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1 Abstract

The process of categorizing sounds into distinct phonetic categories is known as categorical percep-
tion (CP). Response times (RTs) provide a measure of perceptual difficulty during labeling decisions
(i.e., categorization). The RT is quasi-stochastic in nature due to individuality and variations in
perceptual tasks. To identify the source of RT variation in CP, we have built models to decode
the brain regions and frequency bands driving fast, medium and slow response decision speeds. In
particular, we implemented parameter optimized convolutional neural network (CNN) to classify
listeners behavioral RTs from their neural EEG data. We adopted visual interpretation of model
response using Guided-GradCAM to identify spatial-spectral correlates of RT. Our framework in-
cludes (but is not limited to): (i) a data augmentation technique designed to reduce noise and
control the overall variance of EEG dataset; (ii) bandpower topomaps to learn the spatial-spectral
representation using CNN; (iii) large-scale Bayesian hyper-parameter optimization to find best per-
forming CNN model; (iv) ANOVA and post-hoc analysis on Guided-GradCAM activation values
to measure the effect of neural regions and frequency bands on behavioral responses. Using this
framework, we observe that α − β (10-20 Hz) activity over left frontal, right prefrontal/frontal,
and right cerebellar regions are correlated with RT variation. Our results indicate that attention,
template matching, temporal prediction of acoustics, motor control and decision uncertainty are
the most probable factors in RT variation.

2 Introduction

Categorical perception (CP) of audio is the process of grouping sounds into categories based on
acoustical properties [1]. The neurological basis of CP is present at infancy and evolves through
auditory training [2]. Thus, CP is elemental in comprehension of sounds and is a measure of
fluency of speech perception. Decoding the neural organization of CP is might be important for
understanding certain disorders which impair sound-to-meaning associations including age-related
hearing loss [3], deafness [4] and dyslexia [5]. To date, various neuroimaging studies have localized
brain regions sensitive to acoustical changes in phonemes [6, 7, 8, 9, 10]. However, the neural basis
of behavioral outcomes in CP are poorly understood. Response time (RT) is one such behavioral
metric which measures the speed of identifying phonetic categories by listeners. In this study, we
conducted a data-driven investigation to identify the neural underpinnings as well as their respective
functional role in eliciting speeded categorization decisions.

In speech perception studies, RT is treated as an indicator of perceptual difficulty because of
the direct correlation with the acoustical properties of the stimuli [11, 12, 13]. For example, faster
responses are observed in acoustically identical and large acoustic boundaries whereas acoustic
difference in the same phonetic category causes ambiguity and slower responses [11]. Aside from
measuring perceptual difficulty, RTs are also correlated with decision difficulty in listening tasks.
RTs increases with the number of decision choices [14] and can be considered a metric for measuring
cognitive load during speech perception. Despite being widely used as a measure of perceptual
difficulty, the sources of RT variations and in association with different neural regions need further
investigation. We identified two factors that may be relevant to understand the sources of RT
variation in CP: (i) the role of regions inside the CP categorization network hub and their relative
importance for determining listeners’ decision speed, (ii) the effect of right hemispheric regions to
speeded categorization.

Identifying the effect of regions inside the auditory processing circuitry would clarify how dif-
ferent brain processes affect decision speed in CP. Although speech categorization is dominant in
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left hemisphere, studies have also shown involvement of right hemispheric regions during CP tasks
[15]. For instance, right hemisphere is engaged in processing lexical tones [16, 17, 18], acoustic
information such as pitch levels [19] and processing of non-speech stimuli such as musical tones
[20, 21]. So, it is important to decode the association of right hemispheric regions and RT to
fully understand the neural basis of RT variation in CP. In this study, we aimed to characterize
left and right hemispheric factors from objective measures of neuronal function without any prior
assumptions.

In addition, frequency band analysis of EEG/MEG signals have revealed different cognitive
functions associated with CP that are carried in different oscillatory brain rhythms. In particular,
oscillations in α (9 -13 Hz), β (14 - 30 Hz) and γ (> 30 Hz) bands are linked with attention
[22], template matching [23] and network synchronization [24, 25, 26] respectively. Establishing
the spectral characteristics of brain regions would further aid in understanding their respective
functional role in speech perception and categorization. To this end, we assessed how different
oscillatory characteristics in α, β, γ frequency bands map to behavioral RTs to elaborate their
functional role in rapid speech categorization.

We conducted our analysis on EEG data acquired from a CP experiment where participants were
tasked to identify two phonetic categories (’oo’ or ’aa’) from 5 equidistant vowel tokens (/u/ to /a/)
[27, 28]. We built a unified framework utilizing learned representation from deep learning models
and statistical analysis to identify neural correlates of RT. In this framework, we have incorporated a
data augmentation algorithm, spatial-spectral representation, parameter-optimized modeling using
CNN and class discriminative visualization (Guided-GradCAM) for model interpretation. The
framework can be summarized in four steps:

1. Data Augmentation: To robustly model cognitive events from EEG data using deep learn-
ing (DL) tools, it is necessary to address two constraints of EEG datasets. The first is the
issue of noise prevalence in EEG data and second is the small sample size problem of EEG
dataset. We have addressed these issues by adopting a data augmentation process [29] for
generating event related potentials (ERP) from EEG samples. The algorithm is designed to
reduce noise as well as control the overall variance of the dataset for robust modeling.

2. Spatial-Spectral Representation: Bandpower features are one of the effective ways to
capture spatial-spectral properties of EEG data. We extend the bandpower features to have
an image representation, this is done so to include the specific location of the neural regions
during modeling.

3. Large scale parameter optimized model: We used CNN to model the underlying spatial-
spectral properties of RT. CNN are known for their effective spatial modeling and have proven
performance in modeling cognitive events from EEG data. We deployed the Bayesian hyper-
parameter optimization algorithm, tree-structured Parzen Estimator (TPE) [30] to find the
best configuration for our CNN model.

4. Model Interpretation: To discover the spatial-spectral correlates of RT, we dive into the
learned representation of the CNN models. Specifically, we combined high resolution visual
interpretation technique like Guided-GradCAM [31] and statistical analysis to discover the
underlying factors of RT.

Similar to Al-Fahad et al. [32], we first formed clusters within the RT distribution to capture
unique neural patterns confined to the range of of fast, medium and slow response speed. We
generated the augmented ERPs within the RT categories of each subject to ensure that individ-
ual variations are not nullified. From the augmented ERPs, we extract α, β, γ bandpowers and
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transform these features to images using bandpower topomaps. Next, we use CNN to learn the
spatial-spectral patterns of each category from the bandpower topomaps and use Guided-GradCAM
[31] to get insight into the learned representation of the model. Guided-GradCAM is a high res-
olution class discriminative mapping technique that allows visual depiction of the learned feature
importance of CNN models [31]. We extract α, β, γ activation values of each neural regions from
the Guided-GradCAM feature maps to quantify the learned feature importance by the CNN model.
Further statistical analysis on these activation values are carried out to unravel the spatial-spectral
correlates of RT.

Our empirical data and computational model reveal how different spatial-spectral correlates map
variations in speech CP. The significant effect of α− β bands suggests that attention and template
matching are major factors driving decision speeds, while involvement of right prefrontal/frontal and
cerebellar regions indicate motor control, decision uncertainty and temporal prediction of acoustics
are other factors in RT elicitation. Overall, our study incorporates novel analysis applied to EEG
data to uncover the neural basis of RT variation as well as validate prior findings of brain-behavior
relationships in auditory CP.

3 Methodology

3.1 Participants

N=15 males and 35 females aged from 18 to 60 attended the experiment (Fig. 1A). All of the
participants were recruited from the University of Memphis student body and the Greater Memphis
area. Participants had normal hearing sensitivity (i.e., ¡ 25 dB HL between 250-8000 Hz) and
strongly right-handed (mean Edinburgh Hand Score ≈ 80.0%). Participants had a range of musical
training varying from 1 to 27 years (Fig. 1B). All participants were paid for their time and gave
informed consent in compliance with the Institutional Review Board (IRB) at the University of
Memphis.

Figure 1: A) Gender distribution B) Demography of the participants (includes age, musical training,
and education)

3.2 EEG Recording & Preprocessing

During the experiment, the participants were instructed to listen from a five-step vowel continuum;
each token of the continuum was separated by equidistant steps based on first formant frequency
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(F1) categorically perceived as /u/ to /a/. Each token was 100 ms long, including 10 ms rise and
fall time. The stimuli were delivered through shielded insert earphones; listeners heard 150-200
trials of individual tokens and were asked to label the sound as perceived through binary responses
(‘u’ or ‘a’). Response times (RTs) were recorded as the difference between the stimulus onset and
the behavioral response (labeling of tokens). Simultaneous EEGs recording were recorded using
64 channels sintered Ag/AgCI at standard 10-10 electrode locations around the scalp during the
trials. As subsequent preprocessing steps, ocular artifacts were corrected using principal component
analysis (PCA), filtered (bandpass: 1-100 Hz; notch filter: 60 Hz), epoched (-200 to 800 ms) into
single trials, and baseline corrected (-200 ms to 0 ms).

3.3 Clustering RTs

RTs are a continuous variable indexing perceptual response speed. For data reduction purposes,
we clustered (in an unsupervised manner) the RT data in to groups describing fast, medium,
and slow speeds. Al-Fahad et al. followed a similar approach and was able to decode functional
connectivity patterns unique to these three categories of RT [32]. Thus, to find unique spatial-
spectral patterns associated with different orders of RT, we first formed clusters within the RT
distribution in an unsupervised manner. We identified four clusters in our RT distribution through
Gaussian Mixture Model (GMM) with Expectation Maximization (EM) algorithm. Out of four
clusters, three represented fast, medium and slow RTs while the other cluster was deemed an outlier
due to its low probability. The optimal GMM model (number of components = 4, covariance type:
spherical) was selected by comparing the Bayesian Information Criterion (BIC) scores among a
finite set of models. Figure 2(A) shows the BIC scores of GMMs with different configurations.
Among the selected three clusters, the majority of responses in our data were fast followed by
medium and slow trials. The uneven distribution of samples across these clusters necessitated the
use of a bootstrapping process.

3.4 Bootstrap and Eigenspace Filtering

We computed event-related potentials (ERPs) by averaging a small number of trials. Since DL
models require a high number of input samples for training, we bootstrapped the ERPs as a data
augmentation approach. Aside from augmentation, we realized the need to use a more controlled
bootstrap sampling algorithm to balance the noise and the overall variance across samples (see
algorithm 1). The main goal of this strategy is to augment our dataset so that each sample is less
noisy than the original EEG while also lowering the total variance of the dataset but not completely
biasing it. To begin, we sampled a small number of trials (5 ∼ 6%) to average and then repeated
the process for a large number of iterations. Additionally, we use category-specific dropout rate
during the sampling and an eigenspace sample filtering criterion as a bias reduction mechanism for
limiting the number of identical samples.

3.4.1 Category Specific Dropout

We grouped trials of each subject according to their RT categories (fast, medium, slow) and applied
the aforementioned bootstrapping process within each category of individual subjects. During the
sampling process, we dropped trials randomly to avoid generating similar ERPs. The trials were
dropped according to a dropout rate parameter which is specified in prior for each RT category
separately. The dropout rate for an RT category was specified based on the sample size of that
category. This controlled the variance and the number of observations in each RT category. Based
on the category-specific dropout rates, the algorithm produced different numbers of samples. If the
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Figure 2: Clustering of RT data. A) Bayesian Information Criterion (BIC) scores of models with
different number of components and covariance type, the ’*’ denotes the model with the lowest
BIC score. B) Original RT distribution. C) The probability of each RT clusters using the GMM
with lowest BIC score. D) The RT range of each clusters (slow : 772 - 1360 ms, fast : 100 - 504
ms, outlier: 1364 - 2500 ms, medium: 506 - 770 ms

.

bootstrap algorithm is run for n iterations for any ith category θi and the predefined interval is
nα, then trials are dropped n

nα
times in total. Accordingly for any sampling rate r and αi as the

dropout rate of θi, the total number of samples dropped is di =
n
nα
× r. If f is the function that

outputs the number of samples generated by the bootstrap algorithm for θi, then,

f(xθi) =


1 if |xθi | < r

n if |xθi | ≥ n
|xθi

|nα

r if |xθi | < n

We had a total of 45550 single trials (slow: 4025, med: 11029, fast: 30496) from 50 partici-
pants. After applying the bootstrap algorithm with parameters r = 50, α = (αslow = 0.1, αmed =
0.2, αfast = 0.3), n = 1500 and nα = 10, we achieved 133698 number of samples (slow: 28550, med:
46368, fast: 58780). The proportion of samples in slow, medium and fast RTs were altered from 9%
to 21%, 24% to 35% and 67% to 44% respectively. Even with dropouts, it is possible to generate
identical samples. To further reduce the bias of our generated samples, we used distance-based
eignenspace filtering.

3.4.2 Eigenspace Filtering:

The purpose of eigenspace filtering is to drop samples that are too far or close to the raw EEG
samples. We created an eigenspace of the raw EEG samples through Principal Component Analysis
(PCA) and projected the augmented samples in that space. Next, the augmented samples were
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Algorithm 1 bootstrap(X, r, α, n, nα, θ)

X → EEG trials
r → no. of trials to average
α→ [α1, α2, ..., αc] category specific dropout rates
n→ no. of iterations
nα → predetermined interval to drop trials
θ → [θ1, θ2, ..., θc] categories

X̂ ← [ ]
for θi in θ do

xθi ← X[θi]
mi ← r × αi

for j = 1 to n do
if |xθi | ≤ r then

X̂[j]← 1
|xθi

|
∑

xk∈xθi
xk

end if
x̂← sample(xθi , r) ▷ sample r trials from xθi
X̂[j]← 1

r

∑r
k=0 x̂k

if j remnα = 0 then
xm = sample(x̂,m) ▷ select mi trials to drop
xθi = drop(xθi , xm) ▷ drop selected xm trials

end if
if xθi = ∅ then

break
end if

end for
end for
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reconstructed with all the components and the reconstruction error of each sample was observed.
Figure 3 shows the distribution of reconstruction error of the augmented samples.

Figure 3: Distribution of ERP reconstruction error from the raw EEG eigenspace. Density was
estimated by individual RT category through kernel density estimation (KDE). We consider ERPs
within 0 − 25th percentile of the error distribution to be biased as these samples are far from the
original EEG trials. Similarly, ERPs within 75− 100th percentile are noisy due to close proximity
to the raw EEG signals. ERPs within 25 − 75th percentile are considered samples with optimal
variation and are selected for modeling RTs.

The reconstruction error was distance measures from the EEG eigenspace and constitutes how
far the augmented samples are from the raw EEG data. Samples that fell within -3σ to -2σof the
mean error were biased samples and therefore were eliminated to reduce the overall bias of the
data. Similarly, samples within +2σ to +3σ are noisy due to their similarity with the raw EEG
data and are removed to control the variance. In short, we retained samples between the 25th -
75th percentiles of the error distribution which in effect reduced the size of our data by 50% while
still containing enough variation to learn the underlying factors of RT.

3.5 Spatial-Spectral Representation

We used an image representation of the bandpower signals in which the location of each electrode
and its frequency content is accounted for. The image representation uses a topographic structure of
the scalp where each electrode was placed in the structure by projecting their original 3D coordinates
to 2D surface [33]. The bandpowers of each electrode were then mapped into a topographic surface
and interpolated to create a spatial representation called bandpower topomaps (Fig. 3).

To generate these topomaps, we computed the power spectral density of each ERP sample across
frequencies ranging from 0 to 60 Hz. Next, we calculated the bandpowers of α (9 -13 Hz), β (14 - 30
Hz) and γ (> 30 Hz) frequency bands. These bandpower signals were then projected by individual
bands into the topographic representation. In this process, each ERP signal is transformed into
three grayscale topomaps representing α, β and γ frequency bands. These α, β and γ topomaps
are then stacked in RGB channels to create a spatial-spectral representation of the ERPs [33]. We
implemented the bandpower computation and the subsequent topomap creation process using the
python library mne [34]. Note that our representation does not include a temporal representation
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since spectral data were computed across the entire trial epoch window. The composite topomaps
allow us to represent the activation of neural regions as well as their spectral contents through a
single representation.

Figure 4: Combined bandpower topomap through stacking of the α, β, and γ topomaps across
RGB channels: Red = α , Green = β. Blue = γ.

3.6 Modeling

We used a CNN to model the categorical RTs from bandpower topomaps. We used Bayesian
Hyperparamter Optimization with a Tree Structured Parzen Estimator [30] to find the optimal
hyperparamater for our model from a large hyperspace. TPE is an algorithm in the framework
of Sequential Model-Based Optimization (SMBO) [35] which involves optimizing the surrogate of
a costly fitness function. TPE achieves this numerical optimization by distinguishing points or
hyperparameters with low and high probability densities.

The design of our fitness function involved tweaking the architecture of the CNN models as well
as general set of hyperparameters such as learning rate, optimizers and regularization parameters.
We ran the TPE algorithm for 73 trials and evaluated the trials based on validation accuracy. The
best model architecture as optimized by TPE contains 4 convolution and 4 inception reduction
layers [36, 37] with 2 fully connected (FC) layers followed by the softmax layer (Fig. 5). The
optimizer and learning rate chosen was Adagrad [38] and 0.006 respectively. Model was trained
for 165 epochs with 25% of the data used as validation set. Options to save the model with
best validation loss and reduction of learning rate at plateau was enabled. Model configuration
was implemented using the tensorflow’s functional API Keras [39] and we used the hyperopt [40]
library for TPE optimization.

3.7 Band Specific Class Activation Maps

To help interpret the learned representations of these deep neural models, we used Guided Grad-
CAM [31], a class discriminative visualization technique to visualize the spatial activations for
different RTs across separate frequency bands (right of Fig. 6). Guided GradCAM combines high
resolution Guided Backpropagation [42] pixel-space gradient map with class discriminative map of
GradCAM [31] to highlight class associated feature importance. We applied Guided GradCAM to
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Figure 5: Network architecture selected by the TPE algorithm. The bandpower topomaps are the
inputs of the model and transformed through 4 consecutive convolution and inception reduction
layers. The configuration of the Inception reduction layer is shown in the upper right corner. The
first and interim convolution layers contains 52, 104, 156 and 208 filters with kernel size 5x5. The
first and second FC layer contains 713 and 1019 units respectively with each of the FC layers are
followed by dropout layer (rate = 0.47). Exponential linear unit (ELU) [41] function is used as
activation for all the convolution and FC layer. The output layer contains 3 units with softmax
activation corresponding to the 3 categorical RTs.

the test samples and acquired the learned spatial representation in each frequency band. Figure
5 illustrates some examples of the band specific localization of RTs. We extract activation values
from the 64 spatial locations of the saliency maps to further analyze the spatial-spectral factors
contributing to variation in RT. The purpose of our analysis was to determine whether and what
differences in activation trends exist between RT groups.

3.8 Statistical Analysis

To assess how Guided-GradCAM activations (i.e., feature scores) vary with behavioral RTs we
performed a mixed-effect ANOVA. The model included factors of electrode (64 levels), frequency
band (3 levels), and predicted RT groups (3 levels). We used Tukey HSD post hoc tests to contrast
activation in electrodes and frequency bands between the RT categories. Statistical analysis was
performed in R (lmer4 [43] and lmerTest [44] packages).
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Figure 6: Left: Examples of GradCAM activation maps (1st row) and their corresponding pixel-
space feature map from Guided-GradCAM (2nd row). GradCAM activation maps shows some noise
as evident by activation in the background. In contrast, the pixel-space activation maps shows more
noise free and detailed feature activation. Right: Band specific spatial activation from Guided-
GradCAM. The red, blue and green color channels of pixel-space activation map corresponds to
learned spatial feature importance of α, β and γ frequency band.

4 Results

4.1 Model Performance

We evaluated our CNN model performance on a test dataset that the model had never seen. Among
the 73 CNN models generated by the TPE algorithm, the mean test accuracy was 56.62%, with the
best-performing model achieving a test accuracy of 70.8%. We selected the best model for further
analysis. Our model showed an average (macro) of 0.71 precision, 0.7 recall, and 0.71 f1-score. The
slow, fast, and medium RTs achieved an average softmax score of 0.84, 0.84, and 0.8 respectively.
Table 1 shows the details of model performance. Since there is an imbalance in sample size in
the RT categories (slow:fast:medium ≈ 19:43:38), we used precision-recall metrics to diagnose the
model. The right of figure 6 shows the precision-recall trade-off under different decision thresholds.
We tested the model performance on each RT category by comparing their average precision (AP)
score. According to the AP scores, our model showed better performance in classifying fast RTs.
This might be due to their over representation in the data and less uncertainty in terms of spatial-
spectral patterns. In contrast, the medium RTs were classified less accurately (AP = 0.76) than
their counterparts.

Since there is imbalance in sample size in the RT categories (slow : fast : medium ≈ 19:43:38),
we used precision recall metrics to diagnose the model. The right of figure 7 shows the precision-
recall trade-off under different decision thresholds. We test the model performance on each RT
categories by comparing their average precision (AP) score. According to the AP scores, our model
shows better performance in classifying fast RTs. This might be due to their over representation
in the data and less uncertainty in terms of spatial-spectral patterns. In contrast, the medium RTs
were classified less accurately (AP = 0.76) than it’s counterparts. The randomness introduced by
the bootstrap data generation process makes it difficult for us to confidently identify the specific
reason for this performance degradation. For example, the sampling process can shift the mean
of RT distributions because of the random dropout of trials, so medium RTs could contain fair
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Precision Recall F1-score

slow 0.73 0.66 0.69
fast 0.71 0.79 0.75
med 0.69 0.64 0.66

macro avg 0.71 0.70 0.70
weighted avg 0.71 0.71 0.71

Table 1: Performance metric of the best CNN model. Based on the F1 scores of the RT categories,
we can see that model learned the spatial-spectral patterns of fast and slow RT compared to medium
RTs.

Figure 7: Left: Normalized confusion matrix of model predicted RTs. The model makes more
confusions between medium RTs with slow and fast RTs. The model also confuses some fast RTs
as medium RTs. Right: Precision-Recall curve of model prediction. The model learned the spatial-
spectral patterns of fast RTs (AP = 0.83) efficiently followed by slow (AP = 0.79) and medium
RTs (AP = 0.76). The fast RTs are also the most stable as indicated by the f1 score (¿ 0.6) under
extreme thresholds. The increased model performance on fast RTs might be due to having the
majority of samples and low uncertainty (42% of the training data).

amount of samples near fast and slow RTs therefore are classified as such by the model. It could
also mean that variation in motor execution speed plays a role and sometimes RTs reflect early or
late execution by the participants rather than the speed of their speech categorization process.

4.2 ANOVA Results

The mixed-model ANOVA revealed significant variation in activation across electrode sites [F (63,
13637) = 7.49, p < 2.2e−16], frequency bands [F (2, 13632) = 33.38, p = 3.43e−15] and RT groups
[F (2, 13635) = 22.93, p = 1.14e−10]. We also find significant interaction in activation between
electrode × band [F (126, 13637) = 19.49, p < 2.2e−16], electrode × RT [F (126, 13633) = 1.63, p =
1.20e−05], band × RT [F (4, 13631) = 2.71, p < 2.2e−16] and electrode × band-RT [F (252, 13633)
= 1.58, p = 1.47e−8]. The 3-way interaction indicates that CNN activations varied with unique
spatial-spectral patterns dependent on listeners’ perceptual RTs. Post-hoc analysis was conducted
to parse this complex interaction and identify possible differences between left vs. right hemisphere
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Figure 8: Regions of interest for each RT category as identified by the CNN model. Activation
scores are averaged across the frequency bands to acquire salient regions of each RT category. Left
frontal activation is inversely proportional to RTs.

data in driving listeners RT behaviors.
For left hemisphere, increased left frontal activation (FT7, FC5, FC3) was associated with faster

responses (Mfast = 1.076, Mmed = 0.79, Mslow = 0.27), suggesting an inverse relation between
brain activation and behavior. We also found that temporal and central regions (TP7, C5, C1)
were among the other left hemispheric regions distinguishing listeners’ RTs. Activation at TP7
differed between fast-medium [p = 0.0036, (Mfast,Mmed) = (1.998, 4.746), z ratio = -3.222] and
medium-slow [p = 0.0640, (Mmed,Mslow) = (4.746, 2.760), z ratio = 2.24] RTs but not for fast-slow
[p = 0.643, (Mfast,Mslow) = (1.998, 2.76), z ratio = 2.24] RTs. Similarly, activation patterns
differ in C5 region but only between medium and slow RTs [p = 0.0258, (Mmed,Mslow) = (4.413,
2.368), z ratio = 2.593]. The linear relation between frontal (but not temporal or central) regional
activation and RTs suggests left frontal activity is a major driver of listeners’ perceptual decision
speed during speech categorization.

For right hemisphere, superior prefrontal regions (AF4, F2) contrasted some RT categories.
Activation at AF4 contrasted fast-medium [p = 0.0087, (Mfast,Mmed) = (3.511, 5.903), z ratio
= -2.958] and medium-slow [p = 0.0002, (Mmed,Mslow) = (5.903, 2.69), z ratio = 3.948] but no
significant contrast between fast-slow [p = 0.56, (Mfast,Mslow) = (3.511, 2.69), z ratio = 0.82]
RTs. Similarly, activation in F2 location contrast between fast-med [p = 0.0196, (Mfast,Mmed) =
(2.626, 4.945), z ratio = -2.69] and med-slow [p = 0.0001, (Mmed,Mslow) = (4.945, 1.255), z ratio
= 4.124] but not fast-slow [p = 0.27, (Mfast,Mslow) = (2.626, 1.255), z ratio = 0.82] RTs. These
results indicate that high activation in right prefrontal/frontal regions causes minor decay in RT
and transition from fast to medium RTs. Additionally, a right cerebellar region (CB2) distinguished
between fast-slow [p < .0001, (Mfast,Mslow) = (5.055, 8.599), z ratio = -4.351] and med-slow [p <
.0001, (Mmed,Mslow) = (4.320, 8.599), z ratio = -5.253] but not fast-med [p = 0.63, (Mfast,Mmed)
= (5.055, 4.320), z ratio = 0.919] RTs. The comparatively higher activation at CB2 in slower RTs
perhaps indicates that right cerebellar activity is a major cause for late response in CP.

4.3 Spectral Correlates of RT

To establish the role of different frequency bands behavioral RT, we next compared average α, β
and γ activation between the RT categories (Fig. 9). We find β oscillations (Mβ = 3.12) encodes
RT variation most significantly followed by α oscillations (Mα = 3.06). Post-hoc analysis showed
that α activation differed between fast-slow [p-value = 0.0287, (Mfast,Mslow) = (3.03, 2.52), z
ratio = 2.554] and med-slow [p-value < .0001, (Mmed,Mslow) = (3.38, 2.52), z ratio = 4.399]
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RTs but not fast-med [p-value = 0.1577, (Mfast,Mmed) = (3.03, 3.38), z ratio = -1.837] RTs. In
contrast, β activation differed between fast-med [p-value = 0.0074, (Mfast,Mmed) = (3.04, 3.64),
z ratio = -3.01], fast-slow [p-value = 0.008, (Mfast,Mslow) = (3.04, 2.52), z ratio = 2.985] and
med-slow [p-value < .0001, (Mmed,Mslow) = (3.64, 2.45), z ratio = 5.976] RTs. We found γ band
to be insignificant in dictating RT variation as post-hoc analysis shows no significant contrasts in
activation scores between the RT categories (p > 0.3).

Figure 9: Average band activation comparison between the RT categories. Band activation is
acquired by averaging the activation scores over 64 electrodes of α, β, and γ frequency bands.
From these band activations, we observe that α and β bands are the primary correlates of RT
whereas the effect of γ band is minor.

Involving electrode location alongside frequency bands provided a more specific look at these
effects. We found that higher α activation is largely constrained to left hemispheric regions whereas
higher β activation activation were associated with right hemispheric regions. We observed that
the linear activation trend in left frontal regions is associated with α activation. Our results suggest
that RTs get faster as left frontal α activation increases (Mα

fast = 18.15, Mα
med = 18.22, Mα

slow =
13.39). The other source of α activation is the CP1 electrode. Results showed that α activation
in this region differs slightly between fast-med [p-value = 0.0624, (Mfast,Mmed) = (11.81, 8.77),
z ratio = 2.255], med-slow [p-value = 0.1571, (Mfast,Mmed) = (11.81, 8.77), z ratio = 1.838] and
largely between fast-slow [p-value = 0.0002, (Mfast,Mslow) = (11.81, 6.34), z ratio = 3.999] RTs.

Our analysis revealed that majority of β activity associated with RT variation is right hemi-
spheric. We find significant contrast of β activation in right frontal/prefrontal areas. To start, we
see that β activation in AF4 electrode between fast-med [p < .0001, (Mfast,Mmed) = (3.78, 10.07),
z ratio = -5.349] and med-slow [p < .0001, (Mmed,Mslow) = (10.07, 5.43), z ratio = 4.081]. We see
a similar β activation trend associated with F2 location, the β activation in this location contrasts
between fast-med [p ¡ .0001, (Mfast,Mmed) = (6.23, 13.61), z ratio = -5.423], med-slow [p < .0001,
(Mmed,Mslow) = (13.61, 2.51), z ratio = -5.423]. These results suggest that right frontal/prefrontal
β activity encodes similar minor transitional effect on RT (fast -¿ med) like left temporal and
central regions.

Additional to right prefrontal/frontal regions, the result of our analysis also suggests that right
cerebellar β activity is a major factor in determining response speed. From the post-hoc analy-
sis, we observe that right cerebellar β activation significantly differ between fast-slow [p < .0001,
(Mfast,Mslow) = (9.76, 16.42), z ratio = -5.382], med-slow [p < .0001, (Mmed,Mslow) = (7.19,
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Figure 10: Band-wise spatial features salient to each RT category. Activation values are averaged
over all trials and are clustered using GMM to determine high, relevant, and low activation ranges.
α and β activation are lateralized in the left and right hemisphere, respectively. Spatial features in
the γ bands are mostly deemed irrelevant by the modelin describing behavioral RT speeds.

16.42), z ratio = -9.22]. The right cerebellar β activity seemed to contain a sub-linear relation-
ship with RTs which implies that increase in β activity in these regions causes response to decay
gradually.

5 Discussion

We have conducted an in-depth spatial-spectral analysis of EEG data along with computational
modeling to answer two questions regarding the speed with which human listeners categorize speech:
1. What are the effects of neural regions of CP hub in inducing RT? 2. How do right hemispheric
regions associate with RT variation?

In this section, we first summarize and discuss the findings regarding each of these questions.
Aside from exploring these unknowns, we contributed to developing a novel DL based approach to
decode neural functionalities from EEG data. To the best of our knowledge, this is the first com-
putational EEG decoding framework using CNNs that allows the identification of spatial-spectral
correlates of cognitive events. Our proposed approach ensures a fully data-driven procedure without
the effects of hand-engineered features and prior assumptions. We present further arguments for
our choice of using CNN to model and interpret neural factors from EEG data. Finally, we offer lim-
itations of our study and present viable explorations to further the understanding of brain-behavior
relations in speech perception.
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5.1 Effects of neural regions on categorization speed

Our first aim was to establish the effect of left hemispheric frontal-temporal-parietal regions on RT
variation. These regions are associated with various aspects of the categorization process [45, 46,
32] and can be thought of as the CP circuit of the human brain. Consequently, measuring the effect
of the individual regions inside the inside this network can provide insight into the exact manner
which categorization processes affect RT during speech perception. Here, we show left frontal and
central regions are the only relevant correlates of RTs inside the CP hub. We observe monotoni-
cally increasing α activation in these regions as responses get faster and consequently decay as α
activation is suppressed. One possible source of the activation contrast in left frontal electrodes
FT7, FC5, and FC3 could be left inferior gyrus (IFG). Left IFG is of course engaged in a wide va-
riety of speech and language functions. IFG is a known marker of phonetic categorization capacity
[47], which aligns with our data that left frontal regions drive individuals’ phonetic categorization
capacity, at least with respect to decision speed. Still, the dominant left frontal α activation for
faster responses perhaps points towards a simpler explanation. Dimitrijevic et al. found positive
correlation effect between α activation in the left IFG and listening effort in speech-in-noise con-
ditions [48]. As α oscillations are related to attention processes, it is plausible that left frontal α
activation in our analysis reflects the participants’ listening effort.

The C5, C1 and CP1 electrodes cover posterior frontal regions, approximately near primary
motor cortex (PMC). Evidence suggests that both motor and non-motor representations are part
of the categorization process [49, 50, 51]. Still, the exact nature of how putative motor actions
relate to speech perception are beyond the scope of our study. Thus, we consider an alternate
cause for the saliency of the PMC. Since motor execution time is also part of RT, we consider these
sparse activations across the left central regions a reflection of varying motor execution speeds. α
activation at CP1 followed a linear trend with RT suggesting faster responses with increasing α
activity. Moreover, the leftward lateralization of this motor response is perhaps expected given our
sample was predominantly right-handed.

We found little evidence that the auditory cortex played a key role in eliciting RT. TP7 resides
over the left auditory temporal cortex. Since activation patterns in TP7 did not differ much between
fast and slow RTs, we can assume that neural operations in the auditory cortex have a comparatively
lower influence on the speed of listeners responses (i.e., RTs) compared to frontal regions. From this
observation, we infer that stages of encoding speech signals have a minor effect, and it is the later
processes which are the prime determinant of RT. The reasoning of this inference is that regions
in the auditory cortex such as primary auditory cortex (PAC) are responsible for the encoding
of speech signals [52, 53]. Additionally, we found that γ band is a minor correlate of RT and γ
band is important in describing stimulus encoding processes of CP (but not necessary response
selection (cf. RT), per se). The minor role of temporal cortex and the major role of frontal regions
is supported by the work of Binder et. al who also showed (with fMRI) that response selection is
driven by left inferior frontal lobe [54].

5.2 Right hemispheric effect on categorization speed

Right hemisphere brain regions are associated with plethora of auditory (and non-auditory) pro-
cesses including memory [55], attention [56] , decision [57] and motor control [58]. These are all
plausible functions which might affect reaction and decision speed during speech categorization
tasks. Our results show that right frontal/prefrontal and cerebellum are important regions that
affect RTs in a non-linear fashion. We find that right frontal/prefrontal β activity encodes imme-
diate transitions from fast to medium RTs. It is possible that β activity in these regions causes a
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slight delay in listeners’ responses due to increased inhibitory motor control [58, 59]. In a broader
sense, such delays in motor function might be equally described in terms of decision uncertainty.
The other plausible theory is that right frontal/prefrontal β activity reflects delay in recall pro-
cesses. We consider this possibility because right prefrontal regions are associated with memory
retrieval operations during speech perception [55]. Regions such as the dorsolateral prefrontal cor-
tex (DLPFC) are associated with working memory [60] and one of the markers for higher auditory
perceptual skills is better working memory [61].

Addition to the right frontal areas, we also found increased right cerebellar β activity to hinder
RT speeds. Our analysis shows large contrast in right cerebellar β activation between fast and slow
trials. Thus, it is apparent that cerebellar β oscillations are significant predictors of early or late re-
sponses when categorizing speech stimuli. The right cerebellum relates to linguistic functions such
as motor speech planning, verbal working memory, syntax processing and language production [62].
One characterization of cerebellum is as an ’internal clock’ [63]. Based on this hypothesis, studies
have concluded that cerebellum is responsible for processing temporal structure of acoustic signals
[64]. Such clocking function could play a role in driving listeners to produce early vs. late response
in our speech perception task. Studies also suggest the cerebellum is tied to language training and
verbal working memory [65]. On this account, it is possible that language experience is reflected
in cerebellar activity and decision speeds in speech perception are modulated by such experience.
However, the most probable theory points toward temporal prediction of input acoustics. Ruiz et
al. showed that β oscillation in cerebellum play major role in sequence prediction during speech
perception and vocalization [66]. Furthermore, their study also provided evidence suggesting that
β oscillations reflects a reconfiguration of sensorimotor representations due to wrong predictions.
Consequently, the incorporation of novel auditory information is essentially to the learning mech-
anism of linguistic or other auditory sequences. In the context of temporal prediction of acoustics,
we hypothesize that successful prediction match causes faster response and failed predictions causes
significant delay in response, which are likely mediated by cerebellar engagement as suggested in
our data.

5.3 Decoding neural function through visual interpretation

CNNs are the most successful models in computer vision tasks. Although rarely used for analytical
purposes due to their complexity in interpretation, these models are still promising due to their
potential to model any arbitrary functions. CNNs have been successful in modeling neural events
and brain-behavior relationship from EEG measures [67]. For instance, CNN and its variants have
been effective in modeling cognitive load [33, 29, 68], seizure detection [69, 70], motor imagery [71,
72, 73, 74, 75] and sleep stage scoring [76, 77] from EEG recordings. Recently, the use of CNN has
extended to the domain of audiology. Most notably CNNs have been used as a model for decoding
speech-in-noise [78], replicating functions of auditory sensory cells [79] and to solve the cocktail
party problem [80]. Here, we, extend these results by demonstrating efficacy for CNNs in decoding
the acoustic-phonetic mapping inherent to speech perception.

Relevant to our study, Al-Fahad et al. combined stability selection and support vector ma-
chines (SVM) to reveal functional connectivity structures underlying fast, medium, and slow RTs
[32]. Mahmud et al. decoded neural factors contributing to age related hearing loss using the same
framework [81]. These studies showed that quantitative feature importance automated by machine
learning tools allows limited but useful interpretation of the relationship between neural activities
and behavioral responses. However, model agnostic feature selection techniques like stability selec-
tion are computationally expensive for CNN models. Class activation mapping tools such as CAM
[82], GradCAM [31], CNN-fixation [83] and EigenCAM [84] are the only viable techniques that
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allows insight into the learned representation of CNN but are limited to visual depiction. Recently,
GradCAM has been extended to decode neural events from EEG data [85, 86, 87, 88] but a lack
of quantification process impedes the in-depth analysis required for reaching conclusive hypothesis.
Therefore, we have laid out a process to quantify feature importance through extraction of activa-
tion values from the class activation maps and conducted further statistical analysis to establish
effect measures required to decode brain-behavior relationships.

Our contribution in the current study is not limited to modeling EEG with CNN and interpre-
tation through activation values. Rather, we have designed a framework incorporating techniques
which allows the usage of these DL tools for EEG analysis. For instance, we have adopted a random-
ized algorithm [29] which allowed us to use ERP samples in DL context. The usual computation
of ERPs inadvertently shrinks the number of observations and increase the bias of the dataset
significantly which are impediments to ML/DL modeling. The algorithm allows us to augment
ERP samples through the random combination of trials and controls the overall variance of the
dataset by ensuring there is minimum overlap in these combinations. We have further adopted a
composite representation of spatial-spectral features extracted from the ERP signals which allowed
us to utilize the power of CNN and its interpretation tools.

5.4 Limitation and future direction

Despite the mentioned benefits, the proposed framework has some limitations worth noting. First,
we acknowledge that Guided-GradCAM as a visual interpretation tool is incomplete. It is not yet
clear whether Guided-GradCAM captures pixel-space feature importance learned by deep CNN
models [89]. Specifically, Guided-Backpropagation [90] as a visual interpretation technique is still
a matter of debate. One way to further validate our interpretation here using Guided-GradCAM
is to extend this framework to other EEG studies and perceptual-cognitive paradigms beyond the
relatively simple speech perception task used here.

Aside from the limitation of our analytical framework, we acknowledge that further studies must
be conducted to fully understand the source of perceptual variation in CP. For instance, we did not
decode temporal aspects of neural organization driving behavioral reports. Temporal dynamics are
important to understand because they explain how time differential engagement of neural regions
affect behaivor. Another limitation of our analysis is that we focused only on measuring the effect of
individual scalp regions and did not consider the underlying neuronal sources of these activities nor
possible interactions between regions (i.e., functional connectivity). Future studies could address
how these factors contribute to individual variation in speech perception.
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