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Abstract 31 

Elucidating biodiversity patterns and their background processes is critical in biodiversity 32 

science. Dissimilarity, which is calculated based on multivariate biological quantities, is a 33 

major component of biodiversity. As the availability of spatial and temporal biodiversity 34 

information increases, the scope of dissimilarity studies has been expanded to cover various 35 

levels and types of spatio-temporal biodiversity facets (e.g. gene, community, and ecosystem 36 

function), and diverse pairwise dissimilarity indices have been developed.  However, further 37 

development of the dissimilarity concept is required in comparative studies on spatio-38 

temporal structures of biodiversity compositional patterns, such as those exploring 39 

commonalities of biogeographical boundaries among taxa, compared to the conventional 40 

ones to consider higher dimensions of dissimilarity: dissimilarity of dissimilarity structures. 41 

This study proposes a novel and general concept, high-order dissimilarity (HOD), for 42 

quantitatively evaluating the dissimilarities of spatial or temporal dissimilarity structures 43 

among different datasets, proposes specific implementation of HOD as operational indices, 44 

and illustrates potential resolution of scientific and practical questions by means of HOD. 45 

Our conceptual framework on HOD extends the existing framework of biodiversity science, 46 

and is versatile, with many potential applications in the acquisition of more valuable 47 

information from ever-increasing biodiversity data. 48 

 49 

Keywords:  50 

autocorrelation, beta diversity, dissimilarity matrix, genetic differentiation, multivariate 51 

analysis 52 
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Introduction 54 

Nature’s patterns are ubiquitous regardless of the level of biological organisation, and the 55 

elucidation of their determinants has been a long-standing and fundamental issue in 56 

biodiversity science. Dissimilarity is a key element of such patterns, and has been studied in 57 

terms of spatial and temporal differences and changes in various biological entities, mostly at 58 

the same level of biological organisation (Anderson et al. 2011). This encompasses 59 

differences and changes in genetic alleles, species composition, interaction networks, and 60 

ecosystem functions (Whittaker 1960, 1972; Raymond and Rousset 1995; Miki et al. 2018; 61 

Mori et al. 2015; Poisot et al. 2012). The scope of dissimilarity is continuously expanding, 62 

covering various levels and types of biodiversity facets, which has stimulated the 63 

development of conceptual and analytical frameworks for the analysis of the determinants of 64 

dissimilarity patterns using various dissimilarity indices (Koleff et al. 2003; Lozupone and 65 

Knight 2005; Baselga 2010; Rocchini et al. 2018; Mammola and Cardoso 2020). Notably, 66 

despite the varieties, all these indices have a common form in that one dissimilarity value is 67 

calculated from two vectors of multivariate biological quantities (i.e. pairwise dissimilarity 68 

indices), and the calculation of dissimilarity values for all pairs of vectors yields a 69 

dissimilarity matrix (Anderson et al. 2011).  70 

Some of the spatio-temporal structures of biodiversity composition patterns, 71 

however, are beyond the scope of pairwise dissimilarity and identifying, quantifying, and 72 

understanding them necessitates higher-order considerations. In a spatial context, higher-73 

order considerations are useful for the analysis of categorically different dissimilarity 74 

matrices, such as among assemblages of different taxonomic groups and among species (i.e. 75 

comparative biogeography and phylogeography). For example, biogeographical researchers 76 

have attempted to identify common biogeographical borders among taxa (Wallace 1894; Holt 77 

et al. 2013; Whittaker et al. 2013; Komaki 2021); similarities or dissimilarities in spatial 78 

composition dissimilarities among multiple taxa need to be evaluated. In the temporal context, 79 

higher-order consideration would provide a framework for quantitatively evaluating 80 

dissimilarity in compositional changes (i.e. temporal asynchrony of compositional changes), 81 

such as among sites and different trophic groups. For example, temporal changes in 82 
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community composition (i.e. temporal beta diversity: Legendre 2019; Nakadai 2022) have 83 

recently been expanded to multiple sites at large spatial scales (Magurran et al. 2019; 84 

Nakadai 2020; Gotelli et al. 2022), thus necessitating quantitative evaluation of inter-site 85 

dissimilarity between temporal dynamics of community composition measured using 86 

pairwise comparison. Furthermore, loss and biotic homogenisation in species composition 87 

and intraspecific haplotypes have been studied in-depth since the identification of human-88 

induced impacts on biodiversity within the context of conservation (Olden 2006; Valtonen et 89 

al. 2017). Moreover, quantifying the temporal change of spatial dissimilarity structure from a 90 

baseline at a time point is essential to assessing the impacts. Despite the apparent importance 91 

and scientific need for higher-order consideration in dissimilarities, general concepts and 92 

formal statistical methods for quantitative comparisons across conventional pairwise 93 

dissimilarities have not been fully developed.  94 

To address this limitation, we introduce a general framework for considering 95 

dissimilarities at a higher order (hereafter referred to as higher-order dissimilarity; HOD) 96 

than that of conventional pairwise dissimilarities. HOD is a natural extension of the pairwise 97 

dissimilarity indices and considers differences between dissimilarity matrices. In addition, it 98 

can be a novel building block in the studies of the dissimilarities of spatio-temporal structures 99 

of biodiversity compositional patterns. First, in the present study, we formally define the 100 

novel and general concept, HOD, to quantitatively evaluate dissimilarities of spatial or 101 

temporal dissimilarity structures among different datasets (Fig. 1a). Second, we designed the 102 

concept of HOD and proposed its implementation as a general statistical method. Third, we 103 

demonstrated the advantages of the HOD concept by applying it to actual patterns, such as 104 

long-term and/or large-spatial hypothetical monitoring datasets. Finally, we discuss the 105 

potential impacts of the concept of “higher-order dissimilarity” and the developed analytical 106 

framework on a wide range of research fields, including understanding complex spatio-107 

temporal structures in biodiversity and future methodological challenges.  108 

 109 

Higher-order dissimilarity 110 
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In biodiversity science, one dissimilarity value is generally calculated from two vectors of 111 

multivariate biological quantities (e.g. community composition or allele frequency). 112 

Specifically, a community dissimilarity index (e.g. Bray-Curtis dissimilarity; Odum 1950) 113 

and a genetic distance index (e.g. Fst; Wright 1969) were calculated based on vectors of 114 

species abundance in two target communities and vectors of genetic allele frequency in two 115 

target populations, respectively. In addition, multiple vectors are summarised into a matrix 116 

called a site-species (or time-species) matrix (e.g. compositional vectors for sites or time 117 

points). The calculation of dissimilarity values for all pairs of vectors yields a dissimilarity 118 

matrix, which is a conventional pairwise dissimilarity; we call this first-order dissimilarity 119 

(Fig. 1a). Here, we extend the first-order dissimilarity to formally define HOD as 120 

dissimilarities of spatial or temporal dissimilarity structures (Fig. 1a). We also define ‘order’ 121 

as nested times for calculating dissimilarity, e.g. conventional pairwise dissimilarity is the 122 

first order; and dissimilarity of dissimilarity matrices the second order. By definition, the 123 

concept can be extended to a higher order where appropriate, such as to the third order (i.e. 124 

dissimilarity of second-order dissimilarity matrices).  125 

The concept of HOD is a generalisation of the traditional analytical approach to 126 

identifying boundaries and their commonalities in the context of biogeography. In addition, 127 

HOD targets the spatial structure, which has been the primary subject of biogeography, and 128 

temporal structure. Specifically, to spatially and temporally distinguish HODs, we use the 129 

terms ‘spatial HOD’ and ‘temporal HOD’ (Fig. 1b). Given the recent rapid growth of spatio-130 

temporal monitoring data, HODs regarding temporal variation in spatial structure (i.e. 131 

temporal change in spatial HOD, Fig. 1b) or spatial variation in temporal structure (i.e. 132 

spatial change in temporal HOD, Fig. 1b) will be applicable in future analyses. To elucidate 133 

the concept, the subsequent sections mainly focus on second-order dissimilarities, which are 134 

similar to spatial and temporal HODs. 135 

 136 

Implementation of the higher-order dissimilarity 137 

When sampling points comprising two biodiversity datasets are obtained at the same spatial 138 

or temporal location and correspond precisely one-to-one, their dissimilarity matrix elements 139 
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also correspond one-to-one. However, this is not always true. For example, when comparing 140 

two phylogeographic patterns, the sample points of each species are usually in different 141 

locations. In such a case, the elements of dissimilarity matrices do not correspond one-to-one, 142 

and temporal or spatial proximity information is required for comparison. To accommodate 143 

the biodiversity dataset with different sampling designs, we classified the calculation 144 

methods of HOD with and without spatial or temporal proximity information as types 1 and 2 145 

of the HOD indices, respectively. Type 1 HOD indices were only adopted for exhaustive 146 

datasets; therefore, pairs of datasets were collected at identical sampling points. Unlike type 1 147 

indices, type 2 HOD was applicable to an ‘irregular dataset’ (i.e. a dataset where the two 148 

compositional vectors to be compared were observed at different points spatially and 149 

temporally, and did not correspond on a one-to-one basis). The most basic calculation of the 150 

HOD index is determining the average value of the differences between the dissimilarity 151 

matrices of the same pairs of sites or time points (mean absolute differences; Fig. 2), which is 152 

a type 1 index. Technically, the HOD index can be calculated as the commonly used Mantel 153 

correlation coefficient (Mantel correlation coefficient r; Fig. 2) calculated from two spatial or 154 

temporal dissimilarity matrices as a type 1 index. While these two indices are technically 155 

conventional methods, they are often impractical for calculating the dissimilarity of 156 

dissimilarity structures owing to the complexity of the comprehensive collection of data from 157 

all sampling points, as we assume for conceptualisation of the present study. Particularly, in 158 

our comparison of the temporal HOD using a long-term monitoring dataset, we could not use 159 

the two conventional indices if some places of the monitoring sites changed during the period 160 

because perfectly matched datasets were assumed in the calculation of their dissimilarity. In 161 

the case of spatial HOD, genetic samples of two species for comparison are often taken at 162 

different sites, and we cannot apply the two indices in this case. This can be addressed using 163 

spatial or temporal information. 164 

Type 2 HOD indices are newly introduced analytical concepts in the present study, and are 165 

calculated using two distance matrices of dissimilarity with spatial or temporal information. 166 

Here, we introduce two HOD indices of type 2 based on bivariate Moran’s I and Geary’C 167 
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indices (Eckardt and Mateu 2021). Our concept of HOD is general and is thus capable of any 168 

metrics of first-order dissimilarity other than those employed here.  169 

In the following section, we introduce a new calculation method that enables the 170 

quantification of HOD by applying the indices of spatial cross-correlation developed in 171 

previous studies to the distance space rather than the actual space. First, we define the spatial 172 

and temporal distance between two pairs of sampling points that correspond to elements of 173 

two dissimilarity matrices to expand the indices of spatial statistics to calculate the HOD. 174 

Considering a dissimilarity value from each of two dissimilarity matrices, Xij and X′kl, and 175 

then the relevant two pairs of sampling points are at hand which we denote (si, sj) and (s′k, s′l). 176 

Between (si, sj) and (s′k, s′l), there are two exhaustive sets of point-wise distances: (dik = |si - 177 

s′k|, djl = |sj - s′l|) and (dil = |si - s′l|, djk = |sj - s′k|) (Fig. 2). From these sets of distances, the 178 

distance between the pairs of sampling points is expressed as follows: 179 

Δij,kl = min((dik
2 + djl

2)1/2, (dil
2 + djk

2)1/2). 180 

 181 

For the special case where si = s′k and sj = s′l, this distance metric is equal to 0. Another 182 

special case is si = sj and s′k = s′l, where the distance becomes √2 × (Euclidean distance 183 

between si and s′k). With this generalisation of distance for pairs of sampling points, we can 184 

calculate the weight matrix for dissimilarity values and apply the conventional measures of 185 

spatial cross-correlation to type 2 HOD. To simplify the calculation of the HOD, we 186 

converted dissimilarity matrices into vectors x = vec(X) and x′ = vec(X′), and denoted their 187 

sizes as n and n′, respectively. Correspondingly, the distance between the pair of sampling 188 

points Δ was reshaped to a matrix with n rows and n′ columns. 189 

Bivariate Moran’s I (Wartenberg 1985; Lee 2001; Eckardt and Mateu 2021) is a popular 190 

measure of spatial cross-correlation. The specification for dissimilarity values is expressed as 191 

follows: 192 

� �
���

∑ ∑ ��∆�����
�

∑ ∑ ��∆����	�
����	��
������

∑ �	�
����� ∑ �	��
������

 , (1) 193 

where w(Δij) is an arbitrary spatial weight which is a function of Δij and xi and x′j are the ith 194 

and jth elements of x and x′, respectively. �
�
 and �

��
 are the mean values of x and x′, 195 
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respectively. Generally, w(Δij) is a decreasing or step function of Δij. If the dissimilarity 196 

values of the point pairs that are close in space (or time) show similar deviations from their 197 

means, the positive values are calculated, which indicates that the two sets of data compared 198 

have spatially and temporally similar dissimilarity structures, or vice versa. 199 

Another option for a spatial cross-correlation measure alternative to Moran’s I is bivariate 200 

Geary’s C (Eckardt and Mateu 2021): 201 

 202 

� �
����
��

�∑ ∑ ��∆�����
�

∑ ∑ ��∆����	�
	������

∑ �	�
����� ∑ �	��
������

 . (2) 203 

 204 

The definition of the parameters is the same as that in Eq. (1). The bivariate Geary’s C 205 

tends to be large when the squared deviations between two dissimilarities are large, where wij 206 

is large, and correlates negatively with Moran’s I. 207 

To test the relationships among the HOD indices, we applied these four indices to both a 208 

simple sample case and 100 simulated datasets, including 37 hexagon-grided communities 209 

(Fig. S1) using the R package, ‘mobsim’ (May et al. 2018; see Supplementary text 1 for 210 

details on simulation). The distance between adjacent hexagons was set to 1, and we applied 211 

a step function where the weights were equal to 1 for pairs of sampling points where the 212 

points in the pair were identical; or one was identical and the other adjacent (i.e. Δij = 0 or 1); 213 

the distance between adjacent hexagons was set to 0 for all other site pairs. For all pairs of the 214 

four HOD indices, we tested the relationships using Mantel tests, and found that all four 215 

indices were highly correlated with each other (Fig. S2); specifically, all absolute values of 216 

the Mantel correlation were above 0.9. 217 

To check the properties of the HOD indices, we summarised the specific values of spatial 218 

HOD for pairs of simple sample cases (Table 1). The spatial weight function for type 2 HODs 219 

was identical to that in the simulation above. Within each type of HOD index, the indices are 220 

correlated. Specifically, the correlations between mean absolute differences and mantle r, and 221 

between bivariate Moran’s I and bivariate Geary’s C are positive and negative, respectively. 222 

Conversely, the relationships between type 1 and type 2 HOD indices are inconsistent with 223 
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respect to the robustness of the spatial autocorrelation. Specifically, for pairs that contain at 224 

least one dataset with low spatial autocorrelation, the calculated values of HOD differ 225 

considerably between types 1 and 2. HOD type 2 is affected by spatial (or temporal) 226 

autocorrelation because it is weighted in spatial or temporal distances, unlike HOD type 1, 227 

which is based solely on simple dissimilarity values. 228 

All the samples presented in the present study used unscaled values (i.e. absolute values) 229 

of dissimilarity to allow for comparisons among similar datasets. When applying the HOD 230 

approach to two different types of datasets, it would be appropriate to standardise values 231 

within each dissimilarity matrix to compare dissimilarity structures. For example, when 232 

calculating the HOD of the genetic structure between different species, a standardisation 233 

process is necessary because the absolute value of the genetic distance between differentiated 234 

and non-differentiated species is different. 235 

 236 

Resolvable questions through the higher-order dissimilarity approaches 237 

Theoretically, HOD concepts are applicable to any type of dissimilarity dataset if the relative 238 

position (i.e. sites or time points) can be determined based on the absolute distance between 239 

pairs of datasets. For example, the monitoring of the genetic structure is one of the most 240 

urgent targets of biodiversity monitoring (Hoban et al. 2021; O'Brien et al. 2022) although no 241 

effective monitoring framework has been developed. In this context, the HOD provides an 242 

ideal framework for the quantitative evaluation of genetic structure temporally (Fig. 3). As 243 

frequently probable examples, we show two hypothetical scenarios of genetic structure 244 

changes: one is a stable scenario (orange line and dots) and the other is a genetically 245 

homogenised scenario (blue line and dots) in Fig. 3 (see Supplementary Text 2 for detailed 246 

information about construction for visualisation).  Fig. 3(a) indicates temporal changes in the 247 

values of the HOD type 1 index (i.e. mean absolute differences) to time 0 (starting point), and 248 

the lower Fig. 2(b) represents mapped overviews of changes in genetic structure over time, 249 

from which we calculated the HOD values. The scarcity of such spatially coordinated data on 250 

genetic structures over a wide area will soon be addressed, particularly following the 251 
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development of environmental DNA technology (Tsuji et al. 2022), and our framework will 252 

be an essential contribution to genetic diversity monitoring. 253 

To show the advantages of HOD more comprehensively, we summarised the potential 254 

applications of HOD in Table 2, including five types of datasets: community composition, 255 

genetic frequency, ecosystem function, interaction network, and phylogeny. Most of the cases 256 

are straightforward extensions of those shown in Fig. 1b. One special case is that HOD 257 

approaches are applicable to phylogenetic patterns, despite the difficulty in extracting single-258 

dimensional values; for example, the output of non-metric multidimensional scaling based on 259 

multiple traits. Evidently, HOD approaches can be applied to a wide variety of datasets in 260 

community ecology, biogeography, phylogeography, and macroevolution. This fact further 261 

emphasises the importance of developing a field of study for HOD. 262 

  The main focus has been on comparisons between dissimilarity matrices with similar 263 

properties, but this is not necessarily the case. Examples include comparisons among 264 

communities of different trophic levels and comparisons between community structures and 265 

genetic structures in community members. In traditional approaches, revealing the relative 266 

importance of the driving processes of local communities, such as abiotic vs. biotic factors 267 

and/or top-down vs. bottom-up processes as drivers of community structures, has been a 268 

major concern (Smith et al. 2010; HilleRisLambers et al. 2012). The HOD approach is a 269 

different perspective that directly evaluates the similarity of patterns without explicitly 270 

considering the driving processes. Low values of HOD among data from different trophic 271 

levels of communities and different hierarchies of genetic and community data allowed us to 272 

generate novel hypotheses with more direct evidence, as the processes shaping them are 273 

considered common among the compared targets (taxonomic differences; Fig. 1b). 274 

Conversely, high HOD values suggest that the process of constructing the overall system is 275 

complex and contingent. From an application perspective, high values of spatial HOD also 276 

suggest that achieving conservation through the establishment of protected areas, setting 277 

focal species for conservation, or implementing a single conservation policy would be 278 

difficult, as the driving processes differ among taxa and levels of biological entities.  279 

 280 
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Future challenges 281 

Despite the significance of the concept of the HOD, there are several methodological 282 

challenges. In this paper, we discussed HOD, assuming an ideal situation where the target 283 

sites (or time points) have been exhaustively examined without any missing values. However, 284 

in empirical studies, it is often unsatisfactory, and this is one of the reasons underlying the 285 

failure to devise HOD in the past. To overcome this challenge, candidate approaches are 286 

broadly divided into two categories. One is the interpolation of missing data through 287 

modelling approaches, such as generalised dissimilarity modelling and species distribution 288 

modelling. Generalised dissimilarity modelling (GDM) is an approach that specialises in 289 

dissimilarities, differences, and distances (Ferrier et al. 2007). If target dissimilarities are 290 

modelled by other variables (e.g. environment and geography) using GDM, the predicted 291 

outputs can be applied to HOD. Another approach, type 2 HOD, which is weighted by spatial 292 

or temporal distances, can theoretically consider missing values. However, further testing is 293 

required to determine how many missing values are allowed for a sufficiently accurate 294 

evaluation and what the most appropriate spatial or temporal weighting process is for each 295 

target system.  296 

In the HOD approaches proposed here, we cannot distinguish between parts of continuous 297 

patterns and truly disjunctive patterns in dissimilarities; for example, either simple distance-298 

decay patterns or patterns due to isolation by geographic barriers. Therefore, where the 299 

commonality of spatial disconnections is the main concern, combining HOD approaches with 300 

existing approaches would be more effective in the identification of disjunct barriers (e.g., 301 

Soltis et al. 2006). In temporal structures, approaches separating trend components have been 302 

used (Cowpertwait and Metcalife 2009), and potentially combined with such methods, it may 303 

be possible to evaluate continuous and disjunctive dissimilarities separately. 304 

In existing studies on dissimilarity, unique conceptual and analytical frameworks have 305 

been developed for dissimilarity datasets because of the non-independence problem between 306 

dissimilarity values which share an original value (Anderson et al. 2011). To overcome the 307 

problem of non-independence among values, statistical methods that deal with dissimilarity 308 

matrices, such as the Mantel test (Mantel 1967) and certain developed methods (Lichstein 309 
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2007, Ferrier et al. 2007, Legendre and Legendre 2012, Anderson and Walsh 2013), have 310 

been used to calculate p-values by permutation procedures. Permutation-based hypothesis 311 

testing approaches adjusted to the HOD framework need to be developed to test the statistical 312 

significance of the similarity or dissimilarity between two dissimilarity matrices, which is a 313 

critical issue for future research on HOD. 314 

Although we mainly focused on the second-order dissimilarities in the present study, the 315 

applicability of third- and higher-order dissimilarities would increase in situations where the 316 

amount and dimension of biodiversity information continues to grow. To illustrate the benefit 317 

of HOD, we showed temporal changes of genetic structure (Fig. 3). The figure shows a 318 

pattern in a single species, and thus, second-order dissimilarity (i.e. space×time). If this type 319 

of dataset is available for multiple species, the similarity and dissimilarity of temporal 320 

changes in spatial structure in population genetics can be quantitatively evaluated among 321 

species using third-order dissimilarities (i.e. space×time×species). This simple example tells 322 

us that the breadth of areas that the HOD concept can adopt is rapidly expanding, aligning 323 

with the forthcoming explosive increase in available dissimilarity information. 324 

 325 

Conclusions 326 

The rapid increase in the availability of spatial and temporal biodiversity information 327 

necessitates comparative studies on spatio-temporal structures of biodiversity compositional 328 

patterns require further development of the dissimilarity concept over conventional ones to 329 

consider higher dimensions of dissimilarity: dissimilarity of dissimilarity structures. Our 330 

study introduced the concept of higher-order dissimilarity (HOD), which can account for 331 

dissimilarities of spatial or temporal dissimilarity structures. For example, this framework can 332 

be applied to various types of broad-scale biodiversity monitoring datasets and enables the 333 

evaluation of temporal changes in the spatial HOD to a baseline. Furthermore, the concept is 334 

applicable even if the compared datasets have completely different origins (e.g. different 335 

taxonomic groups and hierarchies of biological organisation, Fig. 1b), as long as they are 336 

summarised into dissimilarity information at their own level. We mainly focused on the 337 

biodiversity dataset in the present study; the concept of HOD is applicable to all kinds of 338 
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dissimilarity matrices, not just those based on biodiversity. For example, various 339 

contemporary issues arise in the social ecological system, and this HOD will be useful in 340 

examining the relationships between different layers, such as the economy, culture, and 341 

biodiversity. Therefore, the HOD concept and related approaches pave the way for novel 342 

dimensional approaches that deal with large amounts of dissimilarity information.  343 

 344 

Data accessibility statement 345 

Simulated data and codes will be uploaded after acceptance of the manuscript to figshare. 346 
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Figure legends 449 

Figure 1 Schematic of higher-order dissimilarity (HOD). A spatial case of HOD is shown in 450 

(a). Potential analytical framework for HOD based on spatial and temporal comparisons (i.e., 451 

spatial and temporal HOD) are shown in (b). For visualization, only three compositional 452 

types are hypothesized, which correspond to three level of darkness in each colour (e.g., blue, 453 

green, and red). Specifically, we hypothesized that dissimilarities between sites (or time 454 

points) of same level of darkness were zero (i.e., identical composition), those between sites 455 

of one darker or lighter difference were 0.5, and those between the darkest and lightest sites 456 

were 1.0. The grey arrows indicate conventional dissimilarity (i.e., first-order dissimilarity) 457 

and the black arrows indicate HOD. Black star and white star among compared datasets 458 

indicate identical sites or time points, respectively.  459 

 460 

Figure 2 Schematic of specific analytical procedures for two types of higher-order 461 

dissimilarity (HOD), specifically one without spatial information and the other with the 462 

information. For visualization, only three compositional types are hypothesized, which 463 

correspond to three level of darkness in each colour (e.g., blue, green, and red). Specifically, 464 

we hypothesized that dissimilarities between sites (or time points) of same level of darkness 465 

were zero (i.e., identical composition), those between sites of one darker or lighter difference 466 

were 0.5, and those between darkest and lightest sites were 1.0. The asterisk with 1(*1) 467 

showed the specific calculation of distance between pair of sites.  468 

 469 

Figure 3 Sample application of higher-order dissimilarity (HOD) to genetic monitoring using 470 

two simulated datasets based on two types of scenarios from time 0 to time 100. In both 471 

scenarios, the stable conditions are hypothesized by time 30 (shared section in light green). 472 

After time 30, genetic structure is stable in one scenario (upper section in orange) but 473 

homogenized in the other (lower section in blue). The change of calculated type 1 of HOD 474 

index (i.e., mean absolute differences) compared to the value at time 0 is shown in (a). The 475 

genetic structure is visualized in (b), and the colours were determined using the two axes of 476 

NMDS (details see Supplementary text 2).  477 
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Table 1 Simple sample cases to show properties of HOD indices. Patterns X and Y represent pairs for calculating HODs. Mantel r (X) and (Y) indicate the 487 

spatial autocorrelation, thus correlation between spatial distances and dissimilarity values for each pattern X and Y. Four HOD indices are shown, which are 488 

mean absolute differences and mantel r (with P-value) as type 1 and bivariate Moran’s I and Geary’s C as type 2. For visualization purpose, only three 489 

compositional types are hypothesized, which correspond to three level of darkness in each colour (e.g., blue, green, and red). Specifically, we hypothesized 490 

that dissimilarities between sites (or time points) of the same level of darkness were zero (i.e., identical composition), those between sites of one darker or 491 

lighter difference were 0.5, and those between the darkest and lightest sites were 1.0.  492 

Association Pattern  Mantel (Space)  HOD type 1  HOD type 2 

 
X Y 

 
r (X) P-value r (Y) P-value 

 Absolute 
mean 

differences 

Mantel r P-value  
Bivariate 
Moran I 

Bivariate 
Geary C 

A-A 
  

 
0.0367  0.0013  0.0367  0.0013  

 
0.0000  1.0000  0.0000  

 
0.6539  0.3405  

B-B 
  

 
0.0263  0.0162  0.0263  0.0162  

 
0.0000  1.0000  0.0000  

 
0.4783  0.5107  

C-C 
  

 
-0.0173  0.1089  -0.0173  0.1089  

 
0.0000  1.0000  0.0000  

 
0.1594  0.8622  

A-B 
  

 
0.0367  0.0013  0.0263  0.0162  

 
0.3108  0.1759  0.0036  

 
0.1322  0.8594  

B-C 
  

 
0.0263  0.0162  -0.0173  0.1089  

 
0.3649  -0.0886  0.0796  

 
-0.0421  1.0473  

C-A 
  

 
-0.0173  0.1089  0.0367  0.0013  

 
0.3423  0.0301  0.5580  

 
0.0120  0.9959  
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A-A' 
  

 
0.0367  0.0013  0.0367  0.0013  

 
0.3183  0.1318  0.0183  

 
0.1345  0.8599  

B-B' 
  

 
0.0263  0.0162  0.0263  0.0162  

 
0.3453  0.0097  0.8685  

 
-0.0075  0.9964  

C-C' 
  

 
-0.0173  0.1089  -0.0173  0.1089  

 
0.3348  0.0405  0.3932  

 
0.0131  1.0097  

A-C' 
  

 
0.0367  0.0013  -0.0173  0.1089  

 
0.3288  0.0910 0.0809 

 
0.0547  0.9548  

  493 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted N
ovem

ber 24, 2022. 
; 

https://doi.org/10.1101/2022.11.22.517446
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2022.11.22.517446
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 
 

Table 2 Potential applications of higher-order dissimilarity (HOD) approach  494 

Target axis of HOD Targets of comparison Question 

(a) community composition   

Time Space 
How do temporal changes of community composition vary in space? 
Do closer sites show more similar community compositional change across time? 

Time Taxa Which taxa share similar changes of community composition in time? 

Space Time 
How does spatial composition change over time?  
When did large change of community compositional structure happen? 

Space Taxa Which taxa share similar community composition structure in space? 

(b) population genetics   

Time Space 
How does temporal genetic frequency change in space?  
Do closer sites show more similar changes in genetic frequency across time? 

Time Taxa Which taxa share similar changes of genetic frequency over time? 

Space Time How does the spatial genetic structure change over time?  
When did a large change in genetic structure occur? 

Space Taxa Which taxa share similar changes of genetic frequency in space? 

(c) ecosystem function 
  

Time Space How does temporal ecosystem function change in space?  
Do closer sites show more similar change of ecosystem function across time? 

Space Time 
How does spatial genetic structure change over time?  
When did a large change in the genetic structure occur? 

(d) interaction network   

Time Space 
How does the temporal network structure change in space?  
Do closer sites show more similar changes in network structure across time? 
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Space Time 
How does spatial network structure change in time?  
When did large change of network structure happened? 

(e) macroevolution 
  

Phylogeny Trait Which traits share similar evolutionary changes across macroevolutionary history?  

 495 

 496 
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Appendices 497 

Figure S1 Mantel correlations among absolute mean differences and mantel r as type 1 and 498 

bivariate Moran’s I and Geary’s C as type 2 (9,999 times permutation) 499 

Figure S2 Hexagon grids used in simulation 500 

 501 

Supplementary text 1 Detailed information on the simulation of community datasets and 502 

calculation of dissimilarity matrices to test the properties of HOD indices. 503 

Supplementary text 2 Detailed information on simulated genetic structure across four major 504 

islands in Japan 505 
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