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Abstract 

Spatially resolved proteomics requires a highly multiplexed imaging modality. Cyclic imaging techniques, 
which repeat staining, imaging, and signal erasure, have been adopted for this purpose. However, due to 
tissue distortion, it is challenging to obtain high fluorescent signal intensities and complete signal erasure 
in thick tissue with cyclic imaging techniques. Here, we propose an “erasureless” cyclic imaging method 
named IMPASTO. In IMPASTO, specimens are iteratively stained and imaged without signal erasure. Then, 
images from two consecutive rounds are unmixed to retrieve the images of single proteins through self-
supervised machine learning without any prior training. Using IMPASTO, we demonstrate 30-plex imaging 
from brain slices in 10 rounds, and when used in combination with spectral unmixing, in five rounds. We 
show that IMPASTO causes negligible tissue distortion and demonstrate 3D multiplexed imaging of brain 
slices. Further, we show that IMPASTO can shorten the signal removal processes of existing cyclic imaging 
techniques.  
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Introduction 

Multiplexed imaging, which enables the visualization of a large number of targets in the same specimen, 
has received considerable attention due to its potential use in precision medicine and in a deeper 
understanding of biological mechanisms1–3. Fluorescence cyclic imaging techniques are frequently used for 
such purposes4. These techniques achieve high multiplexing capability through iterative staining, imaging, 
and signal removal. Existing cyclic imaging techniques can be divided into three categories based on the 
signal removal mechanisms: photobleaching-based, chemical-inactivation-based, and antibody-stripping-
based methods. In photobleaching-based methods, the fluorophores of antibodies are bleached by directly 
illuminating the target specimens with a high intensity light5,6. In chemical-inactivation-based methods, the 
fluorophores of antibodies are deactivated by chemical treatment7–11. In contrast, antibody-stripping-based 
methods separate antigen–antibody binding through chemical treatment12–14. Several novel cyclic imaging 
methods based on these signal removal approaches have been reported 6–14, which can be used to observe 
multiple proteins in a single specimen.  

In cyclic imaging, the signal removal processes need to be carefully optimized to satisfy two seemingly 
contradictory requirements: high fluorescence signal intensities and total signal removal. In 
photobleaching-based methods, the photobleaching time must be extended to several hours or days to 
completely bleach the residual signal in deeper areas of thick tissue slices15. Previous studies on chemical-
inactivation-based techniques adopted hydrogen peroxide, but tissue damage or cell loss occurred over 
repeated cycles, especially in tissue sections7,11. The use of lithium borohydride (LiBH4) reduces such tissue 
damage10. In contrast, proteinase-based antibody-stripping techniques result in epitope loss11,16. Recently 
developed antibody-stripping techniques have mitigated this problem13,14,17. These cyclic imaging 
techniques have mostly been used to acquire two-dimensional images of cultured cells or thin tissue sections 
due to the need for further optimization of the signal removal processes for thick specimens or to the 
potential distortion of thick specimens18 (see Supplementary Figure 1 for the distortion of thick tissues 
observed in cyclic imaging). Instead, cyclic 3D imaging has been demonstrated with specialized specimen 
treatments that greatly enhance the mechanical stability of specimens, including strong glutaraldehyde 
fixation or hydrogel embedding19–22. Recently, a new class of cyclic imaging techniques, which use 
oligonucleotide-labeled antibodies, has attracted interest due to their gentle chemical processes23–25. 
However, these techniques are not compatible with commercial antibodies and require the optimization of 
antibody-oligonucleotide conjugation. Moreover, their use for heavily fixed specimens with reduced 
epitope retention is limited4. 

In this work, we propose a new cyclic imaging technique called IMPASTO (IMaging based on neural 
unmixing and PyrAmidal STaining of biOmolecules), which replaces chemical or optical signal removal 
processes with a computational unmixing algorithm. In IMPASTO, specimens are iteratively stained with 
fluorophore-conjugated antibodies and imaged. A stack of resulting images resembles a pyramid, as the 
N+1th-round image is a mixed image of the Nth-round image showing N proteins and the signals of the N+1th 
protein. (Figure 1a). A pair of images from two consecutive rounds is then unmixed using a self-supervised 
neural unmixing algorithm to acquire an image of the N+1th protein (Figure 1b; see Supplementary Figure 
2 for the process of acquiring 5-plex images using IMPASTO). We first show that IMPASTO’s neural 
unmixing algorithm, which does not require any training data other than the input image to be unmixed, 
can accurately unmix N images containing the signals of N proteins. We also show that no epitope loss or 
tissue distortion occur with IMPASTO, as specimens are treated with only a blocking buffer. Then, we 
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demonstrate 30-plex imaging of mouse brain slices in 10 staining and imaging rounds. In IMPASTO, 
fluorophores are not bleached; hence, any fluorophores can be employed. The N-color unmixing capabilities 
of the neural unmixing algorithm and the compatibility of IMPASTO with a wide range of fluorophores 
permit the use of diverse spectrally overlapping fluorophores and unmixing of their signals. Using the 
neural unmixing algorithm, we conduct unmixing within and between rounds and demonstrate 30-plex 
imaging in only 5 rounds. More importantly, IMPASTO’s ability to preserve tissue integrity enables the 
volumetric cyclic imaging of mouse brain slices. Finally, we show that IMPASTO can be combined with 
existing cyclic imaging techniques to achieve even higher multiplexing capabilities or to shorten their signal 
removal processes. 

 

Results 

General working principle of IMPASTO 
In IMPASTO, the Nth-round image contains the immunofluorescence (IF) signals of N proteins stained 
during N rounds. After staining the specimen with an antibody against the N+1th target protein, the N+1th-
round image is acquired. This N+1th-round image contains the IF signals of N+1 proteins. We then obtain 
the image of the N+1th protein by subtracting the Nth-round image from the N+1th-round image. When N is 
equal to 1, this process can be mathematically expressed as follows:  

𝐼𝐼𝐼𝐼𝐺𝐺2(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,2) − 𝛼𝛼 × 𝐼𝐼𝐼𝐼𝐺𝐺1(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1) = 𝐼𝐼𝐼𝐼𝐺𝐺(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2) 

where 𝐼𝐼𝐼𝐼𝐺𝐺2(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,2) is the second-round image showing both the first and second proteins, 
𝐼𝐼𝐼𝐼𝐺𝐺1(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1) is the first-round image showing only the first protein, 𝐼𝐼𝐼𝐼𝐺𝐺(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2) is the image of the 
second protein, and α is a constant (i.e., the value indicating how much of the previous round’s image 
should be deducted from the current-round image). If α can be accurately estimated or measured from 
separate specimens, the image of the second protein can be retrieved using the formula above. To measure 
α from separate specimens, we stained mouse brain slices with a primary antibody against lamin B1 and a 
secondary antibody bearing one of six fluorophores (CF 488A, ATTO 532, CF 568, ATTO 594, CF 633, 
and CF 660R) in the first round. After acquiring the first-round images, we incubated the specimens in a 
blocking buffer with no antibodies and acquired their second-round images from the same locations. We 
repeated this process for four rounds with the same imaging conditions and measured the fluorescence 
signal intensities. As shown in Figure 1c, the fluorescence intensities decreased as more imaging rounds 
were performed due to photobleaching. However, the fluorophores showed different intensity trends due to 
the difference in their photostability. Even for the same fluorophore, the degree of fluorescence intensity 
decrease fluctuated across the staining rounds. Such variations in intensity decrease resulted in inaccurate 
estimations of α (see Figure 1d for the plot of α for each fluorophore across staining rounds). The large 
standard deviations shown in Figure 1d indicate that α varied between experiments, even when the same 
fluorophores were imaged using the same imaging conditions. 

The accuracy of the α estimation is especially critical for imaging spatially overlapping proteins. If α larger 
than the ground-truth value is used, 𝐼𝐼𝐼𝐼𝐺𝐺1(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1)  is over-subtracted from 𝐼𝐼𝐼𝐼𝐺𝐺2(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,2) , and the 
expression level of the second protein is underestimated. If α smaller than the ground-truth value is used, 
𝐼𝐼𝐼𝐼𝐺𝐺1(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1) is under-subtracted from 𝐼𝐼𝐼𝐼𝐺𝐺2(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,2), and the expression level of the second protein 
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is overestimated. Figures 1e–h show such an example. A mouse brain slice was stained with an antibody 
against CALB2 in the first round and against CALB1 in the second round (Figure 1e). These two proteins, 
which are both calcium-binding proteins and are widely used as cell-type markers in neuroscience, are 
strongly expressed in the dentate gyrus (DG) region of the hippocampus. We simultaneously stained this 
specimen with the same antibodies bearing spectrally distinct fluorophores to acquire ground-truth images 
of CALB1 and CALB2 (Figure 1f). When we acquired the image of CALB1 using the predetermined α 
shown in Figure 1d, CALB2 was over-subtracted from CALB1, and the resulting image showed a 
significant signal loss of CALB1 in the inner molecular layer of DG (Figure 1g). However, when we 
estimated α using our neural unmixing algorithm, the CALB1 image was successfully retrieved (Figure 1h; 
see Supplementary Figure 3 for additional examples).  

Neural unmixing: A self-supervised machine learning algorithm for blind signal unmixing 
For this unmixing, we devised a self-supervised machine-learning algorithm to unmix N images containing 
the fluorescent signals of N proteins without any prior knowledge of the mixing profile (Figure 2a). In 
brief, our neural unmixing algorithm is based on a neural network for independence evaluation. 

The neural unmixing consists of three components: an unmixing layer, two sampling functions, and an 
independence evaluation network. The unmixing layer performs bias subtraction and unmixing as follows: 

X = �
1 𝜃𝜃12 𝜃𝜃13
𝜃𝜃21 1 𝜃𝜃23
𝜃𝜃31 𝜃𝜃32 1

� (𝑌𝑌 − 𝛩𝛩𝑏𝑏) 

where 𝜃𝜃𝑖𝑖𝑖𝑖s are the unmixing parameters, 𝛩𝛩𝑏𝑏 is the bias parameter, 𝐘𝐘 ∈ ℝ3×𝑚𝑚 is the three-channel input 
image with 𝑚𝑚 pixels, and 𝑿𝑿 ∈ ℝ3×𝑚𝑚 is the three-channel unmixed image with 𝑚𝑚 pixels.  

Thereafter, two sets of pixels are sampled from the output of the unmixing layer. The first set 𝒙𝒙 is sampled 
from the joint distribution (i.e., pixel values from different channels jointly sampled from the same pixel 
location, 𝒙𝒙 = {(𝑥𝑥1𝑖𝑖, 𝑥𝑥2𝑖𝑖, 𝑥𝑥3𝑖𝑖)}𝑖𝑖=1𝑛𝑛 ~(𝑃𝑃𝑋𝑋1𝑋𝑋2𝑋𝑋3(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3))𝑛𝑛 ), and the second set 𝒙𝒙′  is sampled from the 
product of the marginal distributions (i.e., pixel values from different channels sampled independently, 
𝒙𝒙′ = {(𝑥𝑥1𝑖𝑖′,𝑥𝑥2𝑖𝑖′, 𝑥𝑥3𝑖𝑖′)}𝑖𝑖=1𝑛𝑛 ~(𝑃𝑃𝑋𝑋1(𝑥𝑥1)𝑃𝑃𝑋𝑋2(𝑥𝑥2)𝑃𝑃𝑋𝑋3(𝑥𝑥3))𝑛𝑛), where 𝑛𝑛 is the number of samples in each set; 
𝑋𝑋𝑘𝑘  is a random variable that corresponds to the sampled pixel value of the 𝑘𝑘 -th channel; 
𝑃𝑃𝑋𝑋1𝑋𝑋2𝑋𝑋3(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3) is the joint probability distribution of 𝑋𝑋1, 𝑋𝑋2, and 𝑋𝑋3; 𝑃𝑃𝑋𝑋1(𝑥𝑥1)𝑃𝑃𝑋𝑋2(𝑥𝑥2)𝑃𝑃𝑋𝑋3(𝑥𝑥3) is the 
product of the marginal distributions; and 𝑥𝑥𝑘𝑘𝑘𝑘 is the 𝑘𝑘-th channel pixel value of the 𝑖𝑖-th sample. One and 
zero labels are assigned to the first and second sets, respectively. Subsequently, each set of 𝑛𝑛 samples is 
passed to the independence evaluation network.  

With such a configuration, the independence among the different channels of the unmixed images is 
assessed by the independence evaluation network in a way that allows backpropagation for the gradient 
calculation. Thereafter, the unmixing layer and the independence evaluation network are trained through 
gradient-based updates in an adversarial manner (Figure 2b); the independence evaluation network is 
trained to classify the samples (i.e., minimize binary cross-entropy loss) from the joint distribution and the 
product of the marginal distributions, whereas the unmixing layer is trained to make two groups of samples 
indistinguishable (i.e., maximize binary cross-entropy loss), thereby enforcing independence among 
different channels of the unmixed images. Consequently, the signals in the two output channels are 
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gradually unmixed, as verified by the decrease in mutual information between each pair of channels across 
iterations (Figure 2c,d).  

For two-channel unmixing, we found that the mutual information neural estimator26, which estimates the 
mutual information of two random variables, could be employed as the independence evaluation network 
instead of the classifier network (see Supplementary Figure 4). After the unmixing layer and the 
independence evaluation network converged, the output of the unmixing layer was taken as the unmixed 
image. 

The major advantage of neural unmixing over existing blind unmixing methods is that any prior knowledge 
of the unmixed image can be directly incorporated into the optimization problem as a loss function. For 
example, fluorescent images are positively constrained in neural unmixing by employing a negativity loss 
function (Figure 2b). Moreover, the constant bias in the input image can be estimated and removed as part 
of the optimization process in neural unmixing. 

Quantitative and qualitative validation of IMPASTO 
Next, we quantitatively measured the unmixing accuracy of IMPASTO. We stained mouse brain slices for 
three rounds, and the target proteins were PV in the first round, S100B in the second round, and GM130 in 
the third round. We used CF 488A to stain these three proteins for three rounds. To validate the unmixing 
of IMPASTO, we simultaneously labeled S100B and GM130 with CF 568 and CF 633, respectively, and 
used these images as the ground-truth images of these two proteins. We included DAPI in all rounds and 
used it as a registration marker. As shown in the second row of Figure 3a, the 488-nm channel image in the 
first round showed only PV, but the second-round image showed mixed expressions of both PV and S100B, 
and the third-round image showed mixed expressions of PV, S100B, and GM130. We then acquired an 
S100B image by unmixing the first- and second-round images and a GM130 image by unmixing the second- 
and third-round images using the IMPASTO neural unmixing algorithm (Figure 3b). The resulting S100B 
and GM130 images were identical to their ground-truth images (Figure 3c; see Supplementary Figure 5a 
for images before and after unmixing and Supplementary Figure 5b for additional validation results with 
the same antibodies). We performed the same validation experiment with different antibodies: lamin B1 in 
the first round, GFAP in the second round, and CALB2 in the third round. Again, the unmixed images of 
GFAP and CALB2 matched their ground-truth images (Supplementary Figure 6). We measured Pearson 
correlation coefficients between unmixed and ground-truth images to quantitatively measure the accuracy 
of neural unmixing. The average was 0.97, which showed that the neural unmixing precisely unmixed Nth 
and N+1th images to retrieve the image of the N+1th protein (Figure 3d). We then validated the unmixing 
accuracy in each round of 10-round staining. In this experiment, we used a 557-nm channel to acquire 
mixed images and 488-nm and 640-nm channels to acquire ground-truth images. Since ground-truth images 
of only two proteins could be acquired from one specimen, we performed the 10-round staining and imaging 
with 5 brain slices, each of which had 2 ground-truth channels. Specifically, we stained 5 brain slices with 
10 antibodies bearing CF 568 in 10 rounds. We also simultaneously stained each brain slice with 2 of 10 
antibodies bearing CF 488A and CF 633 and then acquired the ground-truth images. For each brain slice, 
we qualitatively compared the unmixed images with the respective ground-truth images (see 
Supplementary Figure 7 for qualitative validation results). The unmixed images showed a high degree of 
matching with their ground-truth images.  

Demonstration of IMPASTO for 30-plex imaging in 10 rounds 
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After the thorough validation of our neural unmixing algorithm, we attempted to use 3 colors in each of 10 
staining rounds to perform 30-plex imaging. In cyclic staining based on fluorophore bleaching, the complete 
bleaching of fluorophores needs to be checked after bleaching to ensure that none of the previous 
fluorescence signals remain. Additionally, fluorophores with high photostabilities, such as Alexa Fluor 546, 
Alexa Fluor 568, Alexa Fluor 594, and eF615, are not recommended, despite their high brightness and 
photostability, as they require a longer bleaching process8,10,28. However, in IMPASTO, regardless of the 
degree of photostability, any fluorophores can be used. We used three fluorophores that showed high 
brightness and photostability in previous studies: CF 488A, CF 568, and CF 63327. As shown in Figure 4, 
we successfully demonstrated 30-plex imaging by performing 10 rounds of 3-color staining and imaging 
using IMPASTO in the DG region of mouse brain slice. We compared the expression patterns of each 
protein acquired by IMPASTO to the singly stained specimens and found no noticeable differences (see 
Supplementary Figure 8 for images of the singly stained specimens, Supplementary Figure 9 for 
individual proteins, Supplementary Figure 10 for the cumulative visualization of the 30 proteins, 
Supplementary Video 1 for both individual proteins and cumulative view of all proteins). We successfully 
demonstrated another 30-plex imaging with different antibody panels (Supplementary Figure 11 and 
Supplementary Video 2). 

Twelve-plex three-dimensional (3D) imaging via IMPASTO 
Visualization of numerous protein expressions in a 3D context is essential for obtaining a deeper 
understanding of the structural information of target tissues29,30. The biggest challenge in using cyclic 
staining for the volumetric imaging of proteins is specimen damage or distortion. To study the origin of 
tissue distortion, three 50-μm-thick brain slices were first stained with DAPI and then processed with three 
different buffer exchange procedures for 10 rounds. The first slice was incubated in a wash buffer (1× PBS, 
0.2% Triton X-100) for 10 min and then washed three times with the same buffer for 3 min each. The second 
slice was incubated in a fluorophore-inactivation buffer10 for 10 min and then washed three times with a 
wash buffer for 3 min each. The third slice was incubated in a commercial antibody-stripping buffer for 10 
min and then washed three times with a wash buffer for 3 min each. These processes were repeated for 
these three slices 10 times. To study the distortion of the specimens, the DAPI images were acquired before 
and after the 10 rounds of buffer exchange. As shown in Supplementary Figure 1, the first specimen did 
not show noticeable distortion after the buffer exchange, indicating that repeated exchange with the same 
buffer does not mechanically distort specimens. However, the second and third specimens showed distortion 
both in the axial and lateral directions. Change in the salt concentration or pH induce the swelling or 
expansion of specimens31, which can potentially result in irreversible specimen distortion. IMPASTO uses 
two buffers: a staining buffer (5% normal serum, 0.2% Triton X-100, 1× PBS) and a wash buffer. As the 
pH and salt concentrations of these two buffers are almost identical, repeated exchange between them would 
not distort specimens. Using IMPASTO, we performed 12-plex volumetric imaging with an imaging depth 
over 20 μm, which is thicker than single cells (Figure 5, see Supplementary Video 3 for a z-stack image 
and Supplementary Figure 12 for a magnified view of single-protein 3D images). In volumetric imaging, 
the fluorescence signal intensities of proteins decreased in the deeper areas. Different proteins showed 
different intensity decrease trends along the depth of the specimen due to differences in the antibody-
binding affinities and abundance of antigens32. Even in such cases, IMPASTO successfully unmixed pairs 
of two consecutive images in all the z-planes shown in Figure 5.  
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The mild chemical procedure of IMPASTO would also be beneficial in the imaging of archived clinical 
formalin-fixed paraffin-embedded (FFPE) specimens. The repeated treatment of FFPE specimens with 
fluorophore-inactivation buffers10 or antibody-stripping buffers could detach the specimens from substrates 
(see Supplementary Figure 13a,b for images of FFPE specimens after 13 rounds of antibody-stripping 
processes using a commercial stripping buffer and Supplementary Video 4 for the video of the specimen). 
However, even after 30 rounds of buffer exchange with only a wash buffer, the FFPE specimen maintained 
its structure, and no distortion in the staining pattern was observed (Supplementary Figure 13c,d). This 
result indicates that IMPASTO can be applied to archived clinical FFPE specimens to perform multiplexed 
imaging without any additional sample treatment process.  

Spectro-temporal unmixing using IMPASTO for enhanced multiplexing capability 
While IMPASTO eliminates the need for a signal removal process, it still required more than 10 rounds of 
repetitive staining and imaging for 30-plex imaging. Since each round required at least several hours of 
staining, reducing the total number of rounds by using more fluorophores in each round would reduce the 
total process time and extend the applicability of IMPASTO. To facilitate this, we combined IMPASTO 
with spectral unmixing. Since our neural unmixing algorithm could unmix two images acquired not only in 
two separate rounds but also in the same round in different spectral ranges, we used the neural unmixing 
algorithm for unmixing the signals of spectrally overlapping fluorophores as well as for unmixing the 
images acquired in two consecutive rounds. Specifically, we used two spectrally overlapping fluorophores 
for each of the 488-, 557-, and 640-nm lasers and performed six-plex imaging for five rounds. We termed 
this process spectro-temporal unmixing.  

As shown in Figure 6a–c, we performed spectro-temporal unmixing, which includes inter-round and intra-
round unmixing. In the first round, the first protein was labeled with CF 488A, and the second protein was 
labeled with ATTO 532. We then acquired two images in two detection channels, each of which included 
an emission peak of either CF 488A or ATTO 532. We denoted these two images as IMG1,488 and IMG1,532. 
Both IMG1,488 and IMG1,532 showed the first and second proteins but with different intensities. In the second 
round, we labeled the third protein with CF 488A and the fourth protein with ATTO 532. Again, we acquired 
two images in the same detection channels used in the first round. We denoted these two images as IMG2,488 
and IMG2,532. Both IMG2,488 and IMG2,532 showed the first, second, third, and fourth proteins but with 
different intensities. To acquire single-protein images of the first, second, third, and fourth proteins from 
these four mixed images, we first performed inter-round unmixing by subtracting IMG1,488 from IMG2,488 
and IMG1,532 from IMG2,532 using the neural unmixing algorithm (Figure 6a). The resulting images, which 
we denoted IMG’2,488 and IMG’2,532, showed the third and fourth proteins with different intensities. We then 
performed intra-round unmixing (Figure 6b). We unmixed IMG1,488 and IMG1,532 to retrieve single-protein 
images of the first and second proteins. Then, we unmixed IMG’2,488 and IMG’2,532 to acquire single-protein 
images of the third and fourth proteins (Figure 6c). This spectro-temporal unmixing facilitated enhanced 
multiplexing, allowing us to perform 30-plex fluorescent imaging in five staining rounds (see Figure 6d–i 
for merged images of each round, Supplementary Figure 14 for individual proteins, Supplementary 
Figure 15 for the cumulative visualization of all 30 proteins, Supplementary Video 5 for a video showing 
both individual proteins and the cumulative visualization of all 30 proteins). We successfully demonstrated 
another 33-plex imaging via spectro-temporal unmixing with different antibody panels (Supplementary 
Figure 16 and Supplementary Video 6). The images acquired in this process had a high enough signal-to-
noise ratio to clearly distinguish variations in protein expressions among cells (see Figure 6j for six 
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representative cells and Supplementary Figure 17 for more cells). To validate the cell phenotyping results, 
we checked whether the previously reported protein expression patterns matched our results. It is known 
that GFAP- and S100B-positive cells are negative for NeuN33; Iba1 expression is not colocalized with NeuN, 
SOX2, and S100B34; S100B expression is not colocalized with NeuN and Iba133,35; and SOX2 is not 
expressed in granule cells, which are positive for NeuN36. All S100B-expressing cells are positive for SOX2, 
but not all SOX2-expressing cells are positive for S100B36,37. All these previously reported findings 
matched our results, indicating that our proposed spectro-temporal unmixing is suitable for studying the 
molecular heterogeneity of cells. In our previous work, we showed that blind unmixing could unmix signals 
of more than 3 fluorophores, and 15-plex imaging could be achieved in a single staining and imaging 
round27. We validated the effectiveness of our neural unmixing algorithm in the spectral unmixing of more 
than three spectrally overlapping fluorophores through a simulation (see Supplementary Figures 18 and 
19 for the blind spectral unmixing of four and five fluorophores, respectively). The unmixed images were 
nearly identical to the corresponding ground-truth images with Pearson correlation coefficients higher than 
0.98, indicating that the spectro-temporal unmixing proposed herein could be extended to achieve an even 
higher multiplexing capability. 

Combination of IMPASTO with periodic antibody stripping  
Next, we sought to determine the maximum number of rounds that IMPASTO could achieve. IMPASTO 
uses only mild chemicals (i.e., 5% normal serum, 0.2% Triton X-100, 1× PBS), and similar buffers have 
been widely used to stain specimens for prolonged periods (longer than a week) without noticeable changes 
in antigenicity and tissue integrity22,38–40. To obtain the 10-round imaging results shown in Figure 4, we 
performed each staining round overnight, and the total staining time was longer than 120 h. Even after such 
prolonged incubation of the specimens in the blocking buffer, tenth-round staining showed no decrease in 
antigenicity. In addition, 10 rounds of buffer exchange with brain slices and 30 rounds of buffer exchange 
with paraffine-embedded specimens did not show any noticeable distortion, as discussed previously. 
Considering these two observations, epitope loss and tissue distortion were negligible in IMPASTO and 
therefore would not limit the maximum number of staining rounds that IMPASTO could achieve. We 
hypothesized that the maximum number of rounds that IMPASTO could repeat would be limited by the 
steric hindrance of antibodies. Previous studies of cyclic imaging based on fluorophore inactivation 
reported no steric hindrance, even in 60-plex imaging6,9. However, in highly dense biological structures, 
such as synapses, steric hindrance could limit the multiplexing capability of IMPASTO. 

In such cases, we hypothesized that IMPASTO could be combined with antibody-stripping techniques. We 
performed three rounds of IMPASTO imaging, stripped the bound antibodies from the specimen, and then 
performed another three rounds of IMPASTO imaging. After the antibody stripping, IMPASTO successfully 
achieved three-color imaging, which shows that IMPASTO can be combined with antibody-stripping 
techniques to resolve the steric hindrance issue (see Supplementary Figure 20). Interestingly, even when 
the antibody-stripping process did not completely remove the fluorescent signals, IMPASTO successfully 
achieved three-color imaging, without being affected by residual signal issues (see Supplementary Figure 
21). In detail, we performed three-round IMPASTO staining and imaging, followed by the antibody-
stripping process. We imaged the antibody-stripped specimen and found that the residual signals remained. 
We then stained the specimen with the fourth antibody and imaged it. The fourth-round image contained 
both the residual signals and the signal of the fourth protein. By unmixing these two images, we successfully 
acquired an image of the fourth protein. We proceeded to the fifth- and sixth-round staining and imaging. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.22.517463doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.22.517463


9 

 

The residual signals also appeared in the fifth- and sixth-round images, but we successfully acquired images 
of the fifth and sixth proteins after unmixing.  

 

Discussion 

In this study, we demonstrated IMPASTO, which enables the cyclic imaging of proteins without signal 
removal processes. As IMPASTO does not require the inactivation of fluorophores and antibody removal, 
the staining process can be independently optimized regardless of how challenging signal removal is. Hence, 
IMPASTO can be used with any fluorophores and antibodies. More importantly, the removal of the signal 
removal process reduces the epitope loss or tissue distortion across repeated staining and imaging cycles, 
enabling the volumetric cyclic imaging of thick tissue. In this work, we demonstrated 30-plex imaging in 
10 rounds and 12-plex volumetric imaging using IMPASTO. We also demonstrated 30-plex imaging in 5 
rounds by using our neural unmixing algorithm to unmix images of spectrally overlapping fluorophores 
and images from consecutive rounds. 

IMPASTO could be combined with existing cyclic imaging techniques to achieve even better multiplexing 
capabilities or to shorten their signal removal processes. As shown above, the combination of IMPASTO 
and antibody-stripping-based methods would allow performing more imaging rounds while overcoming 
the steric hindrance of antibodies. We expect that the steric hindrance of antibodies would be the major 
factor limiting the maximum number of rounds when imaging dense structures. In such cases, performing 
an antibody-stripping process once every 10 or 20 rounds would be sufficient to resolve the steric hindrance 
issues. Even a mild or short antibody-stripping process that can resolve the steric hindrance issues but is 
not enough for the complete removal of the signals would be sufficient, as the residual signals can be 
unmixed using IMPASTO. The combination of IMPASTO and chemical-inactivation-based methods could 
decrease the time needed for the complete removal of fluorescence signals. In addition, IMPASTO would 
enable the use of extremely photostable fluorophores that could not be used previously in chemical-
inactivation-based cyclic imaging techniques.  

IMPASTO can be combined with various existing imaging techniques and used for diverse applications. 
First, IMPASTO can be integrated with signal amplification techniques. Recently, the need to amplify 
fluorescence signals to detect sparsely expressed proteins has increased41. To meet this need, various signal 
amplification techniques have been developed24,42,43. Signals of sparsely expressed proteins could be 
amplified by one of these techniques without any changes in the IMPASTO process. Second, IMPASTO 
can be used for imaging cleared or expanded tissues. Tissue-clearing techniques enable the volumetric 
imaging of thick tissues without thin-sectioning20,22,38–40,44–48, while tissue expansion techniques enable the 
super-resolution imaging of proteins in thick tissue slices21,31,49–60. Repeated staining, imaging, and antibody 
removal have been used in the molecular imaging of cleared20,21 or expanded tissues5,55,61,62. In such cyclic 
imaging, the signal removal step could be replaced with IMPASTO’s neural unmixing algorithm. This 
would greatly reduce the total process time. The combination of IMPASTO with a subset of tissue-clearing 
techniques, which enable the rapid immunostaining of antibodies, would enable the imaging of proteins 
over large volumes, such as the whole brain32,63,64, without the need for the signal removal process. 
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Figure 1. General working principle of IMPASTO. (a) Schematic diagram showing how mixed images 
are acquired in the IMPASTO process. A, B, C, and D are target proteins stained in the first, second, third, 
and fourth rounds, respectively. No signal removal process is performed between rounds. (b) Schematic 
diagram showing how images of single proteins are retrieved by unmixing images of two consecutive 
rounds via self-supervised neural unmixing. (c) Intensity trends across imaging rounds for six different 
fluorophores. (d) Variation of α. α was calculated from the intensity trends shown in c. Equation for α 
calculation is as follows: 𝛼𝛼𝑁𝑁−𝑁𝑁+1 = Norm( 𝐼𝐼𝑁𝑁+1

𝐼𝐼𝑁𝑁
 ), where Norm(I) is normalized intensity, N = 1–3 is the 

round number. (e–h) Unmixing of the images acquired from two consecutive rounds using measured α and 
our neural unmixing code. 50-μm-thick mouse brain slice was immunostained against CALB2 in the first 
round and against CALB1 in the second round, using the same fluorophore. Note that these two proteins 
spatially overlap. Simultaneously, these two proteins were immunostained with spectrally distinctive 
fluorophores, and their images were used as ground-truth images. (e) Images acquired in the first and second 
rounds. Note that the second-round image shows both CALB2 and CALB1. (f) Ground-truth images of 
CALB2 and CALB1. (g) Results of the unmixing of the two images shown in e using α shown in d. Note 
that the first-round image (=CALB2) was over-subtracted from the second-round image (=CALB1; yellow 
circle). (h) Results of the unmixing of the two images shown in e using our neural unmixing algorithm. 
Note that the unmixed images are identical to the ground-truth images shown in f. Scale bar = 50 μm. 
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Figure 2. Neural unmixing for the separation of fluorescent signals with no prior knowledge of the 
mixing profiles. (a) The neural unmixing algorithm consists of three components: an unmixing layer, two 
sampling functions, and an independence evaluation network. The input image first goes through the 
unmixing matrix, and the pixels are then sampled from the joint distribution (i.e., pixel values from different 
channels jointly sampled from the same pixel location) and the product of the marginal distribution (i.e., 
pixel values from different channels sampled independently). Thereafter, two groups of samples are fed 
into the independence evaluation network to estimate the level of independence. (b) The independence 
evaluation network is trained to classify the samples from the joint distribution and the product of the 
marginal distribution, whereas the unmixing matrix is trained to make two groups of samples 
indistinguishable, thereby enforcing independence among different channels of unmixed images. We also 
positively constrain fluorescent images by employing a non-negativity loss function. (c) A synthetic input 
image obtained by mixing two channel images, an intermediate unmixed image after 250 iterations, and an 
unmixed image after 1,000 iterations. (d) An illustration of changes in mutual information between two 
channels across iterations. Enforcing independence between two channels minimizes the mutual 
information between the channels, leading to the parameters of the unmixing matrix converging to the 
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ground-truth values (white dotted line). The unmixing parameters are marked with an asterisk (*) for every 
50 iterations. Scale bar = 50 μm. 
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Figure 3. Experimental validation of unmixing of IMPASTO. (a) Images of three-round cyclic images 
obtained without any signal removal process. The three target proteins were simultaneously stained with 
spectrally distinctive fluorophores, and their images were used as ground-truth images. Top row: mixed 
images acquired in the first, second, and third rounds. Bottom row: magnified view of the images shown in 
the top row. Magenta arrowhead: S100B. Yellow arrowhead: GM130. Note that the second-round image 
contains both PV and S100B, and the third-round image contains PV, S100B, and GM130. (b) Overlay of 
the three proteins after unmixing the mixed images shown in a using the neural unmixing algorithm. (c) 
Magnified view of the three red-boxed regions in b. Top row: ground-truth images of the three proteins. 
Bottom row: unmixed images. (d) Average Pearson correlation coefficient (r) between the unmixed and 
ground-truth images measured from 4 specimens (8 images). Scale bar = 50 μm in the first row of (a) and 
in (b), 30 μm in the second row of (a) and 10 μm in (c). 
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Figure 4. Thirty-plex protein imaging of a mouse brain slice using IMPASTO. Ten rounds of three-
plex imaging were performed using IMPASTO in the dentate gyrus of the hippocampal region of a 50-μm-
thick mouse brain slice. 488-, 557-, and 640-nm excitation lasers were used. DAPI staining was used as a 
fiducial marker. (a) Merged image of the 30 target proteins. (b–e) Magnified view of the yellow-boxed 
region in a. For better visibility, four or five proteins are shown in each image. (f–i) Magnified view of the 
cyan-boxed region in a. Again, for better visibility, four or five proteins are shown in each image. Scale bar 
= 50 μm in (a) and 20 μm in (b–i).  
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Figure 5. 12-plex 3D imaging of a mouse brain slice using IMPASTO. Four rounds of three-plex imaging 
were performed using IMPASTO in the dentate gyrus of the hippocampal region of a 50-μm-thick mouse 
brain slice. 488-, 557-, and 640-nm excitation lasers were used. DAPI staining was used as a fiducial marker. 
In each round, z-stacks were acquired over 20 μm with a step size of 1 μm. Images from two consecutive 
rounds acquired in the same z-plane were unmixed via the neural unmixing algorithm. (a) 3D projection 
view of the merged 12-plex image. (b) Magnified 3D projection view of the boxed region in a. (c) 3D tilted 
view of the image shown in b. (d–o) Single-protein 3D view. Scale bar = 30 μm in (a) and 10 μm in (b–o). 
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Figure 6. Demonstration of 30-plex protein imaging in 5 rounds using spectro-temporal unmixing. 
Five rounds of six-plex imaging were performed in the dentate gyrus of the hippocampal region of a 50-
μm-thick mouse brain slice. 488-, 557-, and 640-nm excitation lasers were used. DAPI staining was used 
as a fiducial marker. For each excitation laser, two spectrally overlapping fluorophores were used. In each 
round, two images were acquired in two different detection ranges, each of which contained the emission 
peak of the fluorophores. (a–c) Schematic diagram showing how the spectro-temporal unmixing was 
conducted. This schematic shows the unmixing procedure for a 488-nm channel. The same procedure was 
repeated for other channels. Letters (i.e., A, B, C, D, a, b, c, and d) represent stained target proteins. Capital 
and small letters indicate the relatively stronger and weaker fluorescence intensities of the same protein, 
respectively. For example, A and a represent high and low fluorescence intensities of the same target protein 
A. (a) Inter-round unmixing. Images from two consecutive rounds were unmixed. (b) Intra-round unmixing. 
Images acquired from the same round but in two different detection ranges were unmixed to separate the 
signals of the spectrally overlapping fluorophores. (c) Unmixed images. (d–i). Merged images of each 
round after unmixing. (j) Protein expression patterns of six cells shown in the yellow-boxed regions in d. 
Scale bar = 50 μm in (d–i). 
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Methods 

Ethical statement 
The Korea Advanced Institute of Science and Technology Institutional Animal Care and Use Committee 
(KAIST-IACUC) approved all the procedures involving animals (approved protocol number KA2020-48). 

Antibodies and chemicals 
Supplementary Data 1–2 list all the antibodies and chemicals used in this study. 

Mouse brain perfusion and slicing 
The mice were raised in ventilated cages with a 12-hour light/dark cycle under 20–24℃, 40–60% humidity 
conditions. Prior to transcardially applying ice-cold 4% PFA in 1× PBS to the mice, we performed isoflurane 
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anesthesia. We extracted the brains and stored them in the same ice-cold 4% PFA solution at 4℃ for 2 h 
before slicing them to the target thickness using a Leica VT1000S vibratome. We stored the sectioned brain 
slices in 0.1M glycine and 0.01% sodium azide in 1× PBS prior to using them in the experiment. 

PFA-fixed paraffin-embedded brain sample preparation 
We dehydrated the PFA-fixed brain samples in an ascending order of 70%, 80%, and 95% ethanol, followed 
by 100% ethanol twice for 1 h each. We washed the dehydrated brain samples with xylene twice for 1 h 
each and then immersed the processed samples in paraffin wax and incubated them twice for 1 h each. We 
embedded the paraffinized brain in the paraffin block mold with melted paraffin wax and cooled it to 
solidify the residual paraffin wax. We trimmed the paraffin-embedded brain block to 10-um thickness on a 
microtome and floated the slices in a 45–50℃ water bath filled with deionized water. We gently transferred 
the floated slices to a silanized glass slide with appropriate conditions, as follows: 1) the slices should be 
fully flattened, without wrinkles that could cause a nonuniform focal plane during imaging, and 2) the slices 
should be mounted on a slide glass before the tissue could disintegrate. We deparaffinized the slices by 
washing them twice with xylene for 10 min each. Then, we hydrated the deparaffinized slices with smaller 
changes in ethanol concentrations to minimize tissue loss during hydration, transferring them to ethanol in 
descending order as follows: 100% ethanol twice, followed by 95%, 80%, 70%, 60%, and 50% ethanol for 
3 min each. We washed the hydrated slices gently with deionized water for another 3 min and then incubated 
them with heated sodium citrate buffer (pH 8.0) at 80℃ for 30 min.  

Conjugation of Fab fragment antibodies with fluorophores 
For the Alexa and CF fluorophores, we used a mixture of 90 μL of unconjugated Fab fragment antibody 
solution, 10 μL of 1M sodium bicarbonate (pH 8.3), and a 9-fold molar excess of succinimidyl ester-
fluorophore stock in dimethyl sulfoxide (DMSO). For the ATTO fluorophores, we used a mixture of 90 μL 
of unconjugated antibody solution, 10 μL of 1M sodium bicarbonate (pH 8.3), and a 3-fold molar excess of 
succinimidyl ester-fluorophore stock in DMSO. We incubated the solution at room temperature for 1 h in 
darkness to achieve fluorophore–antibody conjugation and then gently purified the fluorophore-conjugated 
antibody solution using NAP-5 gel filtration columns. The columns were first washed and equilibrated three 
times with 3 mL of 1× PBS. We transferred the total volume of fluorophore-conjugated antibody solution 
(100 μL) into the column, which was then filled with 900 μL of 1× PBS, and we collected the eluates of 
purified conjugates. We then concentrated the eluates using centrifugal filters with a molecular weight cut-
off (MWCO) of 30,000. 

Preparation of preformed antibody complexes 
We conducted the primary-Fab complex preformation process based on the original reported procedure65. 
We mixed a solution containing the target primary antibody with 1× PBS and the fluorophore-conjugated 
Fab fragment antibody in a volume ratio of 10:2:1, and then incubated the mixture for 10 min at room 
temperature in total darkness. Thereafter, we mixed a five-fold excess of blocking buffer (5% normal rabbit 
serum, 0.2% Triton X-100, and 1× PBS) and shook it gently for an additional 10 min at room temperature 
in darkness. All the primary-Fab complexes for each corresponding target protein were combined, diluted 
in the blocking solution, and used to stain the target sample. We correctly adjusted the concentration of each 
primary antibody according to the manufacturer’s instructions. We used six fluorophores (two for each laser 
channel) in this study; CF 488A and ATTO 532 for a 488-nm laser, CF 568 and ATTO 594 for a 557-nm 
laser, and CF 633 and CF 660R for a 640-nm laser. 
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Staining of mouse brain slices with preformed antibody complexes. 
We incubated the brain slices in a blocking solution (5% normal rabbit serum, 0.2% Triton X-100, and 1× 
PBS) for 1 h to permeabilize and block the sample. We immunostained the brain slices with a prepared 
primary-Fab complex mixture overnight in darkness, followed by 30-min washing three times with 0.01% 
PBST. All these processes were conducted at room temperature. 

Sample distortion issues from the repetitive application of antibody stripping and fluorophore 
inactivation 
We imaged the brain slices before and after the signal removal process under diverse buffer conditions. For 
antibody stripping, we tested three different stripping buffers based on sodium citrate, a mixture of 
potassium permanganate and sulfuric acid, and a NewBlot Nitro 5X stripping buffer. For fluorophore 
inactivation, we tested two different inactivation buffers based on a mixture of hydrogen peroxide and 
sodium hydroxide and on lithium borohydride (see Supplementary Data 2 for detailed chemical product 
information). 

Measurement of intensity decrease trend in fluorophores across staining rounds. 
We chose six fluorophores to study variations in the intensity decreases of fluorophores across staining 
rounds. We conjugated Lamin B1 antibody with selected fluorophores (CF 488A, ATTO 532, CF 568, 
ATTO 594, CF 633, and CF 660R), stained all six fluorophores in individual mouse brain samples, and 
imaged them across four staining rounds under identical imaging conditions (laser power, exposure time, 
scan speed, pixel resolution, etc.), as shown in Supplementary Data 3.  

Quantitative validation of IMPASTO output images 
We based the quantitative validation of IMPASTO on a three-round scale experiment by assigning one of 
three laser channels for IMPASTO and staining second and third target expressions in the other two laser 
channels. We quantitatively estimated the IMPASTO unmixing accuracy by comparing IMPASTO output 
images with reference channel images using Pearson correlation coefficient (r) values (see Supplementary 
Data 4).  

Demonstration of IMPASTO with three standard laser channels. 
We demonstrated the IMPASTO concept using a single laser channel at an early stage to consider its 
feasibility for multiplexed cyclic imaging. To extend its multiplexing capability, we simultaneously 
employed 3 laser channels (except the 405-nm laser channel) as IMPASTO channels.  

3D IMPASTO imaging 
For 3D IMPASTO imaging, we performed 20 μm-depth z-stack imaging with a 1.0-μm step size, meaning 
that we acquired 21 images per laser channel (84 images in total). Since each z-slice exhibited a slightly 
different degree of deformation, we had to acquire and apply an image registration vector map for each z-
slice. 

Spectro-temporal unmixing via IMPASTO 
IMPASTO is a method of selectively unmixing the target expression between the “A” and “A + B” images. 
Therefore, the IMPASTO output would be an image of “A” itself and an image of “B.” Specifically, the 

general hypothesis is that the unmixing matrix for IMPASTO should be in the form �1 0
α 1�, where α is 

less than 1. However, in spectral unmixing applications, it is necessary to unmix spectrally overlapped 
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signals, such as images of “A + b” and “a + B,” where the capital letter is the dominant case in the 
corresponding detection range and vice versa. Such a statement implies that the unmixing matrix in spectral 

unmixing should be in the form � 1 α𝐵𝐵
α𝐴𝐴 1 �, where α𝐴𝐴 and α𝐵𝐵 are both less than 1.  

IMPASTO conjunction with the conventional antibody stripping method 
After a three-round scale IMPASTO experiment, we performed antibody stripping with a NewBlot Nitro 
5x stripping buffer for 10 min per round. Unlike thick brain slice samples, paraffin-embedded samples were 
comparatively more stable regarding sample distortion from antibody stripping. However, we observed that 
repetitive antibody stripping can cause sample distortion, as well as detachment of paraffin-embedded slices 
from the slide glass (see Supplementary Figure 13 and Supplementary Video 4). Therefore, it made sense 
to periodically apply mild antibody stripping in the IMPASTO experiment in several tens of staining rounds 
for much further staining rounds without steric hindrance issue.  

Fluorescent imaging and visualization 
In this study, we performed most of the experiments, including the quantitative/qualitative analyses and 30-
plex fluorescent imaging, using a Nikon C2 Plus point-scanning confocal microscope equipped with four 
excitation lasers (405, 488, 557, and 640 nm) and a spectral detector. We acquired all the imaging data using 
a water immersion 40x objective lens with 1.15 NA. We conducted antibody screening, 3D IMPASTO 
imaging, and IMPASTO with antibody stripping experiments using a spinning-disk confocal microscope 
from Andor DragonFly equipped with four excitation lasers (405, 488, 561, and 640 nm) with a normal 
filter-based detection system. We acquired all the imaging data from Andor DragonFly using a water-
immersion 40x objective lens with 1.10 NA. The brightness of the images included in the figures, 
Supplementary Figures, and Supplementary Videos was adjusted using the “Auto Adjust” function of 
ImarisViewer software (ImarisViewer 9.9.1) to improve visibility. For the images shown in Figure 6j and 
Supplementary Figure 17, the level of autofluorescence and non-specific binding was manually 
determined for each protein and subtracted from the whole images for better visibility. For images for 
quantitative analysis, such as the measurements of the unmixing accuracy of IMPASTO, no thresholding 
was applied to the unmixed images or ground-truth images.   

Image registration and intensity normalization 
We processed the image registration using the ImageJ plugin “bUnwarpJ.” The DAPI image in the first 
staining round was the reference fiducial marker image, whereas the DAPI images in the other staining 
rounds were the images to be registered. For image registration in each staining round, we used the DAPI 
images from both the first round and the target Nth round to extract the corresponding registration vector 
maps. We applied these registration vector maps to other IMPASTO channels to finely match the 
coordinates of the staining rounds. In 3D IMPASTO imaging, the absolute intensity gradually decreased 
along with an increase in the imaging depth of the sample. Thus, the intensity scale of the IMPASTO output 
image for each z-slice was normalized using customized MATLAB code, assigning the first slice (the 
brightest slice) as the reference intensity scale. 

Neural unmixing for blind signal separation 
In neural unmixing, the input image is fed into the unmixing layer, which is a linear unmixing matrix with 
bias subtraction, to calculate the unmixed image. The pixels in the unmixed image are sampled from the 
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joint distribution and the product of the marginal distributions. Both samples were then passed to the 
independence evaluation network, which measures the independence among the channels. 

To ensure the permutation invariance of the independence evaluation network (i.e., the order of sampled 
pixels in each set should not affect the independence assessment), the network is designed to have a 
permutation invariance property based on the following network architecture:  

𝑓𝑓𝜙𝜙({(𝑥𝑥1𝑖𝑖, 𝑥𝑥2𝑖𝑖, 𝑥𝑥3𝑖𝑖)}𝑖𝑖=1𝑛𝑛 ) =
1
𝑛𝑛
� 𝑔𝑔𝜙𝜙(𝑥𝑥1𝑖𝑖, 𝑥𝑥2𝑖𝑖, 𝑥𝑥3𝑖𝑖),

𝑛𝑛

𝑖𝑖=1
 

where 𝑔𝑔𝜙𝜙(∙) is a multilayer perceptron parameterized by 𝜙𝜙 that takes only one sample (𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3) as the 
input. The independence evaluation network is trained by minimizing the binary cross-entropy loss ℒ𝐵𝐵𝐵𝐵𝐵𝐵 
and the unmixing layer is trained by minimizing the composite loss function ℒ𝜃𝜃 = −ℒ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜆𝜆1ℒ𝑁𝑁 + 𝜆𝜆2ℒ𝐷𝐷, 
where ℒ𝑁𝑁 = ∑|min(𝑋𝑋, 0)|𝐹𝐹  is the negativity loss, ℒ𝐷𝐷 = ∑ ∑ �max �𝑈𝑈𝜃𝜃,𝑖𝑖𝑖𝑖

−1 − diag�𝑈𝑈𝜃𝜃−1�𝑖𝑖, 0��
𝐹𝐹

𝑗𝑗𝑖𝑖   is the 

diagonal loss that prevents the off-diagonal elements of the mixing matrix from becoming greater than the 
diagonal elements, 𝑈𝑈𝜃𝜃 denotes the parameterized unmixing matrix, |⋅|𝐹𝐹 denotes the Frobenius norm, and 
𝜆𝜆1,𝜆𝜆2 are the regularization parameters. We increased the parameters gradually over the iterations. Using 
these loss functions, we trained the unmixing layer and the independence evaluation network in an 
adversarial manner: the classifier network was trained to classify independent and dependent samples, and 
the unmixing layer was updated to make them indistinguishable while retaining the non-negativity of the 
unmixed image. 

Each multi-layer perceptron 𝑔𝑔𝜙𝜙(∙) has two hidden layers that employ LeakyReLU66 with a slope of 0.2 as 
the activation function. We implemented the adversarial training of the unmixing layer and the 
independence evaluation network by inserting a gradient reversal layer67 between them. The gradient 
reversal layer multiplied the gradient by −γ during the backpropagation, where the minus sign flipped the 
sign of the gradient and the value γ = 5 determined the relative learning ratios for the unmixing layer and 
the independence evaluation network. For training the network, we used an Adam optimizer68 with a 
learning rate of 0.0001 and exponential decay rates of 0.9 for the first moment and 0.999 for the second 
moment. We implemented the network using PyTorch69 and performed all the computations on a 
workstation with two Intel® Xeon® Silver 4214R CPUs, a 256GiB RAM, and an NVIDIA GeForce RTX 
2080 Ti GPU. 

For inter-round channel unmixing of two images, when the first image contained the fluorescent signals 
that accumulated from the first round to the previous round and the second image contained the linearly 
scaled version of the first image and the fluorescent signal from the current round, we set the unmixing 

matrix as a 2 × 2 lower triangular matrix (i.e., 𝑈𝑈𝜃𝜃 = � 1 0
𝜃𝜃21 1�) to accelerate the training procedure.  

Neural unmixing of an arbitrary number of channels 
Through the simple generalization of the three-channel unmixing algorithm, neural unmixing can separate 
input images with an arbitrary number of channels. For 𝑁𝑁-channel unmixing, the first set 𝒙𝒙 is sampled 
from the joint distribution (𝒙𝒙 = {(𝑥𝑥1𝑖𝑖, … , 𝑥𝑥𝑁𝑁𝑁𝑁)}𝑖𝑖=1𝑛𝑛 ~(𝑃𝑃𝑋𝑋1…𝑋𝑋𝑁𝑁(𝑥𝑥1, … , 𝑥𝑥𝑁𝑁))𝑛𝑛 ), and the second set 𝒙𝒙′  is 
sampled from the product of the marginal distributions (𝒙𝒙′ = {(𝑥𝑥1𝑖𝑖′ , … , 𝑥𝑥𝑁𝑁𝑁𝑁′)}𝑖𝑖=1𝑛𝑛 ~(𝑃𝑃𝑋𝑋1(𝑥𝑥1) …𝑃𝑃𝑋𝑋𝑁𝑁(𝑥𝑥𝑁𝑁))𝑛𝑛), 
where 𝑃𝑃𝑋𝑋1…𝑋𝑋𝑁𝑁(𝑥𝑥1, … , 𝑥𝑥𝑁𝑁) is the joint probability distribution of 𝑋𝑋1, …, 𝑋𝑋𝑁𝑁, and 𝑃𝑃𝑋𝑋1(𝑥𝑥1) …𝑃𝑃𝑋𝑋𝑁𝑁(𝑥𝑥𝑁𝑁) is 
the product of the marginal distributions. As with the three-channel unmixing case, we trained the classifier 
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network to classify independent and dependent samples by minimizing ℒ𝐵𝐵𝐵𝐵𝐵𝐵 ,  and we updated the 
unmixing layer to make them indistinguishable by maximizing ℒ𝐵𝐵𝐵𝐵𝐵𝐵 . While this formulation was 
mathematically appropriate for extension to unmixing an arbitrary number of channels, such training in 
practice can suffer from numerical stability issues due to the “curse of dimensionality.” Thus, we took a 
divide-and-conquer approach to alleviate this issue.  

From the unmixing-layer perspective, maximizing the binary cross-entropy loss is mathematically 
equivalent to minimizing the Jensen–Shannon divergence between the joint distribution and the product of 
marginal distributions70 : 

arg max  
𝜃𝜃

ℒ𝐵𝐵𝐶𝐶𝐶𝐶 = arg min  
𝜃𝜃

𝐷𝐷𝐽𝐽𝐽𝐽(𝑃𝑃𝑋𝑋1;𝜃𝜃…𝑋𝑋𝑁𝑁;𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑁𝑁)||𝑃𝑃𝑋𝑋1;𝜃𝜃(𝑥𝑥1) …𝑃𝑃𝑋𝑋𝑁𝑁;𝜃𝜃(𝑥𝑥𝑁𝑁)), 

where 𝜃𝜃  are the parameters of the unmixing layer, and the 𝐷𝐷𝐽𝐽𝐽𝐽(∙ || ∙)  denotes the Jensen–Shannon 
divergence between two input probability distributions. Applying the divide-and-conquer principle to this 
optimization problem, we constructed the loss function ℒ𝐷𝐷𝐷𝐷 as an upper bound of the square root of the 
Jensen–Shannon divergence between the joint distribution and the product of marginal distributions, the 
global minimum of which coincided with that of the original loss function: 

ℒ𝐷𝐷𝐷𝐷 = ��DJS �𝑃𝑃𝑋𝑋1;𝜃𝜃…𝑋𝑋𝑡𝑡;𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑡𝑡)||𝑃𝑃𝑋𝑋1;𝜃𝜃…𝑋𝑋𝑡𝑡−1;𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑡𝑡−1)𝑃𝑃𝑋𝑋𝑡𝑡;𝜃𝜃(𝑥𝑥𝑡𝑡)�
𝑁𝑁

𝑡𝑡=2

≥ �DJS(𝑃𝑃𝑋𝑋1;𝜃𝜃…𝑋𝑋𝑁𝑁;𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑁𝑁)||𝑃𝑃𝑋𝑋1𝜃𝜃(𝑥𝑥1) …𝑃𝑃𝑋𝑋𝑁𝑁;𝜃𝜃(𝑥𝑥𝑁𝑁)). 

Estimating this loss function required 𝑁𝑁 − 1 independence evaluation networks, each of which attempted 
to distinguish the samples from 𝑃𝑃𝑋𝑋1;𝜃𝜃…𝑋𝑋𝑡𝑡;𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑡𝑡)  and 𝑃𝑃𝑋𝑋1;𝜃𝜃…𝑋𝑋𝑡𝑡−1;𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑡𝑡−1)𝑃𝑃𝑋𝑋𝑡𝑡;𝜃𝜃(𝑥𝑥𝑡𝑡),  where 𝑡𝑡 
is an integer between 2 and 𝑁𝑁. In this setting, each independence evaluation network had to distinguish 
only two distributions that could differ along only one dimension, facilitating the convergence of the 
unmixing layer.  

Self-supervised image denoising network 
As a preprocessing step before unmixing, we performed self-supervised image denoising using 
convolutional neural network architecture with the blind-spot property proposed in 71. The network 
consisted of three components (see Supplementary Figure 22a): (1) a 3 × 3 convolutional path, (2) a 
blind-spot convolutional path, and (3) a 1 × 1 convolutional path. In the 3 × 3 convolutional path, the 
input was passed through 10 sequential convolutional layers with a 3 × 3 kernel size. The feature maps 
generated in the 3 × 3 convolutional path were passed to the blind-spot convolutional path, the receptive 
field of which was set as zero at its center. The outputs from the blind-spot convolutional layers were 
concatenated and passed through three 1 × 1 convolutional layers to predict the denoised image while 
maintaining the blind-spot property. The number of channels was set as 32 for the 3 × 3 convolutional 
path and 64 for the blind-spot convolutional path. In the 1 × 1 convolutional path, the numbers of channels 
were set as 64, 16, and 2 for each layer. The receptive field of the network is visualized in Supplementary 
Figure 22b, which shows the blind-spot property. We trained the network to minimize pixel-wise loss, 
defined as a linear summation of L1 and L2 loss between the input and the output. To train the network, 
we used an Adam optimizer68 with a learning rate of 0.0003. We performed all computations on a 
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workstation with two Intel® Xeon® Silver 4214R CPUs, a 256GiB RAM, and an NVIDIA GeForce RTX 
2080 Ti GPU. 
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