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ABSTRACT 

In this proof-of-concept study, we developed a single cell method that identifies somatic 

alterations found in coding regions of mRNAs and integrates these mutation genotypes with 

their matching cell transcriptomes.  We used nanopore adaptive sampling on single cell cDNA 

libraries, generated long read sequences from target gene transcripts and identified coding 

variants among individual cells.  Short-read single cell transcriptomes characterized the cell 

types with mutations.  We delineated CRISPR edits from a cancer cell line.  From primary 

cancer samples, we targeted hundreds of cancer genes, identified somatic coding mutations 

and a gene rearrangement among individual tumor cells. 
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Single cell genomics, long read sequencing, cancer mutations, CRISPR edits, rearrangements 
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BACKGROUND 

Single cell genomics has proven to be a highly informative method for analyzing cancer and 

other disease tissues.  Single cell RNA sequencing (scRNA-seq) provides a granular view of an 

individual cell’s gene expression.  One can characterize different cell types, cellular 

heterogeneity from complex tumor samples and differential gene expression among individual 

cells.  Most scRNA-seq approaches focus on gene expression.  However, single cell genomic 

approaches can examine other features such as copy number and even somatic mutations.  

These additional genomic features increase the overall yield of valuable information from single 

cancer cells.  However, identifying cancer mutations based on scRNA-seq is not commonly 

employed given specific limitations of the current short read approach. 

 

The quantitative measurements of single cell mRNA, in the form of sequence reads from the 

cDNA, requires a combination of cell barcode and a transcript’s sequence.  Short read 

sequencers are used for interrogating scRNA-seq libraries.  Short reads are several hundred 

bases, starting from either the 5’ or 3’ end of a given transcript.  This sequence information 

allows one to count the number of transcripts expressed within an individual cell.  However, 

short reads have significant limitations for the analysis of cancer cell transcriptomes.  Many 

single cell methods require fragmenting the full-length cDNA into lower molecular weight 

species for preparation of short read sequencing libraries.  Fragmenting the cDNA eliminates 

most of the transcript sequence features that extend beyond the 5’ or 3’ end.  This loss includes 

somatic allelic variants that are present in the internal mRNA coding sequence, chimeric 

rearrangements and alternative splicing events that alter transcript isoform structure.  Overall, 

short read sequencing leads to a loss of valuable transcript information such as genetic variants 

that can only be derived from an intact cDNA molecule. 
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Increasingly, single molecule long read sequencing is used for genomic studies of gene 

expression and characterizing cDNAs [1-5].  There are two sequencers in this class available 

from Oxford Nanopore or the Pacific Biosciences.  Both generate long reads with lengths from 

one kb if not higher, all from single DNA molecules.  With intact cDNAs from single cells, the 

library preparation for long read sequencers does not truncate the molecules.  As a result, long 

reads can readily cover an entire cDNA.  This sequence information can be used to identify 

transcript structure and genetic variants present in exon sequences [5]. 

 

For single cell genomics, targeted sequencing of specific gene transcripts provides an 

opportunity to identify transcript structure and genetic variant features present among individual 

cells.  There are a variety of methods used for single cell sequencing of specific target cDNAs.  

For example, PCR amplification of specific targets from single cell libraries with amplicon 

sequencing provides higher coverage of genes [6].  Several steps are required for developing 

PCR assays to amplify gene targets from scRNA-seq libraries.  Requirements include 

identifying specific primer sequences for a given cDNA target and optimizing PCR conditions to 

reduce the issues of artifacts.  When one develops assays for multiplexing PCR, amplification 

artifacts complicates this method and places practical limits on the total number of amplification 

targets. 

 

Another common method involves bait capture of cDNAs.  These assays use biotinylated 

oligonucleotide probes which hybridize to a target.  This process enriches a specific cDNA 

molecule of interest from scRNA-seq libraries [2, 3].  The bait capture approach can be scaled 

up to enrich many genes.  However, the development of these assays requires extensive testing 

of probes and optimizing amplification steps as part of the capture process.  The experimental 

workflow has multiple manipulation steps that add to the complexity of the process. 
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Several studies have demonstrated a new approach for targeted single molecule sequencing 

that leverage the attributes of the Oxford Nanopore platform [7].  Referred to as adaptive 

sampling, this method involves directly assessing DNA molecules for specific target sequences 

[8-10].  A reference file with a set of the target genomic coordinates is provided.  The process 

involves on-the-fly base calling from each DNA molecule per a given nanopore, sequence 

alignment of data, real-time control of the nanopore voltage and selection of those molecules 

with an extended long read of the target sequence.  Once the target sequence is identified, the 

instrument proceeds to sequence the remainder of the molecule.  This method enables direct 

sampling and enrichment of specific DNA molecules without prior preparative steps.  It does not 

require library manipulation to selective PCR amplify or bait hybridization enrichment of the 

target molecule of interest.  Importantly, this approach reduces any potential biases in library 

content by limiting any pre-amplification step. 

 

We conducted a proof-of-concept study to determine the feasibility of nanopore adaptive 

sampling applied to scRNA-seq.  The objective was to conduct targeted sequencing of specific 

single cell gene cDNAs and to detect somatic genetic alterations among individual cells from 

cancer lines or primary tumors.  One introduces the single cell cDNA library into the nanopore 

sequencer - the controller evaluates for matching sequences of a given cDNA molecule as it 

passes through the pore.  Then, the target cDNAs are sequenced with long reads, covering the 

entire length of the cDNA.  Variants that are present in the exons, even when they are 

positioned far from the 5’ and 3’ ends are detectable.  We tested the capability of adaptive 

sampling for targeting cDNAs from single cell libraries derived from a cancer cell line and 

identifying mutations or CRISPR edits.  Next, we sequenced a set of different cancers including 

metastatic and lymphoid malignancies.  Previously, these patients’ tumors underwent diagnostic 

cancer gene sequencing – the clinical reports of coding cancer mutation were available for each 

patient.  From these samples and using the same scRNA-seq library, we integrated the single 
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cell RNA-seq short and long read data.  The long-read data was used to identify the prior 

reported cancer mutations and induced CRISPR edits among single cells.  We determined if 

previously reported cancer mutations could be mapped among the single cells from different 

metastatic sites.  Overall, our study demonstrated the feasibility of single cell identification of 

mutations with adaptive long-read sequencing cDNAs. 

 

RESULTS 

Overview of the approach 

We determined if one could apply nanopore adaptive sampling to single cell detection of 

somatic genetic variants, mutations and rearrangements (Figure 1A).  For this study we used a 

cancer cell line and several tumors that included matched metastases from the same patient.  

These tumors had prior targeted sequencing results from diagnostic testing.  This scRNA-seq 

approach involved the following steps.  We generated single cell cDNAs (10X Genomics) from 

the sample (Methods).  A portion of the single cell cDNA undergoes library preparation for 

conventional Illumina short read sequencing – this type of sequencing requires fragmenting the 

cDNA.  We used an Oxford Nanopore sequencer for providing long reads that span the intact 

cDNA.  Adaptive sampling was used to target sequence-specific genes and their cDNAs.  The 

long reads were pre-processed, aligned and evaluated for CRISPR edits, cancer mutations and 

rearrangements among the individual cells.  Variants were identified from direct examination of 

the altered position among the sequence reads and variant calling on the long-read data 

(Methods).  To infer cell type, we integrated the single cell RNA-seq short and long read data 

based on matching the cell barcodes.  This step allowed us to assign each mutation to specific 

cell types which is an important step analyzing primary tumor samples.  These coding mutations 

matched those which had already been identified from deep targeted sequencing. 
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Single cell mutation mapping of a cancer cell line 

For the initial experiments, we analyzed the Jurkat cell line which is derived from a T cell 

leukemia.  This cell line has undergone prior genome sequencing with reported mutations [11].  

The cells were grown without any CRISPR genome modifications and then underwent single 

cell cDNA preparation and cDNA amplification.  As noted, the same library was split into two 

aliquots and used for both short and long read sequencing. 

 

We used the results from a short read scRNA-seq analysis of the Jurkat cells to identify 

individual cells and their gene expression levels (Methods).  Based on this analysis there was a 

total of 5,881 cells with an average of 38,966 reads per a cell (Supplementary Table 1).  Next, 

we evaluated the expression levels of 319 genes that have been previously reported to have 

cancer mutations (Supplementary Table 2) [11].  These genes covered a range of different 

expression levels that were corroborated from both the short and long read data 

(Supplementary Figure 1).  For example, the PTGES3L-AARSD1 had the lowest average 

expression value of 3.4e-04 while the RPS12 gene had the highest level with a value 5.57e+01. 

 

For mutation identification, we used the second aliquot of single cell cDNA for nanopore 

adaptive sampling with an Oxford MinION sequencer.  For targeting, the adaptive sampling list 

covered 319 gene targets (Supplementary Table 2).  The sequencing data was aligned, and 

the data processed.  From the long-read data, there was a total of 5,881 cells (Supplementary 

Table 1).  The total number of reads aligning to the target genes were 1.470e+06.  The 

nanopore reads had an average length of 944bp.  There was an average of 188 long reads per 

a cell representing an average of 88.2 genes per a cell.  When considering all cells, each gene 

had an average of 3,733 reads and 1,743 cell barcodes.  We compared the cell barcodes 

between the short and long read data.  Short read sequencing had 5,881 cell barcodes of which 

5,873 overlapped with the long-read data. 
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We identified the previously reported mutations (Methods).  Overall, 292 mutations among 351 

mutations were identified among the Jurkat cells, representing 83% of the gene-based 

mutations that have been previously reported.  In total, we identified 910 cells with mutations 

among 1663 cells.  As another general metric for the appearance of a mutation among the 

cDNA reads, we determined the variant allele frequency per each single cell (VAF).  This value 

reflects the ratio of reads identified with the mutation over the total number of reads in a single-

cell resolution.  The VAF varied among the different genes. For example, the C466Y mutation at 

TOP1MT gene had a mean VAF of 91%, meaning most cells had this mutation.  For this 

mutation, 78 cells had the mutation among 85 cells.  In contrast, the VAF for L142L mutation at 

ACAT2 gene was 39% (Supplementary Table 3, Supplementary Figure 2). 

 

Single cell mapping of somatic CRISPR edits in Jurkat cells 

Next, we assessed whether adaptive sampling and targeted sequencing identified de novo 

CRISPR-introduced edit mutations from single cells.  We used CRISPR-edited Jurkat cells as 

previously described that stably expressed Cas9 [6].  We transduced this Jurkat cell line with a 

multiplexed gRNA library containing 32 guide RNAs targeting 16 genes.  There were two guides 

per a gene.  We also included five control guide RNAs (Supplementary Table 4).  These 

transduced cells underwent processing to generate a single-cell cDNA library.  As part of the 

short-read analysis, we identified which gRNAs were expressed within a given individual cell 

(Methods).  This assay relies on using a primer to polymerase extend over the gRNA adjacent 

to a given cell barcode followed by sequencing in which both gRNA and cell barcode appears in 

the same read [12].  With the paired gRNA and cell barcode sequence, one determines the 

distribution of expressed gRNAs across individual cells. 
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The cells expressing a given gRNA were identified and matched with the long-read adaptive 

sequencing of single cell cDNAs.  With the targeted long reads, we identified the CRISPR-

induced edits among the target gene cDNAs among the single cells which also expressed the 

specific gRNA (Figures 1B-D and Supplementary Figure 3).  The average number of target 

long reads matching the gene target was 5.32 per a given cell.  As expected, CRISPR 

mutations were identified at the target gene site among the cells expressing the gRNA.  The 

average target mutation frequency from cells with the guide was 79.0% compared to 11.7% of 

control group not expressing the gRNA (P = 2.9e−07) (Figure 1D). 

 

Furthermore, we detected CRISPR-induced transcript isoform alteration at single cell resolution.  

For example, the gRNA SRSF5-2 introduced exon 4 skipping events in 14.81% cells with the 

guide RNA (Figures 1B and 1C).  Cells without guide RNA had only 0.43% of those events 

(Supplementary Figure 4).  Thus, this result confirmed that adaptive long reads were 

informative for identifying CRISPR edits. 

 

For validation, we PCR amplified the cDNA targets with long read sequencing.  We generated 

amplicons of the gene targets from the same scRNA-seq library.  These amplicons underwent 

long read sequencing [6].  We identified the matching cell barcodes between the two data sets.  

Based on comparing the adaptive versus the amplicon sequencing, all identified mutations 

overlapped, validating the adaptive results (Supplementary Figure 5). 

 

Identifying single cell mutations from tumors 

We applied this adaptive nanopore sampling to identify cancer mutations among single cells 

from tumors.  These samples originated from patient biopsies.  We analyzed matched pairs of 

tumors from three patients with metastatic cancer present in different anatomic sites.  The first 
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and second patients had appendiceal cancer.  The third patient had metastatic follicular 

lymphoma, a B cell-derived tumor, affecting distinct nodal regions throughout the body. 

 

Every patient had their tumor tested with diagnostic cancer gene sequencing, either from a 

primary or metastatic site (Supplementary Table 2).  From the targeted sequencing of each 

patient’s cancer, we evaluated the reported coding mutations (Table 2).  The reports only 

provided nonsynonymous mutations.  Using the gene lists from cancer-associated gene panels, 

we compiled a BED file defining all individual exons and this file was uploaded to the nanopore 

sequencer workstation for adaptive sampling. 

 

Each tumor sample underwent single cell library preparation and the same single cell libraries 

were used for both short and long read sequencing (Methods).  The short-read sequencing 

provided single cell expression that revealed cell types.  The long read alignment provided 

results for which we identified the base calls at the genomic coordinates of the clinically reported 

nonsynonymous mutations.  This data was also subject to variant calling.  Subsequently, we 

matched the cell barcodes between the long and short read sequences to integrate gene 

expression, cell type and mutation status. 

 

Across the six tumor samples, we determined the number of single cells by short read 

sequencing ranged from 7,748 to 16,219 and the median number of genes per cell ranged from 

468 to 1,468 (Supplementary Table 1).  The spread in median genes per cell was attributable 

to differences in the cell types.  Lymphomas are composed of B cells which have a significantly 

higher number of genes per cell compared to epithelial cells such as those originating from 

appendiceal cancer.  This observation is consistent with what has been noted from single cell 

studies of lymphocytes and solid tissues [13, 14]. 
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We determined the number of cells by adaptive long read sequencing which had matching cell 

barcodes compared to the white-list short read data.  This ranged between 7,732 to 15,786 per 

sample (Supplementary Table 1).  The median transcripts per cell ranged from 10 to 83 and 

had average number of target genes per cell between 7.6 and 27.0 (Supplementary Table 1).  

Overall, the yield of reads was higher from the B-cell lymphoma than from the appendiceal 

epithelial tumors. 

 

Single cell mutations among appendiceal cancers 

We analyzed a set of tumors from two patients (P8605 and P8629) with appendiceal cancer.  

This tumor originates from the epithelial cells of the appendix, a vestigial organ connected to the 

right colon.  The target list covered 529 genes for P8605 and 330 genes for P8629.  These lists 

were based on combining the gene lists for the different sequencing tests.  Only coding 

mutations were reported from these tests. 

 

8605’s appendiceal cancer and metastasis 

Patient 8605 had an appendiceal carcinoma (T1) and a metastatic site (T2) located in the left 

ovary (Figure 2A).  The patient’s primary tumor site underwent diagnostic cancer sequencing.  

Based on the clinical report, the T1 tumor had five cancer nonsynonymous mutations in the 

driver genes APC, GNAS, KRAS, KMT2D and POLD1 (Table 2). 

 

The primary appendiceal cancer and its matched metastasis underwent scRNA-seq with both 

short and long reads (Figures 2B-D).  The short-read sequencing provided single cell 

transcriptome information that informed cell identity and the sequencing metrics are shown in 

Supplementary Table 1.  Based on the short read sequencing, the T1 appendiceal site had a 

total of 12,127 cells with an average of 889 genes per a cell (Figure 2C).  The T2 metastatic 

site had 14,214 cells with an average of 655 genes per a cell (Figure 2C).  With this scRNA-seq 
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data, we defined the different cell types in each sample including epithelial, stromal and immune 

cells.  The canonical genes that defined the epithelial cells included MUC2, TFF3 and EPCAM 

(Figure 2D). 

 

Using a sample list of 529 genes, we generated the single cell long-read sequence data from 

specific target cDNAs.  After alignment, we identified the long reads of the target genes which 

had matching cell barcodes among the short read data (Methods).  Cell lineages were 

determined using short-read transcriptome data.  We analyzed the adaptive long read data for 

both tumor sites (Figures 2E and 2F, Supplementary Table 1).  For the T1 tumor, 67% of long 

reads matched a short-read barcode : 11,914 cells were identified, along with 498 of the 529 

genes targeted.  For the T2 metastasis 69% of long read barcodes matched a short read 

barcode: 14,077 cells were identified along with 496 of the 529 targeted genes.  The average 

number of target genes per cell for the T1 tumor was 11.5 and for the T2 metastasis was 12.8. 

 

As reported from the diagnostic sequencing of the primary tumor, somatic coding mutations 

were present in APC, KRAS, KMT2D, POLD1 and GNAS.  All gene mutations were identified in 

the T1 tumor.  The same was true of the T2 tumor, except for KMT2D which had no long reads.  

There were only one or two long-read transcripts for APC, KMT2D and POLD1 across both 

samples, limiting the cell type identification for these reads (Table 3). 

 

We examined the GNAS R201S mutation in the T1 and T2 tumor – for general visualization we 

combined the data from both tumors for UMAP and violin plots (Figure 2E).  We determined 

which T1 and T2 cells had the GNAS mutation (Figure 2E).  GNAS is a proto-oncogene that 

represents the Gsα subunit of heterotrimeric G-proteins and is involved in production of cyclic 

AMP-based signal transduction [15].  The GNAS R201S substitution is a prominent hotspot 

mutation that results in constitutive activation of the G-stimulatory pathway with an associated 
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increase in cAMP production.  For the T1 tumor there were 526 cells with both long and short 

reads of the GNAS gene (Table 3).  Among T1, the GNAS R201S mutation was the most 

frequently occurring among single cells.  We identified 110 epithelial cells: 76 expressed the 

GNAS mutation transcript while 34 expressed the wildtype transcript.  For cell types that were 

not classified as epithelial cells, 403 had the wildtype transcript.  Thirteen cells that were not 

classified as epithelial cells had the mutation – this was likely the result of some variability in the 

cell assignment using the short read data. 

 

Next, we evaluated the T2 metastasis for this same GNAS mutation (Figure 2E).  There were 

505 cells that had both matching long reads of GNAS R201S and matching short read 

transcriptome data (Table 3).  We identified 11 epithelial cells: five had the GNAS mutation 

transcript while the remaining six expressed the wildtype transcript.  Of the remaining 494 non-

epithelial cells, over 99% expressed the wildtype GNAS transcript. 

 

We identified which cells among the T1 and T2 tumors had the KRAS G12V mutation (Figure 

2F).  This mutation is a hotspot that enables KRAS’s activity as an oncogenic driver.  For T1, 

there were 266 cells with long reads of the KRAS transcript and matching short read 

transcriptome data (Table 3).  There were 48 cells that were classified as epithelial: 42 

expressed the transcript containing the mutation while 6 expressed the wildtype transcript.  

Other than epithelial cells, T1 had a total of 218 other cells with the KRAS long reads.  Two of 

these cells had the KRAS mutations – this may be the result of misclassification.  For T2, the 

KRAS G12V mutation had a similar distribution with a total of 205 cells.  Two cells had this 

mutation.  The remaining cells all had the wildtype KRAS transcript.  As noted previously, 

presence of the mutation suggest that these two cells were epithelial in origin. 
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There was no evidence of mutation-related nonsense mediated decay in either GNAS R201S or 

KRAS G12V epithelial cell transcripts in T1 or T2 (Figures 2E, 2F) .  Transcripts harboring the 

GNAS or KRAS mutations had stable gene expression compared to their respective wild type 

transcripts. 

 

For the T1 tumor, the KMT2D V205I and POLD1 V455M mutations separately mapped to only 

two cells, and the APC A1385V mutation to one cell.  In examining the single cell short read 

data for the T1 tumor, the gene expression levels of KMT2D, POLD1 and APC were generally 

low with transcript counts between 0.01 and 0.04 per cell (Supplementary Figure 6).  This low 

coverage accounts for the reduced number of cells with mutations. 

 

For additional verification of the mutations, we used the Longshot program to call variants from 

the long read data and confirmed the presence of these mutations (Supplementary Table 6, 

Methods).  This program was developed for nanopore long read sequencing [16].  The KRAS 

and GNAS mutations were called for T1, and no variants calls were made for APC, KMT2D or 

POLD1.  For the T2 metastasis no mutations were called given the low read depth for APC, 

KMT2D and POLD1 and low variant allele frequency for KRAS and GNAS (Table 3). 

 

8629’s appendiceal metastasis 

For patient 8629, we had biopsies from two metastatic sites (T3 and T4) of an appendiceal 

cancer (Figure 3A).  These implants were located on the omentum (T3), a tissue covering the 

abdominal viscera and a metastasis located in the small intestine (T4).  Based on the diagnostic 

tumor sequencing, the primary appendiceal tumor had four genes with substitution mutations 

including GNAS, KRAS, SMAD2 and SF3B1 (Table 2).  These samples underwent both short 

and long read scRNA-seq (Figure 3B, Supplementary Table 1).  Based on the short read 

sRNA-seq, the T3 metastatic site had a total of 10,025 cells with an average of 468 genes per a 
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cell (Figure 3C).  The T4 metastatic site had 16,219 cells with an average of 578 genes per a 

cell (Figure 3C).  With this single cell transcriptome data, we defined the different cell types in 

each sample including epithelial, stromal and immune cells (Figure 3D).  After applying 

standard QC filtering (Methods) the T3 site had 8,814 cells of which 1,760 were epithelial, 

2,142 stromal and 4,912 were immune cells.  The T4 site had 14,511 cells of which 293 were 

epithelial, 5,863 were stromal and 8,355 were immune cells. 

 

We analyzed the long read data for both sites (Supplementary Table 1).  The target list 

consisted of 330 genes (Supplementary Table 2).  For the T3 tumor, 59% of the long read 

barcodes matched a short read barcode.  This data defines a set of 9,929 cells with long read 

coverage for 312 of the 330 genes.  For the T4 site, 70% of long reads matched a short read 

barcode.  This data defined a set of 15,786 cells with long read coverage for 319 of the 330 

genes.  The average number of target genes per a cell for T1 tumor was 8.4 and the T2 

metastasis was 7.6. 

 

There were long reads covering the coding mutation sites for GNAS, KRAS, SMAD2 and SF3B 

(Table 3).  For the T3 omental metastasis the KRAS G12D mutation was the most prevalent - 

for general umap and violon plot visualization we combined the data from both T3 and T4 

(Figure 3E).  KRAS G12D is a common hotspot mutation found among colon and appendiceal 

cancers and is a critical oncogenic driver.  For the T3 metastasis, 229 cells had both matching 

long and short read transcriptome data for KRAS (Table 3).  Among this set, there were 72 

epithelial cells: 30 had the mutation transcript while 42 were wildtype.  For the other cell types, 

there were total of 157 cells with KRAS long reads.  These cells included T cells, macrophages, 

dendritic cells fibroblasts.  Among these non-epithelial cells, 152 had the wildtype transcript and 

five cells had the KRAS mutation.  Given that these cells had the KRAS mutation suggests that 

they were of epithelial origin.   The T4 metastasis had a cellular distribution of the G12D 
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mutation similar to T3 tumor albeit with fewer mutation-bearing cells (Table 3).  Again, the 

KRAS G12D mutation was the most identified among the single cells.  Eight out of the 19 

epithelial cells had the mutation (Figure 3E). 

 

For T3, the next most frequent mutation found among single cells was the SMAD2 S464* 

truncation.  This gene is an intracellular signal transducer and transcriptional modulator 

activated by TGF-beta [17].  There were 33 cells with both long reads and matching short read 

transcriptome data for SMAD2 (Table 3).  Among the T3 epithelial cells, 17 out of 19 cells had 

long reads mutation transcript.  For the non-epithelial cells, there were total of 14 cells, all 

having the SMAD4 wildtype transcript.  For T2, there were only two epithelial cells, and both had 

the SMAD2 S464* mutation.  Conversely, the 31 non-epithelial cells had a wildtype SMAD2 

transcript. 

 

Finally, for T3 we identified 21 cells with SF3B1 and 322 cells with GNAS (Figure 3F).  None of 

these cells had the SF3B1 K700E or GNAS R844C mutations, either among the epithelial cell 

types or others.  However, we did identify a GNAS R844H mutation among the T3 cells: this 

mutation was present among 59 epithelial cells and 8 non-epithelial cells (Figure 3F).  This 

finding was notable because it indicated that single cell analysis had a slightly different result 

about the nature of the mutation – same codon but a different substitution.  The difference was 

likely related to a miscall from the original targeted sequencing report. 

 

The T4 metastasis had a cellular distribution of mutations like the T3 tumor albeit with fewer 

mutation-bearing cells (Table 3).  For GNAS, 348 cells had the transcript but only one cell had 

the R844C mutation and is likely to be a sequencing error.  Consistent with T3 results, we 

instead identified a GNAS R844H mutation which was present among 11 epithelial cells and 8 
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non-epithelial cells (Figure 3F).  Nine cells were identified with the SF3B1 transcript, but none 

had the K700E mutation. 

 

There was no evidence of mutation-related nonsense mediated decay in either the GNAS 

R844H or KRAS G12D epithelial cell transcripts in T3 or T4.  Transcripts harboring the GNAS or 

KRAS mutations had stable gene expression compared to their respective wild type transcripts 

(Figure 3E, 3F). 

 

We applied the Longshot variant caller (Methods) to identify variants (Supplementary Table 

6).  For the T3 metastasis, the KRAS G12D mutation was not identified but the SMAD2 S464* 

truncation was called.  Of note, Longshot did not identify the GNAS R844C but instead identified 

a GNAS R844H mutation, confirming what we noted on evaluation of the mutations in reads 

among the single cells.  This discrepancy in the mutation report likely was an issue with the 

original variant calling from the first targeted sequencing of the patient’s original tumor.  For the 

T4 metastasis, the mutations were not detected by Longshot, indicating that there were too few 

cells and read for Long shot to identify the mutation.  As already noted, the Longshot caller is 

not optimized for mutations present at low allelic fractions. 

 

Single cell mutations and a rearrangement from metastatic B cell lymphoma 

For Patient 6408, we analyzed follicular lymphoma samples from two distinct nodal tumor sites 

(T5 and T6).  This type of lymphoma is derived from germinal center B-cells and affects the 

lymphatic system, commonly enlarging the affected lymph nodes.  The T5 tumor was obtained 

from a nodal tumor site in the right groin region and T6 from a nodal tumor site in the right 

cervical region (Figure 4A).  The diagnostic sequencing was conducted on a distinct, third 

lymphoma site from the right axillary lymph node.  Coding mutations were reported in five genes 
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that included BCL2, CREBBP, DNMT3A, EP300 and NF1 (Table 2).  All genes have somatic 

mutations or rearrangements in follicular lymphoma [18]. 

 

For this analysis, the two lymphoma sites underwent both adaptive long and short read scRNA-

seq data  (Figure 4A-B, Supplementary Table 1).  Based on the short read sequencing, the T5 

site had a total of 7,748 cells with an average of 1,468 genes per cell  (Figure 4C).  The T6 site 

had 11,865 cells with an average of 1,438 genes per cell  (Figure 4C).  Tumor B cells were 

identified by variable expression of the immunoglobulin chain as we have previously published 

[13].  These tumor B cells clustered separately from the macrophages, natural killer and other T 

cells (Figure 4D). 

 

For adaptive sampling of the lymphomas, the target list consisted of 161 genes involved in 

blood-based malignancies (Supplementary Table 2).  We analyzed the adaptive long read data 

for both sites (Supplementary Table 1).  After matching the cell barcodes between the long 

and short read data, the T5 tumor had 7,732 cells while the T6 tumor had 11,835 cells.  Among 

the 161 genes from adaptive sampling, we identified 154 and 155 genes for T5 and T6 

respectively.  The average number of target genes per a cell for T5 right inguinal lymph node 

was 27 and the T6 right cervical node was 22.  Mutations in BCL2, CREBBP, DNMT3A, EP300 

and NF1 were present among single cells of these tumors with an average of one read with a 

mutation per a cell (Figure 4E,4F).  The mutation distribution between the two sites was similar: 

this means that the relative number of tumor cells with a mutation in each sample were similar 

across the different genes. 

 

Mutations in BCL2 were the most prevalent among single cells across both tumor sites (Table 3 

and Figure 4E).  BCL2 inhibits apoptosis and its overexpression prevents cancer cell death 

[18].  BCL2 is typically overexpressed in follicular lymphoma due to a hallmark t(14;18)(q32;q21) 
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IGH/BCL2 translocation involving the BCL2 gene on chromosome 18 translocated to the 

enhancer sequences of the immunoglobulin heavy chain gene (IGH) promoter region on 

chromosome 14 [18].  In the presence of this translocation, BCL2 is a target of somatic 

hypermutation.  This high mutation rate is a result of activation-induced cytidine deaminase 

activity which alters cytosine in DNA.  BCL2 mutations in T5 and T6 were clustered in a hotspot 

and were all phased, meaning they were ordered tandemly on the same molecule, representing 

a somatic mutation haplotype.  This clustering of BCL2 mutations was reported from the 

targeted sequencing of the third tumor site.  Our adaptive sampling results confirmed this finding 

for four of the five BCL2 mutations, with between 87% and 94% of cells harboring each of the 

four mutations.  The fifth BCL2 mutation was observed in only one of 844 cells spanning that 

genomic location. 

 

In the T5 tumor, the next most frequent mutation was CREBBP Y1482H (Table 3 and Figure 

4F).  This transcript was observed among a total of 112 cells.  The mutation was found among 

37 of the 96 tumor B cells and in one of the other 16 cells in the TME.  The EP300 S958G, 

DNMT3A E30A and NF1 I2681V mutations were found at between 31% and 53% frequency 

among the tumor B cells (Table 3).  As noted, the T6 metastasis had a mutation pattern like T5 

tumor albeit with fewer cells and in general a similar or slightly lower percentage of mutation-

bearing cells (Table 3). 

 

There was no evidence of mutation-related nonsense-mediated decay in CREBBP Y1482H B-

cell transcripts in T5 or T6.  Transcripts harboring the CREBBP mutation had stable gene 

expression compared to the wildtype transcript (Figure 4E).  BCL2 gene expression in tumor B-

cells was moderately higher in transcripts harboring the S116F mutation compared to the 

wildtype transcript, with p-value 0.011 using Welch two sample t-test (Figure 4F). 
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As an additional verification, we used Longshot to identify mutations from the long read data.  

Four of the five BCL2 mutations were called in the T5 lesion, as well as the mutations in 

DNMT3A, CREBBP, NF1 and EP300.  Read depth at the fifth BCL2 mutation was high as with 

the other four mutations.  However, there was no mutation present at this position.  In the region 

between the first and fourth BCL2 mutation three other variants were called by Longshot and 

supported by visual inspection of the reads (Figure 5A).  This result is consistent with a somatic 

hypermutation event in BCL2.  The positive and negative mutation calls for T6 were identical to 

T5: four of the five BCL2 mutations were called, plus the mutations in in DNMT3A, CREBBP, 

NF1 and EP300 (Table 3).  In contrast however to T5, only two of the three additional BCL2 

variants were found.  The variant at chr18:63318573 which was heterozygous in T5, did not 

appear in T6. 

 

Finally, we used the cuteSV program to call structural variants from T5 and T6 [19].  An 

IGH/BCL2 rearrangement was identified in both the T5 and T6 tumors (Figure 5B).  The 

breakpoints were in IGH-D2 and approximately 5kb downstream from BCL2 3’ UTR.  We 

determined that multiple long reads supported the rearrangement.  This result represents the 

first demonstration where single cell sequencing reveals the presence of a rearrangement 

chimeric transcript. 

 

DISCUSSION 

This proof-of-concept study demonstrates a new approach for single cell identification of cancer 

mutations .  This method integrates nanopore adaptive sequencing and single cell RNA-seq.  

With the adaptive sampling feature of Oxford Nanopore’s sequencer, one selects specific target 

cDNAs, derived from mRNAs, based on a list of gene coordinates.  Our largest gene list 

consisted of 529 genes.  Adaptive sampling enabled these targets to be sequenced with an 
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enriched number of reads compared to the remainder of the cDNA population.  The nanopore 

long reads cover the entire cDNA which enables one to determine if coding mutations are 

present in the mRNA sequence.  The same single cell cDNA library is also applied to 

conventional short read sequencing which provides the transcriptome features of the same 

cells.  By matching cell barcodes, the long and short read data are integrated, thus providing 

both full length mRNA sequence features and single cell gene transcriptomes.  We applied this 

targeting feature to single cell cDNA libraries generated from a cancer cell line and tumor 

biopsies.  These samples had undergone prior genome sequencing of cancer genes and had 

lists of the coding mutation that result in substitutions.  Overall, we identified these coding 

mutations among single cells from the cancers.  Likewise, one of the cancers had a 

translocation leading to a chimeric transcript.  This rearranged cDNA was present and identified 

among single cancer cells.  This results demonstrates a potentially useful approach for 

identifying gene chimeras resulting from translocations and other types of rearrangements. 

 

Targeted single cell RNA-seq has advantages related to lower cost compared to single cell 

whole transcriptomes and higher read coverage.  The adaptive sampling method in scRNA-seq 

offers these advantages and others.  Importantly, integrating this targeted long read approach 

provides a new way to increase the yield of genomic features from single cell gene expression 

studies.  For this proof-of-concept, all that was required was retaining a portion of the single cell 

cDNA library prior to the fragmentation for short read library preparation.  Another advantage 

comes from the workflow.  Since the target DNA molecules are selected for sequencing based 

on their sequence properties, there is no need for any prior enrichment steps.  In addition, cDNA 

fragmentation is not required since long read libraries are compatible with full length cDNA.  

Overall, this reduces the complexity of library preparation. 
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This approach provides a way to identify CRISPR edits and enables one to screen for CRISPR 

genotypes directly so long as they occur within coding regions.  Some CRISPR edits may lead 

to nonsense mediated decay.  This change in gene expression may also be detected by this 

method based on comparing the levels of gene expression with wildtype cells. 

 

This study identified specific issues of adaptive sampling for identifying transcript-based 

mutations with scRNA-seq.  Because the sampling depends on the intrinsic expression levels of 

a given mRNA / cDNA, transcripts with low expression will provide fewer molecules for 

sequencing.  When analyzing single cells, the transcript yield is already low.  Therefore, some 

transcripts with low expression are missed and this reduces this single cell representation.  The 

sensitivity of detecting mutations from low abundance transcripts is reduced.  One approach to 

overcome this limitation involves enriching and amplifying the target genes from a single cell 

cDNA library.  Our future work will involve integrating adaptive nanopore sampling and single 

cDNA targeting. 

 

There are many potential applications for this approach.  For example, one could identify 

specific different mutations that define the subclonal populations of a tumor.  This type of 

analysis may prove useful in the study of other diseases beyond cancer.  For example, clonal 

hematopoiesis of indeterminate potential involves hematopoietic stem cells which have 

genetically distinct subpopulations defined by the presence of somatic mutations.  This 

approach provides a way to determine which cell types account for mutations with low allelic 

fractions that were identified with bulk genomic DNA sequencing.  As we demonstrated, this 

approach can identify gene fusions and may provide a new way of screening cancers for 

rearrangements.  As we have described in our previous work, targeted sequencing of specific 

cDNAs provides detailed information about transcript isoforms which play a key role in 
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regulating cell terminal differentiation.  Thus, one could have integrated long and short read 

analysis to define the associations of alternative isoforms in specific cell types. 

 

CONCLUSION 

In this proof-of-concept study, we developed a single cell method that identifies somatic 

alterations found in coding regions of mRNAs and integrates these mutation genotypes with 

their matching cell transcriptomes. Based on nanopore sequencing and adaptive sampling of 

single cell cDNA libraries, we identified CRISPR edits, somatic mutations and gene 

rearrangement at single cell resolution.  Combining this genotype information with single cell 

gene expression allows us to infer which cells had these somatic alterations. 

 

METHODS 

Patient samples and processing 

Patients with metastatic appendiceal cancer were consented with an IRB protocol 44036 

approved by Stanford University.  The patient with FL was consented with an IRB protocol 

36750 approved by Stanford University.  Fine needle aspirate specimens from two spatially 

separated nodal tumor sites were obtained and subjected to scRNA-seq and additional targeted 

DNA sequencing was performed on separate banked formalin-fixed paraffin-embedded 

lymphoma biopsies from a third tumor site.  Excisional biopsies from tumor tissue were obtained 

from surgery and stored in RPMI medium before dissociation.  Single-cell suspensions were 

obtained from tissue fragments using enzymatic and mechanical dissociation.  Cells were 

washed twice in RPMI + 10% FBS, filtered through 70 µm (Flowmi, Bel-Art SP Scienceware, 

Wayne, NJ), followed by 30 µm (Miltenyi) or 40 µm filter (Flowmi).  Cryofrozen cells were rapidly 

thawed in a bead bath at 37 ºC followed by above washing and filtering steps.  Live cell counts 
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were obtained on a BioRad TC20 cell counter (BioRad, Hercules, CA) or a Countess II FL 

Automated Cell Counter (ThermoFisher Scientific) using 1:1 trypan blue dilution.  Cells were 

concentrated between 500-1500 live cells/µl for subsequent single cell library preparation. 

 

Cell lines and induction of CRISPR mutations 

The Jurkat cell line (ATCC TIB-152) and a Cas9-stable version of Jurkat (SL555, GeneCopoeia, 

Inc., Rockville, MD, USA) were maintained in RPMI medium supplemented with 10% FBS at 

37C under standard CO2 conditions.  We produced an oligonucleotide pool for the gRNA library 

(IDT, Coralville, Iowa, USA).  Amplified gRNAs were cloned to lentiGuide-Puro (Addgene 

plasmid #52963).  To transduce Cas9-expressing Jurkat cell for CRISPR editing, we used the 

spinoculation method.  The lentiviral supernatant and 8µg of polybrene (Sigma-Aldrich, MO, 

USA) were added to 1.0 × 105 Cas9-stable Jurkat.  The mixture was centrifuged at 800g at 32 

Celsius degree for 30 minutes.  Cell pellets were resuspended to fresh media and after 72 

hours, transduced cells were selected by puromycin (Life Technologies, CA, USA).  Additional 

details about this CRISPR edited cell line are fully described by Kim et al. [6]. 

 

To identify specific CRISPR mutations, we generated single cell full length cDNAs from 

transduced Jurkat cells as previously described [6].  One ng of single cell cDNA library was 

used to amplify transcripts with a set of primers flanking the CRISPR edit site.  KAPA HiFi 

HotStart ReadyMix (Roche, Basel, Switzerland) was used for amplification.  Extension time was 

60s.  Amplicons were pooled at equimolar concentrations.  The libraries were prepared with 

900fmol of pooled amplicon for Promethion flow cell FLO-PRO002 (Oxford Nanopore 

Technologies) using Native Barcoding Expansion and Ligation Sequencing Kit (Oxford 

Nanopore Technologies) as per the manufacturer’s protocol.  Libraries were sequenced on 

Oxford Nanopore Promethion for 72h. 
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Single cell library preparation and short read sequencing 

Sequencing libraries were prepared using Chromium NextGEM Single Cell 5' Library & Gel 

Bead Kit v1.1 or v2 (10X Genomics, Pleasanton, CA, USA) as per the manufacturer’s protocol.  

Guide RNA direct capture for Jurkat CRISPR assay has been performed as previously 

described using 6pmol of scaffold binding oligo nucleotides [6].  The cDNA and gene expression 

libraries were amplified with either 14 or 16 cycles of PCR, depending on the starting amount.  

The size distribution of gene expression libraries was confirmed via gel electrophoresis 

(ThermoFisher Scientific, Waltham, MA, USA).  The libraries were quantified using a Qubit 

fluorescent assay (Invitrogen).  Short-read sequencing was performed on Illumina sequencers 

(Illumina, San Diego, CA, USA). 

 

Nanopore long read sequencing of single-cell libraries 

We amplified the entire single-cell cDNA material using the following primer sequences: Partial 

Read 1: CTACACGACGCTCTTCCGATCT and Non-polydT: 

AAGCAGTGGTATCAACGCAGAG.  KAPA HiFi HotStart 2X ReadyMix (Roche, Basel, 

Switzerland) was used for PCR amplification with 250 nM of each primer.  Following PCR, the 

amplicons were purified using 1.5X volume equivalents of Ampure XP beads. Libraries were 

quantified with Qubit (Thermo Fisher Scientific).  The library was diluted to a total concentration 

of 600 fmol prior and loaded onto a MinION R9.4.1 flow cell and sequenced for 72 hours per the 

manufacturer’s instructions (LSK-110, Oxford Nanopore Technologies).  For the Promethion 

runs, 900fmol of pooled amplicon were loaded onto a Promethion flow cell FLO-PRO002 

(Oxford Nanopore Technologies) and sequenced for 72 hours. 

 

Each patient had one their tumor sites analyzed with three different cancer gene panels used for 

diagnostic tumor sequencing.  Among these different tests, the number of target genes ranged 
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from 130 to 529.  We merged these gene lists based on the type of test that conducted on the 

patient’s tumor.  Our samples included hematologic and solid epithelial tumors.  For each 

patient, we had a list of the reported somatic mutations.  From the merged gene lists, the exon 

locations were identified and organized into a bed file.  For adaptive sequencing, we uploaded 

this genomic bed file into the instrument control software.  Live basecalling was based on the 

‘fast’ model enabled rapid alignment and subsequent enrichment of reads that overlapped the 

target regions. 

 

Bioinformatic analysis 

Short-read processing and cell type assignment: Cellranger (10x Genomics) version 3.1.0 

‘mkfastq’ and ‘count’ commands were used with default parameters and alignment to GRCh38 

to generate matrix of unique molecular identifier (UMI) counts per gene and associated cell 

barcode.  We constructed Seurat objects from each dataset using Seurat (version 4.0.1) [20, 21] 

to apply quality control filters.  Quality controls included removing cells that expressed fewer 

than 200 genes, had greater than 30% mitochondrial genes or had UMI counts greater than 

6000 indicating potential doublets.  If a gene was detected in less than three cells it was 

removed.  We normalized data using ‘SCTransform’ and used first 20 principal components with 

a resolution of 0.8 for clustering.  We then removed computationally identified doublets from 

each dataset using DoubletFinder (version 2.0.2) [22].  The ‘pN’ value was set to default value 

of 0.25 as the proportion of artificial doublets.  The ‘pK’ value representing the PC neighborhood 

size was calculated using 20 principal components.  pK’ value representing the PC 

neighborhood size was calculated using 20 principal components.  The ‘nExP’ value was set to 

expected doublet rate according to Chromium Single Cell 3’ v2 reagents kits user guide (10X 

Genomics).  These parameters were used as input to the ‘doubletFinder_v3’ function to identify 

doublet cells. 
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For determining cell type, clusters were annotated based on canonical known genes markers.  

Among our tumor biopsies, we had appendiceal carcinomas which are epithelial in origin and 

lymphomas which are B cell derived.  For the appendiceal cancers, we identified epithelial cells 

(EPCAM, TFF3, MUC2), fibroblasts (DCN, COL1A1, LUM), endothelial cells (VWF, PLVAP, 

PECAM1), T cells (CD3D, IL7R, CD8A), NK cells (NKG7, GNLY), B or plasma cells (MS4A1, 

CD79A), mast cells (TPSAB1) and macrophages or dendritic cells lineages (CD68, CD14, 

FCGR3A, HLA-DRA). 

 

For the lymphoma samples, we included MS4A1, CD19, CD79A (B cells), CD3E, CD3D, CD2 (T 

cells), CD8A, CD8B (CD8+ T cells), CD4 (CD4+ T cells), LEF1, CCR7, NOSIP (Naive T cells), 

IL7R, SELL (Memory T cells), CD4, IL2RA, FOXP3 (T regulatory cells), GZMA, NKG7 (T 

effector cells), GNLY, NCAM1 (NKT/NK cells), and CD14, LYZ (myeloid cells).  As a cross 

reference, we validated our results with cluster markers with previously characterized gene 

expression profiles of sorted cell types that included lymphocytes.  In the case of the 

lymphomas, the classification of malignant versus non-malignant  B-cell cells was based on 

calculating the average expression of each kappa and lambda variable region gene for the 

different clusters.  The expression of a clonal light chain provided assignment for the malignant 

B cell clusters.  In contrast, the normal B cell cluster expressed heterogeneous BCR light chain 

variable genes. 

 

Adaptive long read processing: The adaptive sequencing runs from the Oxford Nanopore and 

their sequence output was filtered to include just the reads within one of the targeted regions.  

This step involved using the log file provided by the sequencer.  The log file indicates whether 

each read was ejected (‘unblock’) or accepted (‘stop_receiving’ – enriched).  The accepted 

reads, which contain full length cDNA, were bioinformatically selected using the fast5_subset 
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command from the ont_fast5_api package.  This data was iteratively processed using the 

‘super-accuracy’ basecalling mode with Guppy (v5.0.16) and was aligned to the reference 

genome GRCh38 using minimap2 (v2.22) [23]. 

 

Integration of short and long-reads from single cell cDNA: As previously described, we 

developed a method to match the short and long reads from overlapping single cells [6].  We 

compared a whitelist of cell barcodes identified in the short reads with barcode sequences 

extracted from the soft-clipped sequences in the aligned long reads.  The python pysam module 

was used to identify soft-clipped portions of aligned reads.  The next step was a machine 

learning approach utilizing a cosine-similarity function (CountVectorizer from scikit-learn python 

module, with kmer length of 8) to identify potential barcode matches within the soft-clipped 

sequences.  Using the five highest ranking cosine similarity scores per read, the edit distance 

between the long read barcode sequence and the whitelisted barcode was calculated.  Barcode 

matches with the lowest edit distance.  In cases where there was a tie, the highest cosine 

similarity score was selected for final evaluation.  If the paired barcode edit distance was less 

than 3 it was considered a successful match, otherwise the read was not considered a match to 

any of the short-read barcodes and was excluded from further integrated analysis.  From the 

resulting file, any exactly matched barcode/UMI combinations were removed as PCR 

duplicates. 

 

CRISPR genotyping analysis 

Using the long read data from targeted cDNAs, we identified the genotypes of CRISPR 

mutations from the Jurkat cell line.  After aligning each nanopore read and confirming the 

coordinates of the target, we evaluated a 2bp sliding window that was tiled across the putative 

cleavage site.  Insertions, deletions or base substitutions were identified among the long reads.  
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We performed this analysis for each gRNA target per a given cell and summarized the mutation 

frequency of the CRISPR target. 

 

Single cell analysis of cancer mutations from tumor biopsies 

We had a set of tumor samples originating from patients with metastatic cancer.  These patients 

had one of their tumor sites undergo diagnostic cancer genome sequencing.  The clinical 

sequencing reports provided a list of mutations which led to amino-acid changes, frameshifts or 

premature stops – this information was compiled for our study.  For mutations reported in 

GRCh37 coordinates, we conducted a liftover procedure to convert to GRCh38 coordinates.  

For mutations reported as amino-acid changes, we conducted an analysis with the CADD 

application to lift these mutations to the GRCh38 reference coordinates [24].  We used the 

pileup command from the python pysam module to identify the specific nanopore reads which 

had the reported mutations [25, 26].  As an additional validation of the tumor mutation calls, we 

used Longshot to call variants [16].  Longshot is designed for germline variant calling of long 

reads, so some parameters were adjusted to provide more sensitive variant calling appropriate 

for somatic mutations.  Longshot was run with variant phasing disabled, a strand bias p-value 

cutoff of 0.0001, and variant density filter set to 10:100:50 (10 variants within 100 base pairs 

with genotype quality >=50) to filter out any variants in a very dense cluster.  The cell barcode 

for each long read was identified as described in the paragraph on adaptive long read 

processing above and using this information the cells in the short-read Seurat object were 

annotated as having either reference or alternate base values.  Standard Seurat functions such 

as DimPlot and VlnPlot were then used to visualize the differences in cell type distribution and 

gene expression level, for those cells with the mutation versus the wildtype. 
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To determine if there were rearrangements, we used cuteSV [19].  The following parameters 

were applied: maximum distance to cluster reads together for insertion or deletion: 100, 

maximum basepair identity to merge breakpoints for insertion or deletion: 0.3. 

 

Transcript isoform analysis 

For each read, we used the exon coordinates for the targeted gene, to determine which exons 

were present and therefore the isoform structure [6].  Exon coordinates were based on the 

Ensembl canonical transcripts from the GENCODE version 38 GTF file [27].  To assign exons 

for a given cDNA, we required that the read had greater than 12 aligned bases from a specific 

exon.  We merged the information about the read mutation status and the isoform structure.  

This data was summarized to provide isoform counts by mutation status (reference sequence 

versus alternative allele) for each gene. 
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FIGURE LEGENDS 

Figure 1.  An adaptive sampling methods for sequencing target cDNAs from single cell RNA-

seq.  A. Overview of single cell library preparation, long and short read sequencing analysis, 

and integration of results from both modalities.  B. IGV screen shot of SRSF5 targeting sites 

from cells with guide-RNAs: B. SRSF5-1and C. SRSF5-2.  D. Boxplot showing CRISPR induced 

mutation rate for all genes targeted. 

 

Figure 2.  Single cell mutations from the T1 and T2 appendiceal cancers.  A. Location of tumor 

samples for patient 8605, and variants detected from clinical diagnostic sequencing having 

sufficient long read depth for analysis.  B. IGV screen shots for T1 alignments, covering the 

lengths of KRAS and GNAS genes.  C. UMAP clustered plot showing integration of T1 and T2 

samples.  D. UMAP clustered plot annotated with cell types, and dot plot showing expression of 

cell type markers.  E. IGV screen shot of T1 and T2 alignments showing GNAS R201S mutation 

position; UMAP plot highlighting location of cells with GNAS mutation, and violin plot showing 

relative expression of mutated and wild type GNAS epithelial cells.  F. IGV screen shot of T1 

and T2 alignments showing KRAS G12V mutation position; UMAP plot highlighting location of 

cells with KRAS mutation, and violin plot showing relative expression of mutated and wild type 

KRAS epithelial cells.   

 

Figure 3.  Single cell mutations from the T3 and T4 appendiceal cancers.  A. Location of tumor 

samples for patient 8629, and variants detected from clinical diagnostic sequencing having 

sufficient long read depth for analysis. B. IGV screen shots for T3 alignments, covering the 

length of KRAS and GNAS genes. C.  UMAP clustered plot showing integration with T3 and T4 

samples.  D. UMAP clustered plot annotated with cell types, and dot plot showing expression of 

cell type markers.  E. IGV screen shot of T3 and T4 alignments showing KRAS G12V mutation 
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position; UMAP plot highlighting location of cells with KRAS mutation, and violin plot showing 

relative expression of mutated and wild type KRAS epithelial cells.  F. IGV screen shot of T3 

and T4 alignments showing GNAS R844C and R844H mutation positions; UMAP plot 

highlighting location of cells with GNAS R844H mutation, and violin plot showing relative 

expression of mutated and wild type GNAS R844H epithelial cells. 

 

Figure 4.  Single cell mutations from the T5 and T6 B cell lymphoma.  A. Location of tumor 

samples for patient 6408 and location of biopsy taken for clinical diagnostic sequencing, plus 

mutations detected from targeted sequencing having sufficient long read depth for analysis. B. 

IGV screen shots for T5 alignments, covering the length of CREBBP and BCL2 genes. C. 

UMAP clustered plot showing integration of T5 and T6 samples. D.  UMAP clustered plot 

annotated with cell types, and dot plot showing expression of cell type markers.  E. IGV screen 

shot of T5 and T6 alignments showing BCL2 mutation positions; UMAP plot highlighting location 

of cells with BCL2 S116F mutation, and violin plot showing relative expression of mutated and 

wild type BCL2 S116F B cells, with * indicating significant difference in expression (adjusted p-

value < 0.05).  F. IGV screen shot of T5 and T6 alignments showing CREBBP Y1482H mutation 

position; UMAP plot highlighting location of cells with CREBBP mutation, and violin plot showing 

relative expression of mutated and wild type CREBBP B cells. 

 

Figure 5.  A. IGV screen shots of T5 and T6 lymphomas and locations of BCL2 variants called 

by Longshot.  Coding mutations are labeled in grey and additional variants detected by 

Longshot labeled in blue. B. Schematic of translocation detected by cuteSV.  An IGV screen 

shot showing primary alignments to IGH-D2 on chromosome 14 with soft-clipped sequence to 

the right, plus secondary alignments of the same reads to a region downstream of BCL2 3’UTR 

on chromosome 18. 
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Table 1.  Cancer samples used for single cell adaptive sequencing. 

Source ID 
or cell 

line 
Tumor 

ID Tumor type 
Tumor site or 
experimental 

condition 

Mutation and 
somatic 
variant 

discovery 

Number of 
coding 

substitution 
mutations or 

CRISPR targets 

Jurkat 

C1 
T cell 

leukemia 

Cell line Exome 
sequencing 352 

C2 Cell line transduced 
with CRISPR 

Amplicon 
sequencing 16 (targets) 

8605 

T1 
Appendiceal 
carcinoma 

Primary appendix 
tumor 

Cancer 
sequencing 

panel 
5 

T2 Metastasis in the 
left ovary 

Cancer 
sequencing 

panel 
5 

8629 

T3 
Appendiceal 
carcinoma 

Metastasis in the  
omentum 

Cancer 
sequencing 

panel 
4 

T4 Metastasis in the 
small intestine 

Cancer 
sequencing 

panel 
4 

6408 

T5 
B cell 

lymphoma 

Metastasis in the 
right inguinal lymph 

node 

Cancer 
sequencing 

panel 
9 

T6 
Metastasis in the 

right cervical lymph 
node 

Cancer 
sequencing 

panel 
9 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.22.517284doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.22.517284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

Table 2.  Substitution cancer mutations. 

ID Tumor 
Type Sample Gene Coordinates Mutation AA 

change 

8605 Appendix 
carcinoma T1 

APC chr5:112839667 C>T A1358V 

GNAS chr20:58909365 C>A R844S 

KMT2D chr12:49031792 C>T V4305I 

KRAS chr12:25245350 C>A G12V 

POLD1 chr19:50406302 G>A V455M 

8629 Appendix 
carcinoma T3,T4 

GNAS chr20:58909365 C>T R844C 

KRAS chr12:25245350 C>T G12D 

SF3B1 chr2:197402110 T>C K700E 

SMAD2 chr18:47841840 G>C|T S464* 

6408 Follicular 
Lymphoma T7* 

BCL2 chr18:63318582 C>T E29K 

BCL2 chr18:63318653 C>A G5V 

BCL2 chr18:63318494 T>C H58R 

BCL2 chr18:63318411 G>A L86F 

BCL2 chr18:63318320 G>A S116F 

CREBBP chr16:3736766 A>G Y1482H 

DNMT3A chr2:25300227 T>G E30A 

EP300 chr22:41151887 A>G S958G 

NF1 chr17:31358550 A>G I2681V 

*Targeted cancer sequencing done on right axillary node (not T5 or T6) 
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Table 3.  Single cell identification of cancer mutations. 

        Wildtype cDNA Mutation cDNA       Wildtype cDNA Mutation cDNA   

Gene Amino acid 
change 

Tumor 
ID 

Total 
cells 

Epithelial 
cells 

Other 
cell 

types 
Epithelial 

cells 
Other 
cell 

types 
% 

mut 
Tumor 

ID 
Total 
cells 

Epithelial 
cells 

Other 
cell 

types 
Epithelial 

cells 
Other 
cell 

types 
% 

mut 

APC A1358V 

T1 

2 0 1 0 1 50% 

T2 

1 0 0 0 1 100% 

KRAS G12V 266 6 216 42 2 17% 205 1 202 0 2 1% 

KMT2D V4305I 1 0 0 1 0 100% 0           

POLD1 V455M 2 0 0 0 2 100% 2 0 0 0 2 100% 

GNAS R201S 526 34 403 76 13 17% 505 6 491 5 3 2% 

                                

SF3B1 K700E 

T3 

21 6 15 0 0 0% 

T4 

9 0 9 0 0 0% 

KRAS G12D 196 35 131 27 3 15% 236 10 220 5 1 3% 

SMAD2 S464* 33 2 14 17 0 52% 33 0 31 2 0 6% 

GNAS R844C 322 108 214 0 0 0% 347 17 329 0 1 0% 

GNAS R844H 382 67 248 59 8 18% 429 12 398 11 8 4% 

                                

        Wildtype cDNA Mutation cDNA       Wildtype cDNA Mutation cDNA   

Gene Amino acid 
change 

Tumor 
ID 

Total 
cells B cells 

Other 
cell 

types 
B cells 

Other 
cell 

types 
% 

mut 
Tumor 

ID 
Total 
cells B cells 

Other 
cell 

types 
B cells 

Other 
cell 

types 
% 

mut 

DNMT3A E30A 

T5 

57 27 8 19 3 39% 

T6 

78 9 35 13 21 44% 

CREBBP Y1482H 112 59 15 37 1 34% 136 38 61 34 3 27% 

NF1 I2681V 29 9 2 14 4 62% 21 7 1 11 2 62% 

BCL2 S116F 884 39 8 831 6 95% 620 66 37 497 20 83% 

BCL2 L86F 852 43 7 796 6 94% 603 67 37 482 17 83% 

BCL2 H58R 756 49 6 696 5 93% 554 24 36 475 19 89% 

BCL2 E29K 809 87 7 711 4 88% 574 41 35 479 19 87% 

BCL2 G5V 857 844 12 1 0 0% 604 544 59 1 0 0% 

EP300 S958G 58 37 3 14 4 31% 40 9 10 9 12 53% 
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ADDITIONAL FILES 

Additional file 1: Supplementary Figures 

Fig S1.  Jurkat wild-type long-read and short-read gene expression. 

Fig S2. IGV screenshot of genetic mutations in Jurkat cell-lines. 

Fig S3. Single-cell level quantification of CRISPR induced indel per each guide-RNA. 

Fig S4. Single-cell level quantification of CRISPR induced exon skipping. 

Fig S5. Comparison of single-cell level quantification of CRISPR induced indel between 

amplicon vs adaptive sequencing. 

Fig S6. Comparison of long-read and short-read gene expression for patient tumor samples 

 

Additional file 2: Supplementary Tables 

Table S1.  Sequencing metrics. 

Table S2.  List of target genes for nanopore adaptive sequencing. 

Table S3.  Jurkat mutations. 

Table S4.  Guide RNA sequences. 

Table S5.  CRISPR primer list. 

Table S6.  Longshot variant calls proximal to clinical diagnostic mutations. 
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