. We 
found the optimal alignment for scRNA-seq profiles with 1000 epochs, “cell” mode, and 
“rna_count_based” reaching a score of 0.957.  

CARD (reference-free). We followed the CARD reference-free tutorial: 
https://yingma0107.github.io/CARD/documentation/04_CARD_Example.html. The default 
settings were used to generate the cell type proportions (minCountGene = 100, and 
minCountSpot = 5). 

BayesTME (reference-free). BayesTME utilizes a hierarchical probabilistic model that corrects 
technical errors and models spot-bleeding and then estimates the spot-level UMI (unique 
molecular identifiers) counts, enabling reference-free analysis of spatial transcriptomic data. We 
followed the BayesTME deconvolution tutorial (https://github.com/tansey-
lab/bayestme/blob/main/notebooks/deconvolution.ipynb), and benchmarked with other methods 
using the same metric stated above.  

STDeconvolve. We followed the tutorial on the STDeconvolve website: 
https://jef.works/STdeconvolve/. We set the optimal number of cell types 𝐾 as 3 and 5, given our 
3-type and 5-type simulations, and selected the top 1,000 overdispersed genes suggested by the 
tutorial. The predicted cell-type proportions were obtained from the output 𝑑𝑒𝑐𝑜𝑛𝑃𝑟𝑜𝑝.  

Quantification of performance in deconvolution of cell types 

The performance of each method was quantified by computing the correlations between predicted 
and ground truth proportions to obtain a matrix 𝐴 (Fig. 1e) and its distance to the identity matrix, 
i.e. ideal deconvolution, with the Frobenius norm 𝑑 = ║𝐴 − 𝐼║O. This metric thus evaluates one-
to-one (diagonal) mapping of cell types and factors, and penalizes one-to-multi (off-diagonal) 
mapping. 

To evaluate improvement in performance with Starfysh against reference-free methods 
(STdeconvolve, BayesTME), a Mann-Whitney U test was performed between distance metrics 
from sampled submatrices by permuting cell states. In particular, for each 5x5 correlation matrix 
of major cell types, we computed an array of distance values 𝑑 	= (𝑑+,. . . , 𝑑+P) from all 𝑐(5, 3) 	=
10 possible 3x3 submatrices {𝐴′+, . . . , 𝐴′+P} with different cell type combinations, where each 𝑑! 	=
	║𝐴′! 	− 	 𝐼Q║O. Then, we tested the distance values obtained from Starfysh against the 
combination of all other reference-free methods. 

 

Benchmarking of Starfysh and comparison to other methods with real ST data 

We further benchmarked Starfysh with reference-based (Cell2Loation) and reference-free 
(STDeconvolve) deconvolution methods on TNBC sample CID44971 ST data (Supplementary 
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Fig. 1).  We calculated the correlation between the average z-scored expressions of genesets 
(Supplementary Table 2) and the deconvolution profile for each cell state.  

Starfysh.  We followed the same procedure from the simulation benchmark, and reported the 
variational mean 𝑞K(𝑐!' 	|	𝑥!%, 𝑙!) as the deconvolution profile.  

BayesPrism & Cell2Location. For both methods, we followed the same procedures as the 
simulation benchmark, except for replacing the synthetic ST data with TNBC sample CID44971 
real ST data. We applied the TNBC sample CID44971 scRNA-seq annotation from the “subset” 
classification tier from Wu et al.16. For correlation calculation, intersections between single-cell 
annotations16 and our signature cell types are shown, as BayesPrism and Cell2Location only 
deconvolve cell types that appear in the reference.  

STDeconvolve. We iterated the number of factors (𝑘) from 20 to 30, and choose the optimal 𝑘 as 
30 given the lowest perplexity following the tutorial (https://jef.works/STdeconvolve/). Since 
STDeconvolve doesn’t explicitly annotate factors, we performed hierarchical clustering between 
the factors (x-axis) and the cell types (y-axis). 

Archetypal Analysis (Starfysh). We applied archetypal analysis to the ST data and identified 23 
distinct archetypes. We reported the overlapping percentage between anchor spots and 
archetypal spots for each cell state (Supplementary Fig. 1e).  

Quantification of performance in deconvolution of cell states in real ST data 

Performance in disentangling cell states was evaluated using the same Frobenius norm defined 
above. To ensure a fair comparison across reference-based and reference-free methods that 
have different dimensions of correlation matrices due to reference scRNA-seq annotations, we 
reported a Frobenius norm distance computed as follows: for each method, (1) 1,000 10x10 
submatrices {𝐴′+, . . . , 𝐴′+PPP} were sampled from the original correlation matrix 𝐴 without 
replacement with randomly permuted cell states. (2) An array of Frobenius norm distance 𝑑 	=
	(𝑑+, . . . , 𝑑+PPP), 𝑑! 	= 	║𝐴′! 	− 	 𝐼+P║O was computed; (3) We reported the average value of 𝑑! in 
Supplementary Fig. 1. To test the improvement of Starfysh, we performed a Mann Whitney U-
test between the distance array of Starfysh against the combination of all other methods 
(BayesPrism, Cell2Location, STDeconvolve). 

For reference-free methods where the number of inferred factors and the number of cell 
types may differ, we permuted the correlation matrix such that each cell type (row) is aligned with 
the factor (column) with the highest correlation score, where the diagonal entries are descending 
sorted.  

Runtime comparison across deconvolution methods on real ST data 

Runtimes of the core deconvolution function in each method were measured on the same 
machine with 12-core AMD Ryzen 9 3900X CPU and a GeForce RTX 2080 GPU: 

- Starfysh: run_starfysh (GPU-enabled) 
- BayesPrism: run.prism 
- Cell2Location: RegressionModel.train(),Cell2location.train() (GPU-

enabled) 
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- STDeconvolve:  fitLDA  
 

Breast tumor ST data collection and analysis 

Sample collection and preparation 

Tissues were collected from women undergoing surgery for primary breast cancer. All samples 
were obtained after informed consent and approval from the Institutional Review Board (IRB) at 
Memorial Sloan Kettering Cancer Center. Samples were obtained from the standard of care 
procedures. The samples were embedded fresh in Scigen Tissue Plus O.C.T. Compound (Fisher 
Scientific) and stored at -80C prior to sectioning. 10μm cryosections were mounted on Visium 
spatial gene expression slides (10x Genomics, #1000184). Two individual tumors were mounted 
in duplicate on the four 6.5mm x 6.5mm capture areas. The samples were processed as described 
in the manufacturer’s protocols.  

Spatial transcriptomics by 10X Genomics Visium  

Visium Spatial Gene Expression slides prepared by the Molecular Cytology Core at MSKCC were 
permeabilized at 37°C for 6 minutes and polyadenylated mRNA was captured by oligos bound to 
the slides. Reverse transcription, second strand synthesis, cDNA amplification, and library 
preparation proceeded using the Visium Spatial Gene Expression Slide & Reagent Kit (10X 
Genomics PN 1000184) according to the manufacturer’s protocol. After evaluation by real-time 
PCR, cDNA amplification included 13-14 cycles; sequencing libraries were prepared with 15 
cycles of PCR. Indexed libraries were pooled equimolar and sequenced on a NovaSeq 6000 in a 
PE28/120 run using the NovaSeq 6000 SP Reagent Kit (200 cycles) (Illumina). An average of 
228 million paired reads was generated per sample. 

Tissues were stained with hematoxylin and eosin (H&E) and slides were scanned on a 
Pannoramic MIDI scanner (3DHistech, Budapest, Hungary) using a 20x/0.8NA objective.  

The quality metrics for the collected ST data are shown in Supplementary Table 5.  

 

Analysis of ST data from breast tumor tissues 

Data preprocessing 

Starfysh is compatible with Scanpy87 and the preprocessing steps take the raw count matrix as 
input without normalization after filtering out ribosomal and mitochondrial genes. To account for 
expression sparsity and noise, we selected the top 2,000 highly variable genes including specified 
marker genes. By default, Starfysh does not filter low-quality spots by total counts or mitochondrial 
gene expression ratio, however, these options are provided for users.  

Identification of tumor-associated anchors (TAAs) 

The tumor-associated archetypes were defined as the anchor spots highly associated with tumor 
cell types. First, an initial set of cell state-enriched spots (e.g., 60 spots for each cell state) and 𝑀 
archetypes were identified based on the provided marker gene list and PCHA algorithm, 
respectively. Since archetypes are vertices non-overlapping with observed data, the 20 nearest 
neighbor spots for each archetype were identified, obtaining a set of “archetypal spots” as a 
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20 ×𝑀 matrix. Then, archetypal spots with at least 35% overlap with a set of cell state-enriched 
spots were considered as aligned to that cell state and their markers are merged. Specifically, 
this is accomplished by identifying 10 differential expressed genes for the aligned archetypal spots 
and appending them to the corresponding marker geneset to form a refined marker geneset. 
Anchor spots were then updated based on the new marker gene list. The final anchors that are 
associated with any tumor cell geneset (including TNBC, MBC, Luminal A, Luminal B, ER) were 
considered as tumor-associated anchors (TAAs) (Fig. 2d,h; Fig. 4c).  

Definition of hubs 

Hubs were defined as groups of spots with a similar composition of cell states.  To integrate ST 
samples from different patients, anchors are defined on merged data from all samples and 
Starfysh then infers the cell state proportion and latent variables for each spot in each sample, 
using the same anchor set. Spots were then clustered according to  the inferred cell state 
proportion using Phenograph clustering (Supplementary Fig. 18). 

Entropy of spots 

We used an entropy-based metric previously used for batch correction in single-cell data35 for 
evaluating the integration of samples. The Shannon entropy of spots denotes the mixing of spots 
across the samples. Specifically, we constructed a k-NN graph for each spot 𝑖 to determine its 
nearest neighbors using Euclidean distance in the Starfysh latent space (z). These nearest 
neighbor spots formed a distribution of patients (𝑚 ∈ {1, . .14}) for overall 14 patients studied in 
this paper, represented as 𝑒! 	)	. The Shannon entropy is calculated as 𝐻! 	= 	−∑ 𝑒!)𝑙𝑜𝑔𝑒!).+R

)@+ 	 
Higher entropy represents higher localized sample mixing across patients (Fig. 3d). 

Kendall’s Tau correlation 

Kendall’s Tau correlation is a metric for measuring the ordinal association between two measured 
quantities. We used this metric to quantify the heterogeneity of tumor-associated anchors (TAAs). 
Genes for TAAs were ranked based on the differential expression scores for each sample. 
Samples having similar TAAs were assumed to have a similar rank of differential genes, thus 
having higher scores of Kendall’s Tau correlation (Fig. 2p).  

Definition of intratumoral, peritumoral and stromal regions 

The intratumoral regions are defined as hubs with the mean of inferred proportions of all tumor 
states being larger than 0.3 (Supplementary Fig. 19). Histology information was considered to 
confirm the enrichment of tumor cells in these regions. Other hubs were ranked by the average 
distance to intratumoral hubs. With the incorporation of histology and total proportion of immune 
cells and stromal cells, hub 21 was considered as the boundary between peritumoral regions and 
stromal regions. Notably, the determined peritumoral regions are shared across all samples while 
stromal regions are sample-specific. 

Spatial correlation 

To measure the co-localization between cell states, we slightly modified the Spatial Cross-
Correlation Index (SCI)62. SCI is defined as: 
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𝑆𝐶𝐼(𝑆4 , 𝑆S) 	=
𝑁

2∑ ∑ 𝜏!.-
.

-
!

∑ ∑ 𝜏!.(𝑥! − 𝑥	̄ )(𝑦! − 𝑦	̄ )-
.

-
!

y∑ (𝑥! − 𝑥	̄ )>-
! y∑ (𝑦. − 𝑦	̄ )>-

.

 

where 𝑥, 𝑦 denote the predicted proportion for two cell states 𝑆4 , 𝑆S, 𝑖, 𝑗 ∈ [1, . . , 𝑁] are indexes of 
spots within a certain hub, and �̄�, �̄� are the mean proportion of two cell states in the hubs. We 
defined the weight matrix 𝜏 as information between adjacent neighbors, as: 𝜏!. = 1	if the 
coordinate distance of spot 𝑖 and spot 𝑗 was less than √3 else 𝑤!. = 0. 

Inference of intercellular ligand-receptor interactions 

To investigate the intercellular interactions in a hub, the top 5% spots with the highest inferred 
proportion of each cell state in the hub were selected. CellphoneDB56 was then applied to the 
selected spots with normalized gene expression. Visualization was performed by the Sankey 
diagram with  plotly and Circos plot91. 

Diffusion map analysis with intratumoral hubs 

Intratumoral hubs were selected for diffusion map analysis (Fig. 2h), and diffusion map 
components showing gradients between intratumoral hubs were chosen (Supplementary Fig. 
13). Diffusion map coordinates were used as inputs for the trajectory inference algorithm 
SCORPIUS46. Modules of genes that significantly (q-values<0.05) contributed to the trajectory of 
transitions between tumor hubs were identified (Fig. 2i). Over-representation analysis was 
conducted to understand the biological processes via Python package gseapy with gene sets 
including KEGG_2021_Human, GO_Biological_Process_2021, and Hallmark.  

Genes with diffused expression patterns  

Treg-enriched (proportion>0.05) spots in intratumoral hubs were selected, and the distance 
between all spots to the selected spots were calculated with the sklearn.neighbors Python 
package with the function KDTree. For each gene, the expression of spots with the  same 
distance were averaged and smoothed with a window size of 7 for each sample. The mean and 
standard deviation of expression across all samples was computed and smoothed with 
Gaussian_filter1d(sigma = 1.5)with Python package scipy (mean and SD shown as 
solid line and shaded area in Fig. 4k). 

Data availability  

The raw data discussed in this manuscript will be deposited in the National Center for 
Biotechnology Information’s Gene Expression Omnibus. 

Code availability 

The code to reproduce the results in this manuscript is available on the GitHub repository 
(https://github.com/azizilab/starfysh) and has been deposited to Zenodo 
(https://zenodo.org/badge/latestdoi/520294385). The reference implementation of DestVI, RCTD, 
BayesTME, along with accompanying tutorials, is available at the GitHub repository too.  
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Supplementary table 1. Patient clinical information 
 

Patient ID Replicates ER PR Her2 Age Subtype 

P1_ER 2 95 80 - 70 Ductal (invasive) 

P2_TNBC 2 2 0 - 84 Ductal (invasive) 

P3_MBC 2 0 0 - 71 Metaplastic (maxing producing) 

P4_MBC 2 0 0 - 52 Metaplastic (matric producing) 

 

Supplementary table 2. Marker genesets for tumor epithelial, immune, and stromal cells in 
breast tumor tissues 

Supplementary table 3. Inferred cell state proportions by Starfysh  

Supplementary table 4. Genesets for metabolic pathways 

Supplementary table 5. Spatial transcriptomics quality control metrics 

 

Supplementary tables 2-5 are included in the supplementary material. 
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Supplementary figures 

 
Supplementary Figure 1. Performance in disentangling refined cell states in ST data from a TNBC 
Patient  CID4497119 and comparison to reference-based and reference-free methods. Pearson 
correlation computed between the z-scored average expressions of cell-state specific genesets curated 
according to matched single-cell data19 and inferred proportions from deconvolution using (a) Starfysh. (b)-
(c) reference-based methods: (b) Cell2Location and (c) BayesPrism. (d). Reference-free method 
STDeconvolve. The performance of each method is summarized by computing the distance between the 
correlation matrix and an identity matrix defined as the Frobenius norm of the difference (Methods). 
Starfysh shows a significant improvement over other methods (Mann Whitney U test on permuted cell states 
p<1e-30). (e) Archetypal analysis without fitting Starfysh does not show interpretability and correspondence 
to cell states as seen with Starfysh (a) (Methods). (f) Runtime measured for each method applied to sample 
CID44971. (g). Distribution of Frobenius norm distance ║𝐴′	 −	𝐼!"║# over 1,000 sampled matrices from 
each method (Methods). 
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Supplementary Figure 2. Archetypal analysis with the simulation of 5 cell-types. (a) 3D UMAP of ST 
data simulated (left) from mixtures of single cell data from real ST data (TNBC sample CID44971)19; each 
grey dot represents a spot; archetypes are denoted by red triangles.  Inferred archetypes overlapping with 
spots enriched for one cell type (purest spots), and assist to refine inaccurate anchors due to incomplete 
marker genes (e.g., Cancer Epithelial) (Methods). Spots are colored according to the proportion of the 
most abundant cell type (right). (b) Verifying that archetypal analysis assists in refining the anchor spots 
and improving the deconvolution. Left: Replacing CAFs anchor spots (inferred from marker genesets) with 
the best aligned archetypes obtains on-par accuracy. Right: Replacing Cancer Epithelial with the most 
distant archetypal cluster to any anchor spots resulted in significant improvement in Cancer Epithelial 
deconvolution. 
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Supplementary Figure 3. Details of the Starfysh model. (a) Inference and generative model of Starfysh 
without histology. (b) Inference and generative model of Starfysh with histology. (c) Product of experts 
integrating images and transcriptomic data.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.21.517420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Supplementary Figure 4. Simulating ST data from primary breast tumor tissues. (a)  We simulated 
the library size of synthetic ST data with a Gamma distribution fit to real ST data (TNBC sample 
CID44971)19. (b) We sampled major cell types from real single-cell matched data (TNBC sample CID44971) 
to construct gene expressions and proportions of the synthetic spots with spatial dependencies using a 2D 
Gaussian Process (Methods). 
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Supplementary Figure 5. Performance on simulated data  from  3 cell type without spatial 
dependencies. (a-d) UMAP projection of simulated data colored by (a) log library size (i.e., total counts 
per spot). (b) Log library size of simulated ST data (smoothed with neighboring spots (Methods). (c) Spots 
enriched for cell types. (d) Ground truth proportion of most enriched cell type. (e) Anchor spots 
corresponding to archetypes. (f) UMAP of inferred z from Starfysh colored by proportion of most enriched 
cell type. (g) Correlation between gene signature expression and ground-truth proportion. (h) Same as (f) 
colored by inferred proportions of cell types. (i) Scatter plot of inferred proportion vs. ground-truth 
proportions per spot. Spots are colored by density.  
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Supplementary Figure 6. Performance of simulated data with 5 cell types without spatial 
information. (a-b) UMAP projection of simulated data colored by log library size (a) and smoothed log 
library size (b). (c) Correlation between gene signature and ground-truth proportion. (d) Correlation between 
inferred proportion by Starfysh and ground-truth proportion showing improved deconvolution compared to 
using geneset expressions alone. (e) Model training loss. (f) Scatter plot of inferred proportion vs. ground-
truth proportions.  Spots are colored by density.  
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Supplementary Figure 7. Simulating histology imaging data from gene expression. (a) The model 
components. (b) Example results on predicted images from gene expression data compared to ground truth 
histology images.   
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Supplementary Figure 8. Performance of simulated data with 5 cell types with spatial information. 
(a) Density kernel added in data simulation to construct spatial dependencies. (b) Smoothed log library 
size. (c) Correlation between gene signature and ground-truth proportion. (d) Model training loss. (e) 
Estimation of cell density. (f) Correlation between inferred density and pixel intensity of histology image. (g) 
Scatter plot of inferred proportion vs. ground-truth proportions. (h) Correlation between ground-truth 
proportion and inferred proportion with spatial information.  
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Supplementary Figure 9. Benchmarking on simulated data (with spatial information) for 5 cell types. 
Left: Heatmap of Correlation between inferred proportion vs. ground-truth by STDeconvolve (a), 
Cell2Location (b), Tangram (c), and BayesPrism (d). Right: Scatter plots of inferred vs. ground-truth cell-
type specific proportions. Spots are colored by density. 
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Supplementary Figure 10. Mapping score of all archetypes with more than 35% overlaps with cell 
state-enriched spots (a) UMAP of ST data from sample P2A_TNBC highlighting spots with cell state-
enriched spots in color. (b) UMAP with archetypes shown in color. (c) Heatmap of the proportion of overlap 
between archetypes and cell state-enriched spots (d) Histogram of mapping scores between archetypes 
and cell states (red: data-driven choice of mapping threshold) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.21.517420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Supplementary Figure 11. Inferred cell state proportions on P2A_TNBC by Starfysh.  
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Supplementary Figure 12. Definition of spatial hubs and tumor states in P2A_TNBC. (a) Heatmap of 
inferred proportions of cell states (rows) in spots (columns) grouped by hubs corresponding to Fig. 2a-l. (b) 
Heatmap of marker gene expression for LumA-like tumor cells in P2A.  
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Supplementary Figure 13. Spatial distribution of diffusion components in P2A_TNBC. 
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Supplementary Figure 14. Starfysh characterized spatial heterogeneity in P2B_TNBC. (a) Spatial 
arrangement of hubs in  the context of the issues for P2B (adjacent tissue slice to P2A shown in Fig. 2).  
(b) UMAP embedding of spots colored with spatial hubs. (c) Diffusion map analysis reveals a continuous 
trajectory between spots enriched for tumor cell states (hub 1,2,3,5,6). (d) Heatmaps of expression of 
modules of genes with positive or negative correlation with the projection of cells along the trajectory. (e) 
Metabolic signatures from intratumoral hubs of patient P2A_TNBC. Expression of metabolic signatures 
(Supplementary Table 4) found in the P2B_TNBC dataset was averaged and plotted on the embedding 
of diffusion components of tumor transition.   
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Supplementary Figure 15. Metabolic signatures from intratumoral hubs of patient P2A_TNBC. 
Expression of metabolic signatures (Supplementary Table 4) found in the P2A_TNBC dataset was 
averaged and plotted on the embedding of diffusion components of tumor transition.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.21.517420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Supplementary Figure 16. Oncogenic pathways associated with different tumor state transition in 
patient P2A_TNBC. The score represents the mean expression of genes associated with oncogenic 
pathways. Dashed lines denote the mean score of spots along with pseudo-space axis. Solid lines denote 
values smoothed by Gaussian Filter with sigma = 4. The shaded area represents the standard deviation 
smoothed by Gaussian Filter with sigma = 10.      
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Supplementary Figure 17. UMAP visualization of batch integration on breast tumor samples with 
other methods. (a) UMAP of raw counts (b)-(e) Integration with scVI (b), Harmony (c), MNN (d), and Seurat 
4.0 (e). 
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Supplementary Figure 18. Heatmap of inferred factors in all samples with each cell state. The 
heatmap shows cell states as columns and spots as rows. Each spot is labeled by sample names, patient 
names, cancer types, and hubs. Spots are ordered by inferred hubs.   
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Supplementary Figure 19. Spatial distribution of percentages of any tumor states in each sample. 
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Supplementary Figure 20. (a) Distance of hubs from tumor center. (b) Pie chart of sample proportions in 
each hub.  
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Supplementary Figure 21. KEGG pathway and biological processes identified for differential genes 
enriched in TNBC-enriched tumor states.  
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Supplementary Figure 22. KEGG pathway and biological processes identified for differential genes 
enriched in MBC-enriched states.  
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Supplementary Figure 23. Oncogenic pathways along pseudo-time transition in TAAs across all 
samples. The score represents the mean expression of genes associated with oncogenic pathways.  
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Supplementary Figure 24. (a) Tumor and stromal regions identified based on histology. (b) Spatial 
distribution of expression of the hypoxia genesets in MBC, ER, and TNBC samples.   
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Supplementary Figure 25. Distribution of cell states in intratumoral, peritumoral, and stromal hubs 
across all samples. A dashed line indicates a threshold used in determining whether the cell state will be 
filtered in co-localization analysis. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.21.517420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517420
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Supplementary Figure 26. (a) Co-localization score (SCI) for each cell type in intratumoral hubs. (b) 
Intercellular interactions predicted by CellphoneDB. (c) Expression of PDCD1 in ER, TNBC, and MBC 
samples.  
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Supplementary Figure 27. Sankey diagram of ligand-receptor interactions in MBC intratumoral 
hubs. Left: ligand-receptor interactions predicted between tumor epithelial cells as senders and major 
immune cells (filtered out states with low proportions) as receivers. Right: ligand-receptor interactions 
predicted between all other cell states (filtered states with low proportions) as senders and Tregs as 
receivers.  
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Supplementary Figure 28. Expression of HIF1, and HLA genes in tumor subtypes vs. distance to 
Treg-enriched hub 3.   
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Supplementary Figure 29. Organization of hubs in all samples studied.  
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Supplementary Figure 30. Sankey diagram of predicted ligand-receptor interactions in MBC hub 3 
region. Tregs are senders and all other cells (filtering out states with low proportions) as receivers.  
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