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Abstract

Protein secondary structure prediction is useful for many applications.
It can be considered a language translation problem, i.e., translating
a sequence of 20 different amino acids into a sequence of secondary
structure symbols (e.g., alpha helix, beta strand, and coil). Here, we
develop a novel protein secondary structure predictor called TransPross
based on the transformer network and attention mechanism widely
used in natural language processing to directly extract the evolution-
ary information from the protein language (i.e., raw multiple sequence
alignment (MSA) of a protein) to predict the secondary structure.
The method is different from traditional methods that first generate
a MSA and then calculate expert-curated statistical profiles from
the MSA as input. The attention mechnism used by TransPross can
effectively capture long-range residue-residue interactions in protein
sequences to predict secondary structures. Benchmarked on several
datasets, TransPross outperforms the state-of-art methods. Moreover,
our experiment shows that the prediction accuracy of TransPross pos-
itively correlates with the depth of MSAs and it is able to achieve the
average prediction accuracy (i.e., Q3 score) above 80% for hard targets
with few homologous sequences in their MSAs. TransPross is freely
available at  https://github.com/BioinfoMachineLearning/TransPro
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1 Introduction

Studying protein structures and their functions is critical for addressing many
biomedical problems such as protein engineering and drug design[1-4]. Pre-
dicting the protein secondary structure from sequence can provide useful
information for studying tertiary and quaternary structures of proteins and
their function [5-7].

Protein secondary structure (SS) can be defined as the local configuration
of the polypeptide chain. The two regular local configuration types, alpha-helix
(H) and beta-strand (E), determined by the hydrogen bonding patterns, were
initially proposed in 19518, 9]. The non-regular local configuration is often
called coil or loop (C). The annotation of the protein secondary structure is fur-
ther expanded to the eight types and is commonly computed from the tertiary
structure of proteins by the standard annotation tools such as DSSP[10]. For
simplification, the 8-state representation is usually reduced to the 3-state rep-
resentation (alpha-helix (H), beta-strand (E), and coil (C)). Since the tertiary
structures of most proteins are unknown, there is a need to directly predict
the protein secondary structure from sequence.

Many computational protein SS prediction methods have been developed
over the last several decades. One major improvement in the protein SS pre-
diction came from the innovation in enhancing the input information. Instead
of using a single sequence of a target protein to predict its secondary structure,
the sequence profile-based methods[11-19] compute the sequence profile from
protein multiple sequence alignment(MSA) of the protein[20-23] to extract
the evolutionary information for SS prediction. Using protein sequence pro-
file for secondary structure prediction is substantially more accurate than
using the single sequence of a target protein. The sequence profile is usually
represented by expert-designed statistical models such as position-specific scor-
ing matrices[21] and hidden Markov models[22]. As more and more protein
sequences are produced, reasonable multiple sequence alignments can be gen-
erated for most proteins to construct good sequence profiles, the profile-based
secondary structure prediction methods have reached a high accuracy (e.g.,
>80%) on most benchmarks. However, for some proteins that do not have
many homologous sequences in the protein sequence databases for constructing
reasonable multiple sequence alignments and profiles, the profile-based predic-
tion methods cannot deliver optimal results. In this case, the single-sequence
based prediction method that only depends on the single sequence information
itself[18, 24] has been developed to improve the prediction accuracy.

Since 1990s, neural networks had been shown to be the most successful
methods for protein secondary structure prediction [11, 13]. When deep neu-
ral networks consisting of many more layers than traditional shallow neural



networks started to achieve significant success in several computing domains
such as image processing and computer vision in mid-2020s, different deep
learning architectures such as deep belief networks, gated recurrent neural net-
works, long- and short-term memory networks, convolutional neural networks,
residual networks, and inception networks have been applied to the secondary
structure prediction problem [12, 25-27].

Recently, the language models in the natural language processing (NLP)
were adapted for protein sequence analysis[28-31], creating a new avenue to
improve protein secondary structure prediction. The language models that can
interpret the meaning of the words in a long-range context is a promising tech-
nique to handle the long-range amino acid interactions in protein sequences
that are needed for predicting some secondary structures in proteins, particu-
larly beta-sheets that often involve the long-range interactions. In this work,
we explore the application of language models in protein SS prediction and
develop a predictor - TransPross - based on the transformer network and the
attention mechanism to effectively obtain evolutionary information from the
raw MSA directly to predict secondary structure. Tested on several different
test sets including the TransPross test set, CASP13 free modeling (FM) test
set and CASP14 test set, TransPross achieves better performance than the
state of the art of the sequence profile-based methods. The analysis of the
performance of TransPross on hard targets with few homologous sequences in
their MSAs also shows it often works well even when the MSAs are shallow.
By taking a MSA as input, TransPross can be readily applied to many pro-
teins that users may have obtained MSAs for. It can also be combined with
any MSA generation tool to predict secondary structure prediction, which is
more flexible than most traditional secondary structure predictions that use
their own built-in MSA generation and profile generation programs to prepare
the input. Therefore, TransPross is a useful tool that complements the existing
protein secondary structure prediction tools.

2 Results

2.1 Comparison with single-sequence-based methods and
profile-based methods

We compare TransPross with one of the most widely used state-of-the-art pro-
tein secondary structure prediction method - PSIPRED on three different test
sets (TransPross test set,CASP13-FM test set consisting of the free model-
ing (FM) targets of the 13th Critical Assessment of Techniques for Protein
Structure Prediction (CASP13) and CASP14 regular full-length targets with
sequence length < 500. FM targets were considered hard targets because they
did not have similar structures in the Protein Data Bank (PDB) when they
were released. PSIPRED can predict secondary structures from either sequence
profile or a single protein sequence. PSIPRED-profile accepts the sequence pro-
file calculated from multiple sequence alignments as input. PSIPRED-single
predicts secondary structure from a protein single sequence. In addition to



comparing TransPross with PSIPRED-profile, we also use PSIPRED-single
and another single-sequence-based method SPOT-1D as the baseline to eval-
uate TransPross. The performance of the methods is evaluated by the Q3
accuracy score, which is the percent of residues of the proteins in a dataset that
are correctly assigned into three categories (i.e., helix, beta-strand, and coil).

As the results shown in Table 1 (a) and (b), TransPross substantially out-
performs the single sequence-based methods(SPOT-1D, PSIPRED-single) as
expected. The Q3 accuracy score of TransPross for the three test sets are
84.42%, 81.04% and 80.71% respectively, which is also better than that of a
state-of-the-art profile-based method - PSIPRED-profile.

Method TransPross-test CASP13
TransPross 84.42 81.04
SPOT-1D 76.97 73.21
PSIPRED-single 71.03 68.05
PSIPRED-profile 82.88 80.60

(a) Comparison of TransPross with SPOT-1D, PSIPRED-single and PSIPRED-
profile on TransPross test set and CASP13 test set.

Method CASP14
TransPross 80.71
PSIPRED-profile 79.62

(b) Comparison of TransPross with PSIPRED-profile on CASP14 test set.

Table 1: Comparison of TransPross with other predictors in terms of the Q3
accuracy score on different test sets: (a)TransPross test set and CASP13 FM
test set (b) CASP14 test set

2.2 Effect of the quality of MSAs on prediction accuracy

To evaluate the impact of the quality of multiple sequence alignments (MSAs)
on the performance of TransPross, we test TransPross on two different types of
inputs: MSAs generated by using HHblits to search protein sequence against
the big fantastic protein sequence database (BFD)[32], and MSAs generated
by using DeepMSA[33] to search against Uniref30 and the mgnify databases.
The quality of a MSA is determined by multiple factors such as the align-
ment accuracy, the number of homologous or non-homologous sequences in the
MSA, and the redundancy in the MSA. Here, we simply calculate the num-
ber of effective sequences(Neff) in the MSAs to approximate their quality [34].
In general, the higher an Neff, more diverse and informative a MSA is. The
average Neff for the two different inputs for 17 CASP13-FM targets is shown
in Table 2, MSA _BFD denotes the MSAs generated from the BFD database,
while MSA_DeepMSA represents the MSAs generated by DeepMSA. Because



DeepMSA searches against several databases, MSA_DeepMSA has a higher
Neff than MSA_BFD in most cases.

In Table 2, there is a positive relationship between the average Q3 accuracy
score of TransPross and the average Neff of MSA on the 17 CASP13 FM tar-
gets. Figure 1 plots the Q3 score against Neff of the 17 CASP13 FM targets.
The results indicate that increasing the number of effective sequences in MSAs
is important for improving secondary structure prediction, which is similar to
protein contact prediction [34] and tertiary structure prediction [35]. The Pear-
son’s correlation coefficient between the per-target Neff and the corresponding
Q3 accuracy score on the 17 CASP13 FM targets is 0.52.

Input Q3(%) Neff
MSA_BFD 76.09 202
MSA _DeepMSA 81.04 382

Table 2: The effect of Neff on the prediction accuracy of three-state secondary
structure on 17 CASP13 FM domain targets.
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Fig. 1: The scatter plot of the Q3 accuracy score of secondary structure pre-
diction versus Neff with linear fitting curve ( Pearson’s correlation coefficient
= 0.52)

2.3 Secondary structure prediction for hard targets with
shallow MSAs

Targets with relatively few sequence homologs in their MSAs are generally
defined as hard targets and the accurate predictions for them are likely more
helpful for studying their structures and function. We assess the performance
of TransPross on the 12 CASP13 FM targets with shallow MSAs (Neff < 50).
Interestingly, TransPross is able to achieve a pretty good average Q3 accu-
racy sore of 81.25%, slightly higher than PSIPRED-profile’s 81.22%. Figure
2 illustrates a head-to-head comparison of TransPross predictions with the



PSIPRED-profile predictions on 12 CASP13 FM targets with shallow align-
ments(Neff < 50). In total, TransPross performed better in 8 of 12 cases,
demonstrating its capability of accurately predicting secondary structure for
hard targets with a small number of sequence homologs.
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Fig. 2: Performance of TransPross versus PSIPRED-profile on 12 CASP13 FM
domain targets with shallow MSAs (Neff < 50) in terms of the Q3 accuracy
score (denoted by a dot in the plot)

2.4 Running time

We empirically calculated the running time of TransPross on the CASP13 FM
targets with an average length of 148 residues. If the MSA of a target is pro-
vided, TransPross typically requires about 30 seconds on average to complete
the prediction with a single Tesla V100 GPU. Because MSAs are often available
for many proteins in advance, TransPross can be applied to them to quickly
generate secondary structure predictions. If MSAs are not available, users can
use any MSA generation tool or the programs in the TransPross package to
generate MSA first, which is generally much slower than predicting secondary
structure from MSA with TransPross.

3 Materials and Methods

3.1 Datasets

We selected protein targets deposited into the Protein Data Bank(PDB) before
May 2019 and extracted their true secondary structures . After filtering out the
redundant sequences at the sequence identity cutoff of 90% by MMseqs2[36]
and setting the sequence length within the range [50, 500], there are 36,334 pro-
teins left. We first randomly selected 5% of the targets to create the TransPross
test set and the rest of the targets were used for training and validation. Apart
from the TransPross test set, the other two test sets are 17 CASP13 FM



domains and 40 CASP14 regular targets with length < 500. To ensure there
was no overlap between the training data and test sets, we further filtered out
the sequence redundancy between the training data and all the three test sets
at the sequence identify cutoff 30% by using MMseqs2[36]. We extracted the
true 3-state secondary structures of the proteins (i.e., strand E, helix H, and
loop C) from their true tertiary structures as labels using DSSP[10]. The objec-
tive is to predict the secondary structure label for each residue of a protein
from its sequence.

3.2 Protein sequence language model and transformer
architecture

We apply a transformer network with the attention mechanism[37] that has
achieved success in natural language translation to detect the relevant sequence
context across the entire protein sequence for each amino acid position to pre-
dict its secondary structure type. The deep learning architecture is useful to
capture long-range interaction between amino acids (like words in an English
sentence) relevant to secondary structure prediction. The customized pro-
tein sequence-to-secondary-structure translation model of TransPross shown
in Figure 3 adopts an encoder-decoder structure. The encoder maps an input
MSA of a protein in the symbolic representation to a sequence of continu-
ous values (internal features) with the dimension of L x 512(L: the protein
sequence length). From the internal features, the decoder then generates an
output sequence of 3-state protein secondary structures one by one in an
auto-regressive way|[38].
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Fig. 3: The architecture of TransPross. It has two main modules: an encoder
and a decoder. The input for the encoder is the MSA of a protein (M). The
input for the decoder includes both the secondary structures prior to the cur-
rent position under consideration and the output of the encoder. From the
input, the decoder predicts the three-class secondary structure for each posi-
tion in the protein sequence.



Given the MSA for a target protein as the input, TransPross uses the
encoder-decoder process to generate the secondary structure of the protein.The
encoder consists of the input embedding component and self-attention com-
ponent. The input embedding component first converts the input tokens to
the value vector of the dimension L x M x 64 (M: the number of sequences in
the MSA). In order to extract more important amino acids in each column of
MSA, we also apply the column attention to the input MSA embedding vector
by using the linear transformation and softmax function. The attention weight
has the dimension of L x M x 8. The final output of the input embedding
component is the multiplication of the column attention weights and the input
MSA embedding vector with the dimension of L x 512. In order to maintain
the order of the sequence, we add the positional encoding to the final embed-
dings. The input embedding vector is further processed by the self-attention
component composed of a stack of N = 6 identical sub-components to generate
the output of the encoder. Each sub-component is composed of a multi-head
self-attention layer(numberofheads = 8) and a fully connected feed-forward
layer. For each layer, there is a residual connection[39] around it, followed by
the layer normalization[40] and one dropout operation[41] with dropout rate
=0.1.

Similar to the encoder, the decoder also consists of the embedding compo-
nent and two attention components. It starts from the output tokens (i.e., true
3-state secondary structure in the training phase or predicted secondary struc-
ture in the inference phase) of the previous positions in a target protein, which
are converted to an embedding vector of the dimension L x 512. A sinusoidal
position encoding vector is added on top of the embedding vector, which is
then fed into the first self-attention component, followed by the cross-attention
component. The first self-attention component consists of a stack of N = 6
identical layers, similar to the attention component in the encoder except that
it applies the masked self-attention mechanism to ensure that the prediction for
the current position only depends on the output tokens prior to this position in
the training phase. In the inference phase, the self-attention component in the
decoder also considers only the previously generated secondary structure states
when generating the next. Both the output of the self-attention component
in the decoder and the output of the encoder stack are fed into the cross-
attention decoder component composed of N = 6 identical sub-components,
each consisting of a multi-head self-attention layer(numofheads = 8) and a
fully connected feed-forward layer. The output of the decoder stack is con-
verted to the 3-state protein secondary structure prediction through the linear
transformation and softmax function.

We use Adam[42] as the optimizer with the following parameters: 1 =
0.9, 52 = 0.999, warmup steps = 4000, and weight decay = 0.001. We set
the batch size to 30 and use the Kullback-Leibler divergence loss as the loss
function to train TransPross. We set the number of training epochs to 100
with the early stopping to reduce overfitting. If there is no improvement in the
validation loss for five consecutive epochs, the training stops. We train through



10-fold cross validation. Five TransPross best models have been selected and
the final output is the ensemble of the five models.

3.3 Evaluation metrics

We compare TransPross with a state-of-the-art profile-based protein secondary
structure predictor - PSIPRED and a single sequence predictor - SPOT-1D.
We evaluate the prediction performance in terms of the Q3 accuracy score,
commonly used in the secondary structure prediction. The Q3 accuracy score
is defined as the percentage of the correctly predicted secondary structures in
three categories (strand E, helix H, and coil C)[43].

4 Conclusion

In this work, we introduce a novel transformer method based on the language
model (TransPross) for protein secondary structure prediction. It takes a MSA
of a protein as input and automatically encodes it as internal features for
a decoder to predict 3-class secondary structures of the protein. By using
the column attention, TransPross is able to assign attention weights in each
column corresponding to each residue position in the protein and extracts the
evolutionary patterns to predict the per-residue secondary structure based on
all the inter-dependencies over columns and rows across the whole MSA. In
addition to achieving the state-of-the-art performance, TransPross can take a
user-provided MSA from any source to generate secondary structure prediction
quickly, making it a convenient tool for users to predict secondary structures
at a large scale. TransPross can also be used by developers to create more
deep learning language and transformer models to improve protein secondary
structure prediction.
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