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Abstract 1 

Plastic pollution is now so widespread that microplastics are consistently detected in every 2 

biological sample surveyed for their presence. Despite their pervasiveness, very little is known 3 

about the effects of microplastics on the health of terrestrial species. While emerging studies are 4 

showing that microplastics represent a potentially serious threat to animal health, data have been 5 

limited to in vivo studies on laboratory rodents that were force fed plastics. The extent to which 6 

these studies are representative of the conditions that animals and humans might actually 7 

experience in the real world is largely unknown. Here, we review the peer-reviewed literature in 8 

order to understand how the concentrations and types of microplastics being administered in lab 9 

studies compare to those found in terrestrial soils. We found that lab studies have heretofore fed 10 

rodents microplastics at concentrations that were hundreds of thousands of times greater than 11 

they would be exposed to in nature. Furthermore, health effects have been studied for only 10% 12 

of the microplastic polymers that are known to occur in soils. The plastic pollution crisis is 13 

arguably one of the most pressing ecological and public health issues of our time, yet existing 14 

lab-based research on the health effects of terrestrial microplastics does not reflect the conditions 15 

that free-ranging animals are actually experiencing. Going forward, performing more true-to-life 16 

research will be of the utmost importance to understand the impacts of microplastics and 17 

maintain the public’s faith in the scientific process. 18 

 19 

1. Introduction 20 

The invention of plastics in the early 1900s revolutionized human societies (Thompson et al., 21 

2009), yet the excessive consumption of short-lived and single-use plastics has resulted in 22 

plastics accumulating almost everywhere on Earth (Cole et al., 2011; Rochman & Hoellein, 23 
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2020). Plastic pollution is now so widespread that microplastics – plastic particles between 0.1 24 

µm and 5 mm – are consistently detected in every biological sample surveyed for their presence 25 

(Duis & Coors, 2016; Bergami et al., 2020). The ubiquitous and long-lived nature of 26 

microplastics makes them a worrying environmental contaminant, yet, despite their 27 

pervasiveness, very little is known about how microplastics might be impacting the health of 28 

species living in terrestrial ecosystems. This stands in stark contrast to the fact that 80% of 29 

species live on land (Grosberg et al., 2012), and that the volume of microplastics in terrestrial 30 

systems may be greater than that in oceans (de Souza Machado et al., 2012; Hurley & Nizzetto, 31 

2018).  32 

Though evidence is still extremely limited, emerging studies are showing that 33 

microplastics represent a potentially serious threat to the health of terrestrial species, and may 34 

impact an array of biological functions (Huang et al., 2022; Lou et al., 2019). For instance, recent 35 

work in mice and rats has demonstrated the detrimental effects of microplastics on sperm 36 

production (Jin et al., 2021). Similarly, a study conducted by Wang et al. (2022) indicated that 37 

mice exposed to MPs experienced both necroptosis and inflammation within bladder epithelium, 38 

while Djouina et al. (2022) found that microplastics can adversely affect the small intestine and 39 

colon of mice, causing histological and immune disturbances, as well as inflammation. Data have 40 

been limited to in vivo studies on laboratory rodents that were force fed plastics, however, and 41 

there are currently no studies describing the health effects of microplastics exposure outside of 42 

laboratory settings. Thus, although the findings from these studies are certainly worrying, the 43 

extent to which they are representative of the conditions that humans and animals are actually 44 

experiencing in the real world is largely unknown. Here, we review the peer-reviewed literature 45 

to explore the extent to which lab studies on the effects of microplastics are representative of the 46 
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conditions that animals are experiencing in the real world. In particular we focused on 47 

understanding how the concentrations of microplastics and types of polymers being administered 48 

in lab studies compared to those found in terrestrial soils. Although our focus was on 49 

microplastics in soils, this is not the only path of exposure to microplastics. For instance, plants 50 

can uptake microplastics (Azeem et al., 2021), which can then be ingested by 51 

herbivorous/omnivorous species. Airborne microplastics can also be inhaled, with intake rates 52 

that may be comparable to ingestion (Cox et al., 2019). Most studies on airborne microplastics 53 

quantify concentrations in terms of deposition rates (Sridharan et al., 2021), however, making 54 

direct comparisons to lab studies impossible, and there is little information on the microplastic 55 

exposure and ingestion rates of free-ranging terrestrial species. Nonetheless, air and waterborne 56 

microplastics will ultimately accumulate in soils (Guo et al., 2020, Sridharan et al., 2021), and 57 

soils are at the base of many terrestrial food webs (de Souza Machado et al., 2018). The 58 

concentrations of microplastics in soils are thus likely to be broadly representative of exposure 59 

levels. Our results can help provide much needed context to the findings of existing health 60 

studies, as well as an ecologically relevant baseline that can help guide future lab studies on the 61 

health effects of terrestrial microplastics. 62 

 63 

2. Materials and methods 64 

We first identified studies from the peer-reviewed literature that were focused on the health 65 

effects of microplastics on terrestrial animals, or on microplastics in terrestrial soil environment 66 

via a Google Scholar search for the terms “microplastics”, “microplastics” and “mice”, 67 

“microplastics” and “rats”, “microplastics” and “rodents”, “microplastics in lab”, and 68 

“microplastics in soil”. Any in vivo lab studies not directly relating to the ingestion of 69 
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microplastics were excluded as they were beyond the scope of our effort. Similarly, studies 70 

where soil samples were taken from lakes or river beds were excluded as our focus was on 71 

describing the conditions being experienced by terrestrial species. Through this initial search, a 72 

total of 93 peer-reviewed studies were compiled; 55 studies focused on microplastics in in vivo 73 

lab studies, and 38 focused on microplastics in terrestrial soil environments. For in vivo studies 74 

we extracted information on the polymer type, concentrations fed to laboratory rodents, and 75 

diameter, volume, and density of the microplastic particles. The microplastic type and final 76 

concentrations found in the soil environment were extracted from soil studies. There was very 77 

little consistency in the units across studies, and so to standardize microplastic measurements, all 78 

concentrations were converted to items/kg. To do this, polymer type was required to identify the 79 

density of the plastic, while diameter was required to calculate the volume. The known volume, 80 

density, and concentrations were then used in conjunction to calculate the number of particles 81 

and convert the data to items/kg. If any information required to make this conversion was absent 82 

from a study, it was excluded from subsequent analyses. Similarly, soil studies were excluded if 83 

information on the concentrations of microplastic were absent, or if they were experimental 84 

studies. This further narrowed the number of studies down to a total of 28 in vivo studies 85 

describing 67 experimental concentrations, and 22 soil studies with data on 48 sites.  86 

 87 

3. Results and discussion  88 

The median concentration of microplastics fed to laboratory rodents in in vivo studies was 89 

36,841,422 items/kg. This was over 78,000 times greater than the median concentration of 471 90 

items/kg found in soil (Fig. 1A). The highest recorded concentration of microplastics in any soil 91 

sample was 18,760 items/kg which was found in agricultural soil along China’s Chai river valley 92 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.21.517421doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517421
http://creativecommons.org/licenses/by-nc/4.0/


4 

(Zhang & Liu, 2019); only 5 out of the 28 compiled lab studies used concentrations below this 93 

amount. We also found that while 28 different plastic polymers have been found to occur in soil, 94 

the health effects of only 3 polymers have been studied to date, with the overwhelming majority 95 

of in vivo experiments having focused on polystyrene (Fig. 1B). The stark contrast between the 96 

types and concentrations of microplastics being administered to lab rodents in in vivo studies 97 

versus the conditions these animals are likely to encounter in the wild questions the utility of 98 

these findings and illustrates the need for more ecologically realistic studies. 99 

Notably, and in light of this disconnect, a common trend across lab studies was the lack 100 

of any rationale for the concentrations of microplastic that were administered. The 11 studies that 101 

did provide justification chose concentrations that were based either on the concentrations of 102 

 

Figure 1 The boxplot in A shows the concentrations of MPs fed to rodents in in vivo lab studies, compared to those of MPs found 
in soils. In B the number of soil studies which identified different plastic polymers are shown in blue, whereas the number of 
polymers assessed via in vivo health studies are shown in red.  Data were compiled from 50 peer-reviewed studies; 22 on MPs in 
soil and 28 on the health effects of MPs.  
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microplastic found in rivers (Liu et al., 2022), or on existing in vivo studies (Choi et al., 2021, 103 

Hou et al., 2021; Li et al., 2020; Lou et al., 2019; Mu et al., 2022; Shi et al, 2022; Wang et al., 104 

2022; Wang et al., 2022; Yang et al., 2019; Yang et al., 2022). For instance, Yang et al. (2019) 105 

and Mu et al. (2022), both based their study designs on work on mice by Deng et al. (2017). 106 

Deng et al. (2017) which, however, based their study on MP concentrations found in rivers, and 107 

therefore it does not accurately depict terrestrial environments. Thus, while a handful of lab 108 

studies did provide some form of justification for their study design, the extent to which these 109 

studies are representative of the conditions that humans and animals are actually experiencing in 110 

the real world is questionable. 111 

 112 

4. Conclusions 113 

The plastic pollution crisis is arguably one of the most pressing ecological and public health 114 

issues of our time, yet existing research on the health effects of terrestrial microplastics does not 115 

accurately reflect the conditions that humans and animals are actually experiencing. Paired with 116 

this disconnect is the fact that 1,196 animals were sacrificed to generate the findings of these 28 117 

studies, yet the majority of these animals were fed tens to hundreds of thousands of times more 118 

plastic than they would ever be exposed to in the wild. Because microplastics research also 119 

receives frequent media attention, performing true-to-life studies is of the utmost importance so 120 

as to not erode the public’s faith in the scientific process. It therefore falls on the scientific 121 

community to describe the ecologically realistic effects of microplastics on the health of 122 

terrestrial species in order for well-founded mitigation efforts to be launched. Going forward, 123 

performing more true-to-life research will be of the utmost importance to understand the impacts 124 

of microplastics and maintain the public’s faith in the scientific process. 125 
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