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Abstract 

O-linked N-acetylglucosamine (O-GlcNAc) is an emerging post-translation 

modification that couples metabolism with cellular signal transduction by crosstalking 

with phosphorylation and ubiquitination to orchestrate various biological processes. 

Herein we show that it modifies the N6-methyladenosine (m6A)-mRNA reader 

YTHDF1 and fine-tunes its nuclear translocation by the exportin protein Crm1. First 

we present evidence that YTHDF1 interacts with the sole O-GlcNAc transferase 

(OGT). Second, we verified the YTHDF1 O-GlcNAcylation sites to be 

Ser196/Ser197/Ser198, as described in previous numerous chemoproteomic studies. 

Then we constructed the O-GlcNAc-deficient YTHDF1-S196AS197FS198A (AFA) 

mutants, which significantly attentuated O-GlcNAc signals. Moreover, we revealed 

that YTHDF1 is a nucleocytoplasmic protein, whose nuclear export is mediated by 

Crm1. Furthermore, O-GlcNAcylation increases the cytosolic portion of YTHDF1 by 

enhancing binding with Crm1, thus upregulating the downstream target (e.g. c-Myc) 

expression. Molecular dynamics simulations suggest that O-GlcNAcylation at S197 

might promote the binding between the nuclear export signal motif and Crm1 through 

increasing hydrogen bonding. Mouse xenograft assays further demonstrate that 

YTHDF1-AFA mutants decreased the colon cancer mass and size via decreasing 

c-Myc expression. In sum, we found that YTHDF1 is a nucleocytoplasmic protein, 

whose cytosolic localization is dependent on O-GlcNAc modification. We propose 

that the OGT-YTHDF1-c-Myc axis might underlie colorectal cancer tumorigenesis. 
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Introduction 

The N6-methyladenosine (m6A) modification is quite abundant on internal 

mRNAs and its function and regulation has caught a wave of intense investigations 

(1,2). Its numerous writers, erasers and readers are under stringent control (3), and 

one of the readers is YTH domain family 1 (YTHDF1) (4). YTHDF1 promotes 

translation efficiency during arsenite recovery (5). YTHDF1 enhances translation in 

adult mouse dorsal root ganglions during injury recovery and augments axonal 

regeneration (6). YTHDF1 fuels translation upon neuronal stimuli, which is 

conducive to learning and memory (7). YTHDF1 also recognizes m6A-marked 

lysosomal protease mRNAs, thus mediating the decay of neoantigens and bolstering 

tumor suppressive immunotherapy(8). Recently, YTHDF1 and YTHDF3 are also 

found to promote stress granule formation, as m6A mRNAs are found to be enriched 

in stress granules (9). 

The interconnection between m6A mRNA and cancer are being revealed (10-12),  

as m6A takes part in many aspects of tumor biology: cancer stem cell, tumor cell 

proliferation or oncogene expression. YTHDF1, in particular, has been found to be at 

the nexus of multiple tumorigenic pathways. YTHDF1 binds the m6A modified 

mRNA of c-Myc, whose enhanced translation would promote glycolysis and cancer 

cell proliferation (13). In non-small cell lung cancer, YTHDF1 upregulates the 

translation efficiency of CDK2, CDK cyclin D1, and YTHDF1 is also elevated in 

high-altitude people, possibly through the hypoxia Keap1-Nrf2-AKR1C1 pathway 

(14). In gastric cancer, YTHDF1 enhances the expression of frizzled 7 (FZD7), a key 

Wnt receptor that would hyper-activate the Wnt/β-catenin pathway (15). In ovarian 
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cancer, YTHDF1 promotes the translation of Eukaryotic Translation Initiation Factor 

3 Subunit C (EIF3C), a component of the protein translation initiation factor EIF3 

complex (16). In cervical cancer, YTHDF1 elevates the translation of hexokinase 2 

(HK2) via binding with its 3’-UTR, thus promoting the Warburg effect (17). All these 

results suggest that YTHDF1 binds with its targets via m6A mRNA, and plays a 

fundamental role during human carcinogenesis.  

Investigations show that some of the m6A regulators are subject to 

post-translational modifications (PTMs). YTHDF2, another m6A reader that mediates 

mRNA decay (18), is subject to SUMOylation at K571 upon hypoxia stress (19). 

SUMOylation would alter the binding affinity of YTHDF2 with m6A, thus 

deregulating the downstream target genes, leading to lung cancer progression (19). An 

m6A writer, Methyltransferase-like 3 (METTL3), is modified by lactylation at its 

zinc-finger domain, which changes its RNA capturing capacity, and regulates 

immunosuppression of tumor-infiltrating myeloid cells (20). Mettl3 is also acetylated, 

which regulates its localization and cancer metastasis (21). 

The O-linked N-acetylglucosamine (O-GlcNAc) glycosylation is one PTM that occurs 

intracellularly (22) (23). Functioning as a rheostat to environmental stress or cellular 

nutrient status, O-GlcNAc monitors transcription, neural development, cell cycle and 

stress response (22) (23). However, whether it plays a role in m6A regulation has 

remained enigmatic. Historically O-GlcNAc studies have been strenuous due to 

technical impediment. Recent years have witnessed the combined methodology of 

chemoenzymatic labeling, bioorthogonal conjugation and ETD mass spectrometry, 
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which have smoothened the way for biological investigations. Previously, an 

isotope-tagged cleavable linker together with chemoenzymatic labeling screen has 

identified the O-GlcNAc sites of YTHDF1 to be S196 and S198 (24). A second 

enrichment strategy using Gal labeling followed by chemical oxidation points the 

YTHDF1 O-GlcNAcylation region to be Ser196-198 (25). In another isotope targeted 

glycoproteomic study in T cells, YTHDF1 O-GlcNAcyation occurs on several 

residues, including Ser196, Ser197 and Ser198 (26). In this manuscript, we first 

confirmed that YTHDF1 O-GlcNAcylation occurs on Ser196Ser197Ser198. Then we 

found that YTHDF1 is a nucleocytoplasmic protein with exportin 1 (CRM1) 

mediating its cytoplasmic shuttling. We further presented evidence that 

O-GlcNAcylation promotes YTHDF1 cytosolic localization, thus enhancing 

downstream target expression, such as c-Myc. Our results were further correlated with 

TCGA analysis combined with mouse xenograft models. Our data highlight the 

signification of glycosylation in m6A regulation and tumorigenesis.  

 

Results 

YTHDF1 is O-GlcNAcylated at Ser196 Ser197 Ser198 

As YTHDF1 has reproducibly been identified in O-GlcNAc profiling screens 

(27-29), we first assessed the binding affinity between YTHDF1 and the sole 

O-GlcNAc writer-OGT. 293T cells were transfected with Flag-YTHDF1 and 

HA-OGT plasmids, and the two overproduced proteins coimmunoprecipitate (coIP) 

(Fig. 1A). When the endogenous proteins were examined, YTHDF1 proteins were 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.21.517456doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517456


8 
 

also present in the anti-OGT immunoprecipitates (Fig. 1B). Then pulldown assays 

were utilized to evaluate the physical association. 293T cells were transfected with 

HA-OGT, and the cell lysates were incubated with recombinant GST-YTHDF1 

proteins. GST-YTHDF1 pulled-down overproduced OGT proteins (Fig. 1C). When 

pulldown assays were carried out between recombinant OGT and YTHDF1, again 

GST-YTHDF1 pulled-down His-OGT (Fig. 1D), suggesting that OGT and YTHDF1 

directly interact in vivo and in vitro. 

Then we assessed the O-GlcNAcylation of YTHDF1. 293T cells were enriched 

for O-GlcNAc by supplementing the media with glucose and Thiamet-G (TMG, the 

OGA inhibitor) (TMG + Glu) as previously described (30,31). The endogenous 

YTHDF1 proteins were IPed from the lysates, and RL2 antibodies detected a crisp 

band upon O-GlcNAc enrichment (Fig. 1E), suggesting that YTHDF1 is indeed 

O-GlcNAcylated. We decided to mutate the three Ser, as several chemoproteomic 

studies have identified YTHDF1 O-GlcNAcylation sites to be Ser196-198 (27-29). 

Thus we generated a YTHDF1-S196AS197FS198A (AFA) mutant. When we 

transfected the WT and AFA mutant into cells, the AFA mutant significantly 

diminished YTHDF1 O-GlcNAcylation levels (Fig. 1F), suggesting that they are the 

main glycosylation sites. 

 

Crm1 mediates the nuclearcytoplasmic shuttling of YTHDF1 

To investigate the potential YTHDF1 O-GlcNAcylation functions, we first 

employed an immunoprecipitation-mass spectrometry (MS) analysis. Flag-YTHDF1 
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plasmids were transfected into cells and the lysates were immunoprecipitated with 

anti-Flag antibodies. Interestingly, the MS results revealed many importins and 

exportins (data not shown). When we did literature research, YTHDF1 was among the 

binding partners of exportin 1 (Crm1) in a recent proteomic study (32). Therefore, we 

suspect that YTHDF1 might be a nuclearcytoplasmic protein and Crm1 might mediat 

the process.  

To test this possibility, we first assessed the association between YTHDF1 and 

Crm1. We also utilized KPT-330, a Crm1 inhibitor. Overexpressed YTHDF1 coIPs 

with Crm1, and KPT-3301 markedly reduced the interaction (Fig. 2A). Moreover, 

endogenous YTHDF1 interacts with Crm1 (Fig. 2B), suggesting that YTHDF1 could 

be a nuclearcytoplasmic protein. We then utilized the nuclear cytoplasmic 

fractionation assay, and fractionation results revealed that there is indeed a nuclear 

portion of YTHDF1 (Fig. 2C). We further adopted KPT-330 in the fractionation assay 

and found that KPT-330 significantly enhanced the nuclear fraction of YTHDF1 (Fig. 

2D). Furthermore, in immunofluorescence staining samples, both endogeous 

YTHDF1 and overproduced YTHDF1 manifested significant upregulation of nuclear 

staining signals (Fig. 2E-F), suggesting that Crm1 could export YTHDF1 to the 

cytosol. 

 

YTHDF1 O-GlcNAcylation promotes interaction with Crm1 

To determine if O-GlcNAcylation plays a role in Crm1-mediated YTHDF1 

nuclear shuttling, we enriched for protein O-GlcNAcylation by TMG + Glu as 
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previously described (30). We found that O-GlcNAc enrichment increased the 

binding between YTHDF1 and Crm1 (Fig. 3A). We also repressed O-GlcNAcylation 

by an OGT inhibitor, Acetyl-5S-GlcNAc (5S-G) (33). 5S-G treatment significantly 

reduced the affinity between YTHDF1 and Crm1 (Fig. 3B). When 5S-G was included 

in the fractionation assay, the nuclear YTHDF1 is upregulated notably (Fig. 5C), 

suggesting that O-GlcNAcylation increases the binding between YTHDF1 and Crm1. 

Then we directly measured the effect using the AFA mutant. YTHDF1-AFA 

displayed marked reduction in association with Crm1 (Fig. 3D). And in the 

fractionation analysis, AFA again manifested much higher portion in the nucleus (Fig. 

3E). Lastly, we employed fluorescent microscopy to visualize whether 

O-GlcNAcylation could affect YTHDF1 localization. As shown in Figure 3F-G, both 

5S-G treatment and the AFA mutant enhanced nuclear YTHDF1 staining, probably by 

blocking its nuclear export via Crm1. These assays suggest that YTHDF1 

O-GlcNAcylation promotes the binding between YTHDF1 and Crm1 and the 

resultant nuclear export. 

 

A potential Nuclear Export Signal (NES) lies in proximity to YTHDF1 

O-GlcNAcylation sites 

We are curious why O-GlcNAcylation has such a conspicuous effect on YTHDF1 

localization and looked for potential nuclear export signals (NES) surrounding the 

S196S197S198 region. As NES consists of the Φ1-X(2-3)-Φ2-X(2-3)-Φ3-X-Φ4 

motif (Φ: hydrophobic amino acid) (34), we found a potential NES justaposing the 
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196-198 Ser cluster (Fig. 4A). We mutated the corresponding hydrophobic amino acid 

to Ala and generated 4A (Fig. 4A), as previously described for the NES of the cyclic 

GMP-AMP (cGAMP) synthase (cGAS) (35). When we examined for YTHDF1-Crm1 

association, the 4A mutant significantly downregulated the binding with Crm1 (Fig. 

4B). In the fractionation studies, 4A also elevated nuclear YTHDF1 localization (Fig. 

4C). In the immunofluorescent staining experiments, 4A also has a more prominent 

nuclear localization pattern compared to the control (Fig. 4D). Combined, these data 

suggest that O-GlcNAcylation might boost the association of the neighbouring NES 

with Crm1.   

 

Molecular dynamics (MD) simulations suggest that S197 O-GlcNAcylation 

increases the interaction between NES and Crm1 via hydrogen bonds. 

We then explored deeper as why O-GlcNAcylation increases binding with Crm1. 

Recently a structural study focusing on the interface between NES and CRM1 found 

that many NESs might form hydrogen bonds with CRM1 (36), therefore we wondered 

whether hydrophilic O-GlcNAc could enhance the interaction by increasing hydrogen 

bonding. And we utilized the molecular dynamics (MD) simulation approach and 

began by constructing the system. Since the AlphaFold Protein Structure Database cannot 

well predict the NES domain of YTHDF1 (pLDDT < 50)(37,38), the ColabFold web server 

was used to build the initial structure of a short fragment (residues 182 - 210) including the 

NES domain (Fig. 5A)(39). The initial structure was further optimized for 300 ns with 

molecular dynamics simulations (Fig. 5B and C). The binding domain of CRM1 (residues 362 
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– 645, Fig.5D) was cropped from the crystal structure of the PKI NES-CRM1-RanGTP 

nuclear export complex (PDB ID: 3NBY)(40). The Rosetta Docking protocol (version 3.12) 

was applied to build the YTHDF1 NES and CRM1 complex (41-43). The NES fragment was 

set as the input structure with 10 Å translation and 360º rotation. One hundred poses were 

created after the docking process (Fig. 5E) and only two obtained reasonable relative 

positions (the NES domain is close to the CRM1 binding domain) (Fig. 5F). After 500 ns of 

MD simulations, only one complex maintained a reasonable interaction (Fig. 5G). The last 

frame of this complex was chosen as the initial structure for further analysis. 

The root-mean-square deviation (RMSD) values indicated that both systems can reach 

stable states in 200 ns (Fig. 5H). The trajectory of the last 100 ns was extracted for further 

analysis. The binding energy of glycosylated fragment to CRM1 binding domain was -118.04 

± 0.32 kcal/mol, which is lower than that of the unglycosylated fragment to the CRM1 

binding domain (-116.21 ± 0.24 kcal/mol) (Fig. 5I). The number of hydrogen bonds between 

the fragment and CRM1 was increased when S197 was glycosylated (3.70 ± 0.06 in the 

glycosylated system vs. 3.32 ± 0.04 in the non-glycosylated system, Fig. 5J) because the 

glycan at S197 can frequently form hydrogen bonds with H577 and D535 in CRM1 to pull 

the NES domain to the CRM1 binding domain (Fig. 5K). Taken together, MD simulations 

suggest that O-GlcNAc might increase hydrogen bonding between YTHDF1 and Crm1. 

 

YTHDF1 O-GlcNAcylation promotes downstream target expression (e.g. c-Myc) 

Recently, many YTHDF1-mediated m6A mRNA targets have been identified, 

such as the protein translation initiation factor EIF3 (16), the key Wnt receptor 
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frizzled7 (FZD7) (15) and c-Myc (13). We focused on c-Myc, as m6A-modified 

c-Myc mRNA has been demonstrated to recruit YTHDF1 (13). We reasoned that 

YTHDF1 O-GlcNAcylation would promote c-Myc expression as there is more 

cytosolic YTHDF1. We first carried out a TCGA analysis, and found that in colon 

adenocarcinoma (COAD) and rectum adenocarcinoma (READ) samples, both 

YTHDF1 and c-Myc are overexpressed in the tumor samples (Fig. 5A-B), indicative 

of a positive correlation between YTHDF1 and c-Myc in colorectal cancer. We 

therefore generated stable YTHDF1-knockdown SW620 cells using shYTHDF1, and 

indeed c-Myc protein levels are attenuated upon YTHDF1 downregulation (Fig. 5C). 

When the knockdown cells were rescued with YTHDF1-WT or -AFA plasmids, 

c-Myc expression is comparable to the control in the YTHDF1-WT rescued cells, but 

not in the -AFA rescued cells (Fig. 5D). The stable SW620 cells were then utilized in 

mouse xenograft experiments, and the tumor size and weight were monitored (Fig. 

5E-G). As expected, the YTHDF1-WT rescued cells produced much larger tumors 

compared to the AFA mutants, suggesting that YTHDF1 O-GlcNAcylation promotes 

colorectal cancer, probably via c-Myc.  

 

Discussion 

In this work, we first confirmed that YTHDF1 O-GlcNAcylation occurs on 

Ser196/197/198, then we identified that glycosylation promotes shuttling of YTHDF1 

to the cytoplasm by CRM1. Consequently, cytosolic YTHDF1 will upregulate its 

downstream target expression (e.g., c-Myc), and then tumorigenesis will ensue. 
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Our work is in line with the observation that O-GlcNAcylation elevation 

correlates with different cancer types, such as breast cancer, prostate cancer, bladder 

cancer (44). In colon cancer, both O-GlcNAc and OGT abundance increased in 

clinical patient samples (45). Here we found that YTHDF1 O-GlcNAcylation boost 

the expression of c-Myc, at least in SW620 cells. In xenograft models, the 

O-GlcNAc-deficient YTHDF1-AFA mutants attenuated tumor progression, 

suggesting that OGT could regulate many more downstream substrates to promote 

cancer growth.  

Of the many m6A readers, YTHDF1-3 have been considered as cytosolic proteins 

(46). We show here that YTHDF1 is partly localized to the nucleus, and we found a 

potential NES in YTHDF1. Incidentally, the NES neighbors the O-GlcNAcylation 

sites, suggesting that O-GlcNAcylation might promote the interaction between NES 

and Crm1. MD simulations suggest that the hydrophilic O-GlcNAcylation might 

increase the binding between NES and Crm1 through hydrogen bonding. 

A great many investigations have shown that O-GlcNAcylation alters protein 

localization, such as pyruvate kinase M2 (PKM2) (47) and serine/arginine-rich 

protein kinase 2 (SRPK2) (48). PKM2 O-GlcNAcylation at Thr405/Ser406 promotes 

ERK-dependent phosphorylation of PKM2 at Ser37, which is required for PKM2 

nuclear translocation (47,49). And PKM2-T405A/S406A attenuates interaction with 

importin α5(47). SRSF Protein Kinase 2 (SRPK2) is O-GlcNAcylated at 

Ser490/Thr492/Thr498, which is close to a nuclear localization signal (NLS) (48). 

And this NLS mediates SRPK2 nuclear localization by importin α (48). Indeed, a 
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general mechanism has been proposed that at least some O-GlcNAcylated proteins are 

imported to the nucleus by importin α (48). Our work here suggest that maybe in 

some other cases, O-GlcNAcylation might shuttle the O-GlcNAcylated proteins to the 

cytoplasm by exportin. 

The intertwined relationship between RNA and glycosylation is just emerging. 

Recently, a “glycoRNA”concept has been coined as small noncoding RNAs are found 

to be decorated with sialylated glycans (50). As far as m6A is concerned, many 

readers have been identified in O-GlcNAc chemoproteomic profiling works 

(25,26,29,51,52), including YTHDF1, YTHDF3 and YTHDC1. In a recent 

investigation from our group (https://doi.org/10.1101/2022.09.03.506498), we found 

that YTHDC1 O-GlcNAcylation is induced upon DNA damage and takes part in 

homologous recombination by enhancing binding with m6A mRNA. Here we show 

that YTHDF1 O-GlcNAcylation mediates its localization by promoting binding with 

exportin. We think that O-GlcNAcylation is bound to be found in many more aspects 

of RNA metabolism, as sweetness lies in the heart of our fellow glycobiologists.    

 

Materials and methods 

Cell culture, antibodies and plasmids 

Cells were purchased from ATCC. OGT plasmids and antibodies were described 

before(53). Antibodies: YTHDF1 (Proteintech, #17479-1-AP), c-Myc (Abcam, 

Ab32072), Lamin A/C (CST, 2032S). YTHDF1 shRNA sequences 

(TRCN0000286871): 
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5’-CCGGCCCGAAAGAGTTTGAGTGGAACTCGAGTTCCACTCAAACTCTTTC 

GGGTTTTTG-3’ 

 

Immunoprecipitation (IP) and Immunoblotting (IB) assays 

IP and IB experiments were performed as described before (54). Nuclear and 

cytoplasmic fractionation assays were carried out as before (55). The following 

primary antibodies were used for IB: anti-β-actin (1:10000), anti-HA (1:1000), and 

anti-FLAG M2 (Sigma) (1:1000), anti-Myc (1:1000), anti-YTHDF1 (1:1000), Lamin 

A/C (1:1000). Peroxidase-conjugated secondary antibodies were from 

JacksonImmuno Research. Blotted proteins were visualized using the ECL detection 

system (Amersham). Signals were detected by a LAS-4000, and quantitatively 

analyzed by densitometry using the Multi Gauge software (Fujifilm). All western 

blots were repeated for at least three times.  

 

Cell Culture Treatment 

Chemical utilization: Thiamet-G (TMG) (OGA inhibitor) at 5 µM for 24 hrs; 

acetyl-5S-GlcNAc (5S-G) (OGT inhibitor) was used at 100 µM (prepared at 50 mM 

in DMSO) for 24 hrs; KPT-300 (Crm1 inhibitor) at 5 µM for 24 hrs. 

 

Indirect Immunofluorescence 

Indirect immunofluorescence staining was performed as described before (54). 

Dilutions of primary antibodies were 1:500 for mouse anti-YTHDF1, and 1:1000 for 
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anti-Flag antibodies. Cell nuclei were stained with DAPI. 

 

Molecular Dynamics (MD) Simulations 

The O-glycan (β-N-Acetyl-D-Glucosamine) at S197 of the YTHDF1 fragment was built 

using the Glycan Reader & Modeler module (56). The role of O-glycosylation in the 

YTHDF1 fragment interacting with CRM1 was investigated via molecular dynamics 

simulations with the GROMACS (version 2021.2) software package(57,58). Two systems 

(unglycosylated fragment and O-GlcNAcylated fragment at S197 in complex with CRM1 

binding domain, respectively) were neutralized and solvated by 150 mM KCl and TIP3P 

water molecules. The systems were minimized and equilibrated using the default equilibration 

inputs from the CHARMM-GUI webserver(59) with the CHARMM36m force field (60,61). 

In brief, the systems were equilibrated in the isothermal-isobaric (NPT) ensemble for 200 ns. 

The pressure was set at 1 atm maintained by the Parrinello-Rahman barostat (62) and the 

temperature was maintained at 310.15 K with the Nosé–Hoover thermostat(63). Periodic 

boundary conditions were applied throughout the simulations. The SHAKE algorithm was 

used to constrain all bonds with hydrogen atoms(64). The particle-mesh Ewald (PME) 

summation method was applied to treat long-range electrostatic interactions (65).  

Analysis of MD trajectory data was performed through MDAnalysis (66). The binding 

energy (enthalpy) and per-residue energy contributions were calculated by the molecular 

mechanics/Poisson-Boltzmann (generalized-Born) surface area method with the 

gmx_MMPBSA tool (67,68). The interactions between the YTHDF1 fragment and the CRM1 

binding domain were displayed by PyMol (69). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.21.517456doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517456


18 
 

 

Mouse Xenograft 

1 X 106 control，YTHDF1 shRNA, YTHDF1 shRNA; YTHDF1-WT or YTHDF1 

shRNA;YTHDF1-AFA stable SW620 cells were resuspended in Matrigel (Corning) and then 

injected into the flanks of nude mice (4-6 weeks old). The tumor volumes were measured 

from day 3 to 9 after injection. At 9 days after the injection, tumors were dissected. The mice 

were obtained from the Animal Research and Resource Center, Yunnan University. 

{Certification NO. SCXK(Dian)K2021-0001}. All animal work procedures were approved by 

the Animal Care Committee of the Yunnan University (Kunming, China). 

 

Data Availability Statement 

All data are contained within the manuscript. 

 

Abbreviation 

Thiamet-G (TMG); Mass spectrometry (MS); Immunoprecipitation (IP); 

Immunoblotting (IB); Acetyl-5S-GlcNAc (5S-G); O-linked β-N-acetylglucosamine 

(O-GlcNAc); O-GlcNAc transferase (OGT); mRNA N6-methyladenosine (m6A); 

electron transfer dissociation (ETD); 
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Figure legends 

Fig. 1. YTHDF1 is O-GlcNAcylated at Ser196 Ser197 Ser198. (A)293T cells were 

transfected with Flag-YTHDF1 and HA-OGT. The cell lysates were subject to 

immunoprecipitation and immunoblotting with the antibodies indicated. (B) HeLa cell 

lysates were immunoprecipitated with anti-OGT antibodies and immunoblotted with 

the indicated antibodies. (C) 293T cells were transfected with HA-OGT and the cell 

lysates were incubated with recombinant GST-YTHDF1. (D) Recombinant His-OGT 

and GST-YTHDF1 proteins were incubated and subject to pulldown assays. (E) Cells 

were treated with the OGA inhibitor Thiamet-G (TMG) and glucose to enrich for 

O-GlcNAcylation as described previously (30). Then the cell lysates were 

immunoprecipitated with anti-YTHDF1 antibodies and immunoblotted with 

anti-O-GlcNAc RL2 antibodies. (F) YTHDF1-S196A, S197F, S198A, -S196 (AFA) 

mutants were constructed and the cells were transfected with HA-OGT together with 

SFB-YTHDF1-WT, and -AFA mutants. The anti-Flag immunoprecipitates were 

immunoblotted with RL2 antibodies.  

 

Fig 2. Nuclear cytoplasmic shuttling of YTHDF1 is mediated by exportin 1 

(Crm1). (A) Overproduced YTHDF1 interacts with Crm1. Cells were transfected 

with SFB-YTHDF1 and HA-CRM1, treated or untreated with KPT-330 (Crm1 

inhibitor). (B) Endogenous YTHDF1 interacts with Crm1. Cell lysates were 

immunoprecipitated with anti-YTHDF1 antibodies. (C) Cell lysates were subject to 

nuclear cytoplasmic fractionation to indicate cytosolic (CYTO) and nuclear (NUC) 
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portions. (D) KPT-330 treatment increases nuclear YTHDF1. Cells were transfected 

with SFB-YTHDF1 and treated with or without KPT-330. (E-F) Indirect 

immunofluorescence demonstrated that KPT-330 treatment increases the nuclear 

localization of endogenous YTHDF1 (E) and overexpressed YTHDF1 (F). Scale bar, 

10 µM. * indicates p<0.05; **** indicates p<0.0001.  

 

Fig. 3 O-GlcNAcylation promotes the interaction between YTHDF1 and Crm1. 

(A) Cells were transfected with SFB-YTHDF1 and HA-CRM1 and enriched for 

O-GlcNAcylation by TMG plus glucose treatment (TMG + Glu) as previously 

described (30). And O-GlcNAcylation enhances the binding between YTHDF1 and 

Crm1. (B) Cells were transfected with SFB-YTHDF1 and HA-CRM1 and treated with 

the OGT inhibitor Acetyl-5S-GlcNAc (5S-G). And OGT inhibition downregulated the 

affinity between YTHDF1 and Crm1. (C) Cells were transfected with SFB-YTHDF1 

and treated with 5S-G. Nuclear and cytoplasmic fractionation assays were carried out. 

OGT inhibition elevated nuclear YTHDF1. (D) Cells were transfected with HA-Crm1 

together with SFB-YTHDF1-WT or -AFA plasmids. (E) Cells were transfected with 

SFB-YTHDF1-WT or -AFA mutants and subject to nuclear and cytoplasmic 

fractionation assays. (F-G) Cells were transfected with SFB-YTHDF1-WT (treated or 

untreated with 5S-G), or -AFA. The cells were then stained with anti-Flag antibodies 

and DAPI. Scale bar, 10 µM. * indicates p<0.05; *** indicates p<0.001. 
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Fig. 4. There is a potential nuclear exportin signal (NES) in proximity to 

O-GlcNAcylation sites. (A) Sequence alignment of the YTHDF1-WT, 

O-GlcNAc-deficient AFA, and the NES-deficient 4A sequences. (B) Cells were 

transfected with HA-Crm1, together with YTHDF1-WT and -4A plasmids. (C) Cells 

were transfected with SFB-YTHDF1-WT or -4A plasmids and analyzed by nuclear 

cytoplasmic fractionation. (D) Cells were transfected with SFB-YTHDF1 or -4A, and 

stained with anti-Flag antibodies and DAPI. Scale bar, 10 µM. * indicates p<0.05; 

*** indicates p<0.001, ns indicates non-specific. 

 

Fig. 5. Molecular dynamics (MD) simulations suggest that S197 

O-GlcNAcylation increases the interaction between NES and Crm1 via hydrogen 

bonds. (A) Initial structure of YTHDF1 fragment from ColabFold. The NES domain is 

colored in magenta and serines that could be glycosylated are colored in yellow. (B) 

Root-mean-square deviation (RMSD) of backbone of YTHDF1 fragments during 300 ns of 

MD simulation. (C) Structure of YTHDF1 fragments after optimization. (D) Structure of 

CRM1. The NES binding region cropped for docking is shown in cyan. (E) Docking results 

for CRM1 and the YTHDF1 fragment. (F). Reasonable poses (Pose 37 in cyan and Pose 97 in 

magenta) chosen from 100 poses. (G) Positions of YTHDF1 before and after MD simulations 

in Poses 37 and 97. (H) RMSDs of the backbone of CRM1 and YTHDF1 fragments in the 

non-glycosylated system (black for CRM1 and red for YTHDF1 fragments) and the 

glycosylated system (blue for CRM1 and magenta for YTHDF1 fragment) during 200 ns of 

MD simulations. (I) Binding energies between CRM1 and YTHDF1 fragments in the 
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non-glycosylated and glycosylated systems. (J) Number of hydrogen bonds per frame in the 

non-glycosylated and glycosylated systems. (K) Detailed interaction between glycan and key 

residues in CRM1. The hydrogen bonds are shown in yellow dashed lines. 

 

Fig. 6. YTHDF1 O-GlcNAcylation promotes c-Myc expression in colorectal 

carcinoma. (A-B) YTHDF1 and c-Myc mRNA levels in colon adenocarcinoma (COAD) 

and rectum adenocarcinoma (READ) samples from The Cancer Genome Atlas (TCGA) 

database. (C) Stable YTHDF1-knockdown SW620 cell lines were generated and examined 

for c-Myc expression. (D) The cell lines in (C) were rescued with Flag-YTHDF1-WT, or 

-AFA plasmids. And cellular lysates were immunoblotted with antibodies indicated. (E-G) 

Xenografts in nude mice. The stable SW620 cells were injected into nude mice. The tumors 

were imaged after 8 days. E shows the tumor images, F shows the tumor size, and G shows 

the tumor weight. * indicates p<0.05. (H) A model illustrating the role of O-GlcNAc in 

YTHDF1 nuclear shuttling. O-GlcNAcylation of YTHDF1 at S196S197S198 will 

enhance the partnership between Crm1 and YTHDF1, thus promoting cytosol 

localization of YTHDF1 and translation of downstream target proteins, e.g., c-Myc. 

Such an OGT-YTHDF1-c-Myc pathway will enhance colorectal cancer.  
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