1	Monkeypox virus quadrivalent mRNA vaccine induces antibody
2	responses and cellular immunity and protects mice against Vaccinia
3	virus
4	Ye Sang ^{1,4} , Zhen Zhang ^{1,4} , Fan Liu ^{2,4} , Haitao Lu ^{1,4} , Changxiao Yu ¹ ,
5	Huisheng Sun ¹ , Jinrong Long ¹ , Yiming Cao ¹ , Jierui Mai ¹ , Xin Wang ¹ , Jiaxin
6	Fang ¹ , Youchun Wang ³ , Weijin Huang ^{2*} , Jing Yang ^{1*} and Shengqi Wang ^{1*}
7	¹ Beijing Institute of Microbiology and Epidemiology, Beijing 100850, PR.
8	China;
9	² Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for
10	Biological Product Control, National Institutes for Food and Drug Control
11	(NIFDC), Beijing 102629, PR. China;
12	³ Institute of Medical Biology, Chinese Academy of Medical Sciences,
13	Kunming 650031, PR. China;
14	⁴ These authors contributed equally: Ye Sang, Zhen Zhang, Fan Liu, Haitao
15	Lu.
16	Correspondence: Shengqi Wang (<u>sqwang@bmi.ac.cn</u>) or Jing Yang
17	(jingyang0511@sina.com) or Weijin Huang (huangweijin@nifdc.org.cn);
18	Beijing Institute of Microbiology and Epidemiology, 27 Taiping Road, Haidian
19	District, Beijing, 100850, PR. China; Tel: 01066932074
20	

21 Abstract:

22	There is an urgent need for efficient and safe vaccines against the monkeypox
23	virus (MPXV) in response to the rapidly spreading monkeypox epidemic. In
24	the age of COVID-19, mRNA vaccines have been highly successful and
25	emerged as platforms enabling rapid development and large-scale
26	preparation. Here, we have developed two MPXV quadrivalent mRNA
27	vaccines, named mRNA-A-LNP and mRNA-B-LNP, based on two IMVs (A29L
28	and M1R) and two EEVs (A35R and B6R). By administering mRNA-A-LNP
29	and mRNA-B-LNP intramuscularly twice, mice have induced MPXV-specific
30	IgG antibodies and potent Vaccinia virus (VACV)-specific neutralizing
31	antibodies. Additionally, it elicited durable MPXV-specific killer memory T-cell
32	immunity as well as memory B-cell immunity in mice. Furthermore, the
33	passive transfer of sera from mRNA-A-LNP and mRNA-B-LNP-immunized
34	mice protected nude mice against the VACV challenge. In addition, two doses
35	of mRNA-A-LNP and mRNA-B-LNP were also protective against the VACV
36	challenge in mice. Overall, our results demonstrated that mRNA-A-LNP and
37	mRNA-B-LNP appear to be safe and effective vaccine candidates against
38	monkeypox epidemics, as well as against outbreaks caused by other
39	orthopoxviruses, including the smallpox virus.

40

41 Introduction:

Monkeypox, caused by the monkeypox virus (MPXV), is a zoonotic viral 42 disease. Since May 2022, there have been more than 78,000 confirmed 43 MPXV cases and more than 40 deaths worldwide, and transmission has 44 occurred in 110 countries. Monkeypox has been declared a public health 45 emergency by the World Health Organization. According to phylogenetic 46 analysis, MPXV can be divided into two distinct clades, Central Africa (also 47 known as the Congo Basin) and West Africa, with a high degree of sequence 48 similarity between the two clades.¹ Among them, The Central African clade 49 tended to be more virulent, with a mean mortality rate of 10.6 % compared to 50 3.6 % for the West African clade.² This may be because several open reading 51 frames encoding immune evasion genes are disrupted in the West African 52 53 clade, resulting in lower virulence in this clade.³ Nevertheless, it is the West African clade that caused the cases that are circulating in this outbreak.⁴ 54 As a family of double-stranded DNA viruses, orthopoxviruses are composed 55 56 of various viruses, including the Variola virus, Vaccinia virus (VACV), MPXV, and Cowpox virus.⁵ Orthopoxvirus infection or immunization confers immunity 57 against other viruses in the genus.⁶ As a result, two vaccines have been 58 approved by the FDA for the prevention of MPXV: ACAM2000, a second-59 60 generation live VACV vaccine, and JYNNEOS, an attenuated third-generation vaccine based on Modified Vaccinia Ankara (MVA). It has been reported that 61 62 these two VACV-based smallpox vaccines are cross-protective against MPXV.⁷ However, smallpox vaccination does not completely protect against 63

64	MPXV during the current outbreak, according to a recent study. ⁸ Additionally,
65	ACAM2000 was a highly reproducing VACV vaccine that caused serious
66	adverse events.9 These events include autoinoculation of the eye, generalized
67	vaccinia, eczema vaccinatum, progressive vaccinia, myocarditis, and death. ¹⁰
68	On the other hand, JYNNEOS, a replication-deficient vaccine, is expected to
69	have the lowest incidence of severe adverse events.9 However, as live virus
70	vaccines, JYNNEOS and ACAM2000 have undefined immune targets, and
71	the impact of their gene products on immunity and adverse reactions remains
72	unclear. Therefore, it is imperative to develop a vaccine specifically for MPXV
73	to ensure complete protection.
74	In this study, the MPXV quadrivalent mRNA vaccines, mRNA-A-LNP and
75	mRNA-B-LNP, were prepared using A29L, A35R, M1R, and B6R as antigenic
76	targets. Orthopoxviruses can infect cells through two different mechanisms
77	depending on whether they are intracellular mature viruses (IMV) or
78	extracellular enveloped viruses (EEV). ¹¹ There are two IMV-specific proteins
79	(A29L and M1R) in the quadrivalent mRNA vaccine, and two EEV-specific
80	proteins (A35R and B6R). Among the orthologous homologous to VACV, the
81	L1R and A27L are known neutralizing antibody targets for IMV; the B5R are
82	known neutralizing antibody targets for EEV; however, the A33R is a target of
83	complement-mediated cytolysis. ^{12, 13} The combination of IMV- and EEV-
84	specific immunogens have been found to provide more protection than either
85	immunogen alone. ¹⁴ It was reported that a DNA vaccine expressing A27L,

86	A33R, L1R and B5R provided protection against lethal monkeypox, ¹²
87	rabbitpox ¹⁵ and vaccinia ¹⁶ virus challenges. In contrast, vaccination with a
88	single L1R provided a degree of protection against the lethal MPXV challenge
89	but not against severe disease. ¹²
90	Since the outbreak of COVID-19, mRNA vaccines have received
91	unprecedented attention. There is a better immune response and safety
92	associated with mRNA vaccines than with live virus and DNA vaccines. ^{17, 18}
93	Furthermore, as opposed to multiple punctures (scarification) percutaneous
94	administration of live VACV vaccines ⁶ and electroporation of DNA vaccines ¹⁵ ,
95	intramuscular administration of mRNA vaccines has reduced healthcare
96	worker training and healthcare costs. So far, successful mRNA immunization
97	resulting in protection from orthopoxviruses has never been reported. Here,
98	we targeted MPXV homologs rather than VACV as antigenic targets to
99	prepare MPXV quadrivalent mRNA vaccine, which induced MPXV-specific
100	IMV- and EEV-antigen-specific IgG and potent VACV live-virus neutralizing
101	antibodies. Meanwhile, immunized mice elicited a durable cellular response.
102	Furthermore, mRNA-A-LNP and mRNA-B-LNP protected mice from VACV
103	challenge.
104	

105 **Results:**

106 In vitro characterization of mRNA-A-LNP and mRNA-B-LNP

107	In this study, we developed potent MPXV quadrivalent mRNA vaccines that
108	target two IMV-antigens and two EEV-antigens. Here, A29L, A35R, M1R and
109	B6R, respectively, were chosen as antigenic targets for the mRNA coding
110	sequences (Fig. 1a). The modified mRNA molecule begins with a 5'-cap 1,
111	adheres to the 5'- and 3'-untranslated regions (UTRs), and then ends with a
112	Poly-A tail. First, based on different mRNA design platforms, we constructed
113	two groups of mRNA sequences, mRNA-A-mix and mRNA-B-mix. All mRNAs
114	have been authenticated by capillary electrophoresis using the Agilent 2100
115	Bioanalyzer System (Supplementary information, Fig. S1). Based on Western
116	blot analysis, both mRNA-mix detected bands at positions corresponding to
117	each of the four antigenic proteins. It indicated that both mRNA-A-mix and
118	mRNA-B-mix could successfully express the proteins (Fig. 1b). Afterwards,
119	the mixed mRNAs were processed into LNP formulations. The resulting two
120	quadrivalent mRNA vaccines were named mRNA-A-LNP and mRNA-B-LNP,
121	respectively (Fig. 1c). The final stored mRNA-A-LNP and mRNA-B-LNP
122	showed average particle sizes of 98.16 nm and 89.11 nm, respectively, and
123	potentials of 5.3 mV and 6.9 mV. Meanwhile, over 90% of encapsulation rates
124	were achieved by both (Fig. 1d). The cryo-transmission electron microscopy
125	(TEM) analysis also revealed that both mRNA-A-LNP and mRNA-B-LNP
126	particles exhibited a homogeneous solid spherical morphology, which
127	indicated that the morphology of the LNPs loaded with the four mRNAs
128	remained stable (Fig. 1e). According to these results, mRNA-A-LNP and

- mRNA-B-LNP can efficiently express MPXV proteins A29L, A35R, M1R, and
- 130 B6R in vitro.

131 The prophylactic administration of mRNA-A-LNP and mRNA-B-LNP

- 132 induces potent humoral immunity in mice
- 133 The immunogenicity and efficacy of mRNA-A-LNP and mRNA-B-LNP were
- also assessed in mice. Initially, female BALB/c mice were divided into three
- 135 groups (n = 5) and immunized at intervals of 14 days (Fig. 2a). The mice were
- immunized with 40 µg of mRNA-A-LNP or mRNA-B-LNP, respectively, by
- 137 twice intramuscular administration; naive mice served as the control group.
- 138 Then, sera were collected from all mice 10 and 24 days after their first
- immunization to assess humoral immunity. Furthermore, no local skin
- 140 reactions or inflammation were observed at the injection site. This suggests,
- unlike ACAM2000 (the damage at the vaccine site is often used as a marker
- 142 of successful vaccination in highly replicating vaccines like ACAM2000), our
- 143 vaccine does not undergo a significant cutaneous reaction, also known as
- ¹⁴⁴ "take", which means no risks of autoinoculation or accidental vaccination.⁶
- 145 The binding antibody responses against MPXV antigens (A29L, A35R, M1R
- and B6R) were assessed by enzyme-linked immunosorbent assay (ELISA) 10
- 147 and 24 days after vaccination. Antibodies against all four target antigens were
- 148 detected in all vaccinated mice and increased significantly over immunization
- 149 frequency. The IgG titers against the four MPXV antigens at day 24 were
- 48,000 (A29L), 1,080,000 (A35R), 4,040,000 (M1R), 900,000 (B6R) for

151	mRNA-A-LNP and 92,000 (A29L), 1,200,000 (A35R), 3,600,000 (M1R),
152	600,000 (B6R) for mRNA-B-LNP, respectively (Fig. 2b-e). The results
153	indicated that mRNA-A-LNP and mRNA-B-LNP induce robust IgG against
154	MPXV antigens.
155	The neutralizing antibody responses were assessed by live-virus
156	neutralization tests using the VACV Tian Tan strain. After initial vaccination,
157	neutralizing antibody titers were slightly above the detection limit, with median
158	values of 73 and 49 for mRNA-A-LNP and mRNA-B-LNP, respectively (Fig.
159	2f). After booster immunization, neutralizing antibody titers increased by
160	nearly 2 log10, with median values of 6,284 and 5,057 for mRNA-A-LNP and
161	mRNA-B-LNP, respectively (Fig. 2f). Based on the MPXV antigen-specific
162	ELISA and VACV live-virus neutralization tests, there was no statistical
163	difference in the humoral response to mRNA-A-LNP or mRNA-B-LNP
164	immunizations. In conclusion, these results suggest that the quadrivalent
165	mRNA vaccine induced neutralizing antibodies against VACV and IgG
166	antibodies against MPXV.
167	The mRNA-A-LNP and mRNA-B-LNP induce long-term cellular immunity
168	in mice
169	MPXV infection is primarily controlled by antibodies, but memory B cells and
170	memory T cells play a role in the development of the humoral response to the
171	monkeypox vaccine. ¹⁹ Here, through the measurement of MPXV-specific
172	germinal center (GC) B cells, follicular helper T (Tfh) cells, as well as CD4 $^{+}$

173	and CD8 * effector memory T (Tem) cells, we assessed the ability of mRNA-A-
174	LNP and mRNA-B-LNP to induce cellular immunity. The GC responses are
175	responsible for generating high-affinity neutralizing antibodies, ²⁰ while Tfh
176	cells regulate the GC response. ^{21, 22} Furthermore, memory CD4 ⁺ T cells and
177	memory CD8 ⁺ T cells may provide long-term protection. In our study, GC B
178	cells (defined as Fas ⁺ /GL7 ⁺ cells) and Tfh cells (defined as CXCR5 ⁺ /PD-1 ⁺
179	cells) were evaluated in draining lymph nodes (DLNs) by flow cytometry 30
180	days after the first immunization. Flow cytometry results showed a significant
181	increase in MPXV-specific GC B cells and Tfh cells from mRNA-A-LNP and
182	mRNA-B-LNP-vaccinated mice compared with naive mice upon stimulation
183	with MPXV-specific antigens (Fig. 3a-b). This suggests that mRNA-A-LNP and
184	mRNA-B-LNP immunization can produce a long-lasting memory B cell effect.
185	Then, specific CD4 ⁺ and CD8 ⁺ Tem cells (defined as CD44 ⁺ /CD62L ⁻ cells) in
186	the spleen of immunised mice were further assessed. It was remarkable that
187	mRNA-A-LNP and mRNA-B-LNP were more effective in induced MPXV-
188	specific CD8 $^{+}$ Tem cells than CD4 $^{+}$ Tem cells (Fig. 3c-d). This demonstrated
189	that our vaccine caused a memory T cell effect with the ability to kill virus-
190	infected cells.
191	The mRNA-A-LNP and mRNA-B-LNP protected mice from VACV
192	challenge
193	The VACV challenge model based on firefly luciferase expression ²³ was used
194	to assess the protection of mRNA-A-LNP and mRNA-B-LNP in mice. First, we

195	investigated the passive protection of mRNA-A-LNP and mRNA-B-LNP
196	immunized mouse sera (NT $_{50}$: 6,284; 5,057), with sera from naive mice
197	serving as negative controls. Viral infection in passively transferred serum
198	nude mice was detected by bioluminescence imaging (BLI). ²⁴ At first, after 1 h
199	of coincubation of serum with VACV in vitro, we observed a significant
200	reduction in bioluminescent signal in 4-week-old nude mice injected with
201	immunized mouse serum (Fig. 4a-b). It indicated that sera from mRNA-A-LNP
202	and mRNA-B-LNP-immunized mice were effective in neutralizing VACV in
203	vitro. In addition, the luminescence signal of 4-week-old nude mice was
204	reduced by pre-injection of sera from immunized mice. Following the
205	subcutaneous (s.c.) challenge 24 hours later, only a luminescence signal was
206	detected at the injection site in nude mice passively immunized with mouse
207	serum, indicating that the antibody had neutralized the virus (Fig. 4c-d). By
208	contrast, significant viral infections were detected in nude mice passively
209	transferred with serum from naive mice. These results demonstrated that
210	mRNA-A-LNP and mRNA-B-LNP inoculated mouse sera had a passive
211	protective efficacy against s.c. VACV challenge in immunodeficient young
212	mice.
213	Furthermore, we assessed the active protective efficacy of mRNA-A-LNP and
214	mRNA-B-LNP. BALB/c mice immunized twice intramuscularly with 10 μg of
215	mRNA-A-LNP or mRNA-B-LNP were challenged at day 30 with 4 \times 10 ⁵
216	median tissue culture infectious doses (TCID $_{50}$) of the VACV Tian Tan strain

217	via the s.c. route. Viral load was measured in mice at 24 hours following the
218	challenge by using BLI. The bioluminescent signal was largely undetectable in
219	immune mice, whereas naive mice detected signal values as high as 6.5
220	log10, which suggested that VACV was rapidly cleared by vaccine-induced
221	antibodies after the challenge (Fig. 4e-f). This suggests that prophylactic
222	immunization with mRNA-A-LNP and mRNA-B-LNP is effective in protecting
223	mice from s.c. VACV challenge.
224	MPXV quadrivalent mRNA vaccine administered intramuscularly
225	provides adequate safety
226	To assess the safety of our vaccine in vivo, we monitored several aspects,
227	including mouse weight recordings, biochemical parameters and
228	histopathological changes. After mRNA-A-LNP or mRNA-B-LNP
229	immunization, body weight rapidly recovered, and no weight loss occurred
230	(Fig. 5a). Since mRNA-A-LNP was prepared using the same method as
231	mRNA-B-LNP, it was selected for further investigation of whether mice were
232	harmed by the MPXV quadrivalent mRNA vaccine. First, according to clinical
233	trial data, VACV-based vaccines have caused adverse events, including a
234	0.6% risk of myocarditis. ⁶ Therefore, we further assessed the heart, liver and
235	kidney function based on blood biochemical parameters. The data were within
236	normal limits in the immunised and control groups, and there were no
237	significant differences (Fig. 5b-f). Finally, multiple tissues from the mice were
238	extracted for histopathological examination. As a result, there were no

significant pathological changes between the immune and control groups (Fig.

- 5g). In conclusion, multiple lines of evidence demonstrate that our vaccine
- 241 presents an adequate safety profile.
- 242

243 **Discussion:**

244 Since the use of live VACV in the past century, smallpox has been completely

eradicated, associated vaccination no longer occurs, and vaccine production

- has ceased accordingly. In this study, we report the immunogenicity and
- 247 efficacy of the novel MPXV mRNA vaccine candidate, mRNA-A-LNP and

248 mRNA-B-LNP. Two doses of immunization with mRNA-A-LNP or mRNA-B-

- LNP, respectively, induced potent MPXV IgG and robust VACV-neutralizing
- antibodies, and elicited durable MPXV-specific memory cellular immunity in
- 251 mice.

252 The subunit-based smallpox vaccines have shown exciting feasibility in

253 previous studies. Both combinatorial DNA vaccines and protein vaccines

containing poxvirus antigens generated protective antibody responses in small

- animals and non-human primate models.^{12, 15, 16, 25} In our study, mRNA-A-LNP
- and mRNA-B-LNP vaccines produced high titers of IgG antibodies against the

257 MPXV antigens A29L, A35R, M1R, and B6R (Fig. 2b-e). As MPXV A29L,

A35R, M1R, and B6R genes exhibit high conservation with the orthologous

259 genes of orthopoxviruses, including VACV and smallpox virus¹⁶, we speculate

260 that mRNA-A-LNP and mRNA-B-LNP have cross-neutralizing effects on

261	orthopoxviruses. Interestingly, live-virus neutralizing antibody assays
262	determined that our MPXV vaccine elicited potent VACV-neutralizing
263	antibodies (Fig. 2f). This means that MPXV vaccines provide cross-
264	neutralizing antibodies against VACV within orthopoxviruses. Furthermore,
265	vaccine-induced humoral responses were confirmed in nude mice by passive
266	transfer tests. ^{26, 27} It was observed that passive transfer of serum from
267	vaccinated mice provides passive protection in nude mice against s.c. VACV
268	challenge (Fig. 4a-d). This suggested that mRNA-A-LNP and mRNA-B-LNP-
269	induced antibodies could provide protection in immunodeficient young mice.
270	This is consistent with another study in which serum from DNA vaccinated
271	animals were able to protect mice against a VACV challenge. ²⁶ Furthermore,
272	two doses of prophylactic immunization with mRNA-A-LNP and mRNA-B-LNP
273	protected mice from s.c. VACV challenge (Fig. 4e-f).
274	Using the mRNA vaccine platform, the MPXV quadrivalent mRNA vaccines,
275	mRNA-A-LNP and mRNA-B-LNP, induced high titers of functional antibodies
276	in mice while also boosting cellular immunity. The induction of cellular
277	immunity may be a critical factor in explaining the remarkable protection
278	provided by live attenuated vaccines compared with subunit vaccines. ^{12, 28} In
279	the application of the SARS-CoV-2 vaccine, mRNA vaccines have been well
280	demonstrated to induce cellular immunity. ^{20, 29} It is consistent with our findings
281	that the MPXV quadrivalent mRNA vaccine was able to elicit excellent cellular
282	immunity (Fig. 3a-d). In addition, live virus vaccines do not stop the virus from

spreading.³⁰ In contrast, the smallpox DNA vaccine, a nucleic acid vaccine,
has been reported to prevent the shedding of infectious viruses in the oral
cavity of vaccinated animals.³¹ As a result, it is reasonable to hypothesize that
the MPXV mRNA vaccine, also as a nucleic acid vaccine, will prevent the
shedding of infectious viruses in all inoculated animals. And we will conduct
further studies to test this hypothesis.

In the orthopoxvirus route of infection, monocytes are first recruited to the site

of infection as the initial target.^{32, 33} The cytolytic T cells, meanwhile, kill

²⁹¹ infected monocytes to prevent virus spread. Memory CD8⁺ T cells have been

reported effective in protecting susceptible mice from lethal orthopoxvirus

293 challenges.³⁴⁻³⁶ Since mRNA-A-LNP and mRNA-B-LNP primarily elicit

294 memory CD8⁺ T cells, allowing T cell-mediated lysis during the early infection

295 period of viral challenge would prevent virus spread (Fig. 3d). Furthermore,

circulating antibodies performed a similar role to CD8⁺ T cells.³⁴ It is the long-

297 lived plasma cells (LLPC) and memory B cells that are responsible for most of

the prolonged humoral immunity induced by vaccines.³⁷ Memory B cells

induced with the smallpox vaccine could respond quickly to infection and

300 replenish LLPC to maintain long-term antibodies levels in humans, according

to a study.³⁸ Moreover, memory B cells were also associated with IgM - IgG

302 isotype switching. Therefore, considering that memory B cells are developed

in the germinal center, the significant increase in MPXV-specific GC B cells

304	and Tfh cells suggests that mRNA-A-LNP and mRNA-B-LNP can maintain
305	protective antibody responses with high affinity and durability (Fig. 3a-b).
306	In summary, we report efficient and safe quadrivalent mRNA vaccine
307	candidates against MPXV, based on MPXV-specific antigens A29L, A35R,
308	M1R and B6R. The vaccines reported here are the first MPXV vaccines
309	developed using an mRNA vaccine platform. As mRNA-A-LNP and mRNA-B-
310	LNP induce solid humoral and cellular immunity, they could provide new ideas
311	for orthopoxvirus vaccine development. Considering the rapidly spreading
312	monkeypox epidemics, MPXV mRNA vaccines which can be rapidly
313	developed and prepared on a large scale, are expected to protect against
314	infection-related symptoms, hospitalizations, and death.
314 315	infection-related symptoms, hospitalizations, and death.
	infection-related symptoms, hospitalizations, and death. Materials and methods:
315	
315 316	Materials and methods:
315 316 317	Materials and methods: Ethics statement
315316317318	Materials and methods: Ethics statement All animal studies, there were reviewed and approved by the Animal
315316317318319	Materials and methods: Ethics statement All animal studies, there were reviewed and approved by the Animal Experiment Committee of Laboratory Animal Center, Academy of Military
 315 316 317 318 319 320 	Materials and methods: Ethics statement All animal studies, there were reviewed and approved by the Animal Experiment Committee of Laboratory Animal Center, Academy of Military Medical Sciences (AMMS), China (Assurance Number: IACUC-DWZX-2022-

324 Cells and viruses

- 325 HEK293T, Huh-7, RD, Vero and 143TK cells were cultured in Dulbecco's
- 326 Modified Eagle Medium (DMEM; Thermo Fisher) supplemented with 10 %
- 327 fetal bovine serum (FBS; Thermo Fisher) and penicillin (100 U/ml)-
- 328 streptomycin (100 mg/ml) (Thermo Fisher). All cells were grown at 37 °C in a
- humidified 5% CO₂ atmosphere.
- 330 The vaccinia virus (VACV) Tian Tan strain expressing firefly luciferase was
- 331 propagated in 143TK cells and titrated in Vero cells.²³
- 332 Synthesis and characterization of MPXV mRNA
- 333 All mRNA sequences encoding MPXV proteins (A29L, A35R, M1R, B6R)
- 334 were prepared by *in vitro* transcription, as described previously.²²
- 335 Transcription was performed from linearized DNA templates using the T7-
- 336 FlashScribe[™] Transcription Kit (Cellscript). Further, the modified mRNA was
- 337 synthesized by replacing UTP in the kit with pseudo-UTP (TriLink).
- 338 Afterwards, the RNA was capped using the ScriptCap[™] Cap 1 Capping
- 339 System kit with ScriptCap[™] Capping enzyme and 2'-O-methyltransferase
- 340 (Cellscript) according to the manufacturer's instructions. The mRNA product
- 341 purified by ammonium acetate precipitation was then resuspended in RNase-
- 342 free water for further analysis and application.
- 343 The concentration and quality of the synthesized MPXV mRNA were
- measured using an Agilent 2100 Bioanalyzer and RNA Nano 6000 Assay Kit
- 345 (Agilent), according to the manufacturer's instructions.

- 346 All mRNAs (2 µg) were transfected into HEK293T cells using Lipofectamine
- 347 3000 transfection reagent (Thermo Fisher) according to the manufacturer's
- instructions, lysates were collected, and Western blotting was performed.
- 349 Formulation and characterization of mRNA-LNP
- 350 Lipid nanoparticle (LNP) formulations were prepared using NanoAssemblr
- 351 Ignite's (Precision Nanosystems) NxGen Microfluidics technology. Briefly,
- lipids containing ionised lipids, 1, 2-distearoyl-sn-glycero-3-phosphocholine
- 353 (DSPC), cholesterol and DMG-PEG2000 were dissolved in ethanol (with a
- molar ratio of 50:10:38.5:1.5). In an Ignite[™] mixer, the lipid mixture was
- 355 combined with 20 mM citrate buffer (pH 4.0) containing mRNA in a 1:3 volume
- ratio. It was then diluted through a 100 k MWCO PES membrane (Sartorius
- 357 Stedim Biotech) against a 10-fold volume of DPBS (pH 7.4) and concentrated
- 358 to the desired concentration.
- 359 The particle size and ζ -potential of mRNA-LNP were measured by a Litesizer
- 360 500 (Anton Paar). Particle size measurements were carried out using dynamic
- light scattering (DLS). The data were also analyzed using the Anton Paar
- 362 Kalliope software package.
- 363 The morphology of mRNA-LNP was analyzed by transmission electron
- 364 microscopy (Hitachi H-7800, Tokyo) using a negative staining technique.
- 365 mRNA-LNP was absorbed into the copper mesh for 60 s and stained with
- 366 phosphotungstic acid (1%) for 20 s before observation.

367	The Quant-iT RiboGreen RNA Reagent and Kit were used to detect the
368	encapsulation of mRNA-LNP according to the manufacturer's instructions.
369	Mouse vaccination
370	In this experiment, 15 BALB/c mice (6-8 weeks of age, female, SPF) were
371	randomly divided into three groups ($n = 5$). The mice were immunized with the
372	mRNA-A-LNP vaccine or the mRNA-B-LNP vaccine or were designated
373	negative controls. We administered the vaccine intramuscularly at 40 μg on
374	day 0. And a booster immunization was administered on day 14. All mice were
375	tested for IgG and neutralizing antibodies on days 10 and 24 after the initial
376	immunization. The following flow cytometry analyses were performed 30 days
377	after the initial vaccination.
378	Evaluation of serum antibody
379	IgG antibody titers to MPXV-specific antigens A29L, A35R, M1R and B6R
380	were determined by enzyme-linked immunosorbent assay (ELISA). VACV-
381	specific neutralizing antibody titers were determined by a live-virus based
382	neutralization test.
383	(a) ELISA assay.
384	IgG antibody titers against MPXV-specific antigens A29L, A35R, M1R and
385	B6R were determined by ELISA. A 96-well plate was coated with 1 µg/ml of

A29L (TSP-MV002, Tsingke Biotechnology), A35R (TSP-MV003, Tsingke 386

- Biotechnology), M1R (TSP-MV005, Tsingke Biotechnology) or B6R (40902-387
- V08H, Sino Biological) protein respectively and incubated overnight at 4°C. 388

389	After incubation, plates were washed with 1 x TBST and blocked with BSA for
390	2 hours at 37 °C. Then, serial 2-fold gradient dilutions of serum starting at
391	1:100 were added to the wells, diluted with casein block, and incubated for 1
392	hour at 37 °C. Next, the plates were washed and treated with horseradish
393	peroxidase (HRP)-conjugated goat anti-mouse IgG (Abclonal) for 1 hour at
394	37 °C. Afterwards, the plates were washed and incubated with the substrate
395	tetramethylbenzidine (TMB; TIANGEN) for 20 minutes at room temperature in
396	the dark before the reaction was terminated with hydrochloric acid (2M;
397	Solarbio). Absorbance at 450/630 nm was recorded using an I-control Infinite
398	200 PRO microplate reader (TECAN). The ELISA endpoint titers were defined
399	as the dilution of vaccinated serum, which resulted in absorbance no less than
400	2.1-fold that of the average negative serum (1:100).
400 401	2.1-fold that of the average negative serum (1:100).(b) Live-virus neutralization assay
401	(b) Live-virus neutralization assay
401 402	(b) Live-virus neutralization assay Neutralizing antibody titers were determined by a live-virus neutralization
401 402 403	 (b) Live-virus neutralization assay Neutralizing antibody titers were determined by a live-virus neutralization assay. The VACV Tian Tan strain was designed to encode firefly luciferase
401 402 403 404	(b) Live-virus neutralization assay Neutralizing antibody titers were determined by a live-virus neutralization assay. The VACV Tian Tan strain was designed to encode firefly luciferase protein. ³⁹ Sera were tested for neutralizing activity against the live virus via
401 402 403 404 405	(b) Live-virus neutralization assay Neutralizing antibody titers were determined by a live-virus neutralization assay. The VACV Tian Tan strain was designed to encode firefly luciferase protein. ³⁹ Sera were tested for neutralizing activity against the live virus via mixing serial 3-fold diluted sample, starting at 1:30, with 4 x 10 ³ TCID ₅₀ of
401 402 403 404 405 406	(b) Live-virus neutralization assay Neutralizing antibody titers were determined by a live-virus neutralization assay. The VACV Tian Tan strain was designed to encode firefly luciferase protein. ³⁹ Sera were tested for neutralizing activity against the live virus via mixing serial 3-fold diluted sample, starting at 1:30, with 4×10^3 TCID ₅₀ of VACV. The serially diluted serum samples were mixed with the diluted virus in
401 402 403 404 405 406 407	(b) Live-virus neutralization assay Neutralizing antibody titers were determined by a live-virus neutralization assay. The VACV Tian Tan strain was designed to encode firefly luciferase protein. ³⁹ Sera were tested for neutralizing activity against the live virus via mixing serial 3-fold diluted sample, starting at 1:30, with 4 x 10^3 TCID ₅₀ of VACV. The serially diluted serum samples were mixed with the diluted virus in an equal volume. The antibody–virus and virus-only mixtures were then
401 402 403 404 405 406 407 408	(b) Live-virus neutralization assay Neutralizing antibody titers were determined by a live-virus neutralization assay. The VACV Tian Tan strain was designed to encode firefly luciferase protein. ³⁹ Sera were tested for neutralizing activity against the live virus via mixing serial 3-fold diluted sample, starting at 1:30, with 4×10^3 TCID ₅₀ of VACV. The serially diluted serum samples were mixed with the diluted virus in an equal volume. The antibody–virus and virus-only mixtures were then incubated at 37 °C with 5% CO ₂ . After incubating for 1 hour, we added Vero

- 411 Bright-Glo Luciferase Assay System (Promega) according to the
- 412 manufacturer's specifications. Luciferase activity was then measured using an
- 413 EnSight plate reader (PerkinElmer). Neutralizing activity was calculated by
- 414 quantification of luciferase activity in relative light units (RLU). 50% live-virus
- neutralizing antibody titer (NT₅₀) were calculated using a log (inhibitor) vs.
- 416 normalized response (Variable slope) non-linear regression model in
- 417 GraphPad Prism 8.0 (GraphPad Software).
- 418 Evaluation of cellular immune response
- 419 Cells from spleen and DLNs were isolated and analyzed by flow cytometry to
- 420 determine the cellular immune response. DLNs were used to analyze Tfh cells
- 421 responses and GC B cells responses, Spleen was used to analyze CD4⁺ or
- 422 CD8⁺ Tem cells responses.
- 423 Briefly, cells from spleen or DLNs (1,000,000 cells/well) were stimulated with
- 424 MPXV-specific antigens A29L, A35R, M1R and B6R (2 µg/ml each protein) at
- 425 37 °C in 5% CO₂ for 12 h. Brefeldin A (5 μg/ml; Biolegend) was incubated with
- 426 cells for 4 h. Then, Fc receptors of cells were blocked using CD16/CD32
- 427 antibodies (Mouse BD Fc Block; BD Biosciences) for 15 min at 4 °C, and cells
- 428 were stained with a cocktail of fluorescently conjugated antibodies to CD3-
- 429 PE/Cyanine7 (Biolegend), CD4-FITC (Biolegend), CD8-PercP (Biolegend),
- 430 CD44-PE (Biolegend), CD62L-APC (Biolegend), B220-FITC (Biolegend),
- 431 CD4-PercP/Cyanine5.5 (Biolegend), CD44-APC (Biolegend), PD-1-
- 432 PE/Cyanine7 (Biolegend), B220-PercP/Cyanine5.5 (Biolegend), Fas-PE

433 (Biolegend) and GL7-FITC (Biolegend) for another 30 min at 4 °C in dark.

- 434 Following washing with cell staining buffer (BD Biosciences), dead cells were
- 435 stained with Fixable Viability Dye eFluor[™] 780 (Thermo Fisher Scientific) for
- 436 30 min at 4 °C in the dark. A final wash with cell staining buffer, data were
- 437 obtained by FACS Aria II flow cytometer (BD Biosciences) and analyzed by
- 438 Flow J software. The GC B cell response was represented as

439 live⁺/B220⁺/Fas⁺/GL7⁺. The Tfh cell response was represented as live⁺/B220⁻

- 440 /CD4⁺/CD44⁺/PD-1⁺/CXCR5⁺. The CD4⁺ Tem cell response was represented
- 441 as live⁺/CD3⁺/CD4⁺/CD44⁺/CD62L⁻. The CD8⁺ Tem cell response was
- 442 represented as live⁺/CD3⁺/CD8⁺/CD44⁺/CD62L⁻.

443 Serum protective test

444 The VACV challenge model is based on the VACV Tian Tan strain expressing

- firefly luciferase. Using 4-week-old BALB/c nude mice, the serum passive
- 446 protection model was developed. Protective sera were collected from BALB/c
- 447 mice immunised with mRNA-A-LNP and mRNA-B-LNP. Serum samples were
- 448 collected 24 days after the initial immunization. To assess *in vitro* sera
- 449 protection, serum (13 μ l) and virus (4 x 10³ TCID₅₀) were mixed for one hour
- 450 before intravenous (i.v.) and intraperitoneal (i.p.) challenge of nude mice.
- 451 To assess *in vivo* sera protection, serum (50 μl) was first injected
- intravenously into nude mice, followed one hour later by s.c. challenge with
- 453 VACV ($2.5 \times 10^5 \text{ TCID}_{50}$). Bioluminescent signal measurements were made
- 454 following the viral challenge.

455	Bioluminescence imaging (BLI) was acquired and analyzed using the IVIS
456	Lumina Series III imaging system (PerkinElmer). Briefly, luminescence was
457	measured 5 minutes after intraperitoneal injection of the substrate D-luciferin
458	(PerkinElmer). The bioluminescent signals in regions of interest (ROIs) were
459	quantified using Living Image 3.5.
460	Mouse challenge
461	The VACV challenge model is based on the VACV Tian Tan strain expressing
462	firefly luciferase. BALB/c mice (n=5) immunized with mRNA-A-LNP and
463	mRNA-B-LNP were challenged subcutaneously with VACV (4 × 10^5 TCID ₅₀)
464	30 days after the initial immunization. At hour 24 post-challenge, mice were
465	measured for bioluminescence signals.
466	In vivo toxicity
467	To assess the in vivo toxicity of the vaccine, body weights were recorded after
468	vaccination. Mice vaccinated with mRNA-A-LNP (40 μ g; n = 3) were analyzed
469	
	for heart, liver and kidney function 48 hours after immunisation using a
470	for heart, liver and kidney function 48 hours after immunisation using a Chemray 240 and Chemray 800 (Rayto) automated biochemical analyzer.
470	Chemray 240 and Chemray 800 (Rayto) automated biochemical analyzer.
470 471	Chemray 240 and Chemray 800 (Rayto) automated biochemical analyzer. Organ tissues, including heart, liver, spleen, lung and kidney, were extracted
470 471 472	Chemray 240 and Chemray 800 (Rayto) automated biochemical analyzer. Organ tissues, including heart, liver, spleen, lung and kidney, were extracted 48 hours after injection for histopathology and fixed in 4% neutral buffered
470 471 472 473	Chemray 240 and Chemray 800 (Rayto) automated biochemical analyzer. Organ tissues, including heart, liver, spleen, lung and kidney, were extracted 48 hours after injection for histopathology and fixed in 4% neutral buffered formaldehyde. Afterwards, they were embedded in paraffin, sectioned and

477	Statist	ical analyses were performed using GraphPad Prism 8.0 (GraphPad
478	Softwa	are). All of the data are presented as the mean \pm SEM. Statistical
479	differe	nce was analyzed by one-way or two-way ANOVA. All tests are
480	accep	ted as statistically significant when the p value is less than 0.05.
481		
482	REFE	RENCES
483 484	1.	Likos, A.M. <i>et al.</i> A tale of two clades: monkeypox viruses. <i>J Gen Virol</i> 86 , 2661-2672 (2005).
485 486	2.	Isidro, J. <i>et al.</i> Addendum: Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. <i>Nat Med</i> 28 , 2220-2221 (2022).
487 488	3.	Weaver, J.R. & Isaacs, S.N. Monkeypox virus and insights into its immunomodulatory proteins. <i>Immunol Rev</i> 225 , 96-113 (2008).
489 490 401	4.	Otu, A., Ebenso, B., Walley, J., Barcelo, J.M. & Ochu, C.L. Global human monkeypox outbreak: atypical presentation demanding urgent public health action. <i>Lancet Microbe</i> 2 , aEE4, aEE5 (2022)
491 492 493	5.	3 , e554-e555 (2022). Lum, F.M. <i>et al.</i> Monkeypox: disease epidemiology, host immunity and clinical interventions. <i>Nat Rev Immunol</i> 22 , 597-613 (2022).
494 495 496 497	6.	Petersen, B.W., Harms, T.J., Reynolds, M.G. & Harrison, L.H. Use of Vaccinia Virus Smallpox Vaccine in Laboratory and Health Care Personnel at Risk for Occupational Exposure to Orthopoxviruses - Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2015. <i>MMWR Morb Mortal Wkly Rep</i> 65 , 257-262 (2016).
498 499 500	7.	Ahmed, S.F., Sohail, M.S., Quadeer, A.A. & McKay, M.R. Vaccinia-Virus-Based Vaccines Are Expected to Elicit Highly Cross-Reactive Immunity to the 2022 Monkeypox Virus. <i>Viruses</i> 14 (2022).
501 502	8.	Thornhill, J.P. <i>et al.</i> Monkeypox Virus Infection in Humans across 16 Countries - April- June 2022. <i>N Engl J Med</i> 387 , 679-691 (2022).
503 504 505 506 507	9.	 Rao, A.K. <i>et al.</i> Use of JYNNEOS (Smallpox and Monkeypox Vaccine, Live, Nonreplicating) for Preexposure Vaccination of Persons at Risk for Occupational Exposure to Orthopoxviruses: Recommendations of the Advisory Committee on Immunization Practices - United States, 2022. <i>MMWR Morb Mortal Wkly Rep</i> 71, 734-742 (2022).
508 509	10.	Lane, J.M. & Goldstein, J. Adverse events occurring after smallpox vaccination. <i>Semin</i> <i>Pediatr Infect Dis</i> 14 , 189-195 (2003).
510	11.	McFadden, G. Poxvirus tropism. <i>Nat Rev Microbiol</i> 3 , 201-213 (2005).
511 512	12.	Hooper, J.W. <i>et al.</i> Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. <i>J Virol</i> 78 , 4433-4443 (2004).
512 513 514	13.	Ramirez, J.C., Tapia, E. & Esteban, M. Administration to mice of a monoclonal antibody that neutralizes the intracellular mature virus form of vaccinia virus limits virus replication

 (2002). (2002). Hooper, J.W., Custer, D.M., Schmaljohn, C.S. & Schmaljohn, A.L. DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxirus challenge. <i>Virology</i> 266, 329-339 (2000). Mucker, E.M. <i>et al.</i> A Nucleic Acid-Based Orthopoxvirus Vaccine Targeting the Vaccinia Virus L1, A27, B5, and A33 Proteins Protects Rabbits against Lethal Rabbitpox Virus Aerosol Challenge. <i>J Virol</i> 96, e0150421 (2022). Hooper, J.W., Custer, D.M. & Thompson, E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. <i>Virology</i> 306, 181-195 (2003). Pardi, N. <i>et al.</i> Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. <i>Nature</i> 543, 248-251 (2017). Petsch, B. <i>et al.</i> Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. <i>Nat Biotechnol</i> 30, 1210-1216 (2012). Edshill-Smith, Y. <i>et al.</i> Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. <i>Nat Med</i> 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA4/5 -included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hu</i>	515		efficiently under prophylactic and therapeutic conditions. J Gen Virol 83, 1059-1067
 vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge. <i>Virology</i> 266, 329-339 (2000). Mucker, E.M. <i>et al.</i> A Nucleic Acid-Based Orthopoxvirus Vaccine Targeting the Vaccinia Virus L1, A27, B5, and A33 Proteins Protects Rabbits against Lethal Rabbitpox Virus Aerosol Challenge. <i>J Virol</i> 96, e0150421 (2022). Hooper, J.W., Custer, D.M. & Thompson, E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. <i>Virology</i> 306, 181-195 (2003). Pardi, N. <i>et al.</i> Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. <i>Nature</i> 543, 248-251 (2017). Parts, B. <i>et al.</i> Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. <i>Nat Biotechnol</i> 30, 1210-1216 (2012). Edghill-Smith, Y. <i>et al.</i> Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. <i>Nat Med</i> 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 500 (1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Sogo, C. <i>et al.</i> Protective immunity to vaccinai virus induced by vaccination with multiple recombinant outer membra	516		(2002).
 <i>Virology</i> 266, 329-339 (2000). Mucker, E.M. <i>et al.</i> A Nucleic Acid-Based Orthopoxvirus Vaccine Targeting the Vaccinia Virus L1, A27, B5, and A33 Proteins Protects Rabbits against Lethal Rabbitpox Virus Aerosol Challenge. <i>J Virol</i> 96, e0150421 (2022). Hooper, J.W., Custer, D.M. & Thompson, E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. <i>Virology</i> 306, 181-195 (2003). Pardi, N. <i>et al.</i> Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. <i>Nature</i> 543, 248-251 (2017). Petsch, B. <i>et al.</i> Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. <i>Nat Biotechnol</i> 30, 1210-1216 (2012). Edghill-Smith, Y. <i>et al.</i> Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. <i>Nat Med</i> 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccinai virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxivus disease. <i>Virol</i> 7	517	14.	Hooper, J.W., Custer, D.M., Schmaljohn, C.S. & Schmaljohn, A.L. DNA vaccination with
 Mucker, E.M. <i>et al.</i> A Nucleic Acid-Based Orthopoxvirus Vaccine Targeting the Vaccinia Virus L1, A27, B5, and A33 Proteins Protects Rabbits against Lethal Rabbitpox Virus Aerosol Challenge. <i>J Virol</i> 96, e0150421 (2022). Hooper, J.W., Custer, D.M. & Thompson, E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. <i>Virology</i> 306, 181-195 (2003). Pardi, N. <i>et al.</i> Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. <i>Nature</i> 543, 248-251 (2017). Petsch, B. <i>et al.</i> Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. <i>Nat Biotechnol</i> 30, 1210-1216 (2012). Edghill-Smith, Y. <i>et al.</i> SaRS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunity</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccinal virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol/</i>98, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope	518		vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge.
 Virus L1, A27, B5, and A33 Proteins Protects Rabbits against Lethal Rabbitpox Virus Aerosol Challenge. <i>J Virol</i> 96, e0150421 (2022). Hooper, J.W., Custer, D.M. & Thompson, E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. <i>Virology</i> 306, 181-195 (2003). Pardi, N. <i>et al.</i> Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. <i>Nature</i> 543, 248-251 (2017). Petsch, B. <i>et al.</i> Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. <i>Nat Biotechnol</i> 30, 1210-1216 (2012). Edghill-Smith, Y. <i>et al.</i> Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. <i>Nat Med</i> 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails ge	519		<i>Virology</i> 266 , 329-339 (2000).
 Aerosol Challenge. J Virol 96, e0150421 (2022). Hooper, J.W., Custer, D.M. & Thompson, E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology 306, 181-195 (2003). Pardi, N. <i>et al.</i> Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543, 248-251 (2017). Petsch, B. <i>et al.</i> Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 30, 1210-1216 (2012). Edghill-Smith, Y. <i>et al.</i> Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. Nat Med 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen -Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. Immunity 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. Signal Transduct Target Ther 7, 362 (2022). Wu, J. <i>et al.</i> Creening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. J Med Virol 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. Hum Vaccin limunother 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccina virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J Virol 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. Virol 78, 441 (2011). <li< td=""><td>520</td><td>15.</td><td>Mucker, E.M. et al. A Nucleic Acid-Based Orthopoxvirus Vaccine Targeting the Vaccinia</td></li<>	520	15.	Mucker, E.M. et al. A Nucleic Acid-Based Orthopoxvirus Vaccine Targeting the Vaccinia
 Hooper, J.W., Custer, D.M. & Thompson, E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. <i>Virology</i> 306, 181-195 (2003). Pardi, N. <i>et al.</i> Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. <i>Nature</i> 543, 248-251 (2017). Petsch, B. <i>et al.</i> Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. <i>Nat Biotechnol</i> 30, 1210-1216 (2012). Petsch, R. <i>et al.</i> Protective efficacy of in vitro synthesized, specific mRNA vaccines against for protection against monkeypox virus. <i>Nat Med</i> 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	521		Virus L1, A27, B5, and A33 Proteins Protects Rabbits against Lethal Rabbitpox Virus
 protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. <i>Virology</i> 306, 181-195 (2003). Pardi, N. <i>et al.</i> Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. <i>Nature</i> 543, 248-251 (2017). Petsch, B. <i>et al.</i> Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. <i>Nat Biotechnol</i> 30, 1210-1216 (2012). Edghill-Smith, Y. <i>et al.</i> Snallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. <i>Nat Med</i> 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 128-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	522		Aerosol Challenge. <i>J Virol</i> 96 , e0150421 (2022).
 responses in nonhuman primates. <i>Virology</i> 306, 181-195 (2003). Pardi, N. <i>et al.</i> Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. <i>Nature</i> 543, 248-251 (2017). Petsch, B. <i>et al.</i> Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. <i>Nat Biotechnol</i> 30, 1210-1216 (2012). Edghill-Smith, Y. <i>et al.</i> Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. <i>Nat Med</i> 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virol ys</i> 254, 71-80 (1999). 	523	16.	Hooper, J.W., Custer, D.M. & Thompson, E. Four-gene-combination DNA vaccine
 Pardi, N. <i>et al.</i> Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. <i>Nature</i> 543, 248-251 (2017). Petsch, B. <i>et al.</i> Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. <i>Nat Biotechnol</i> 30, 1210-1216 (2012). Edghill-Smith, Y. <i>et al.</i> Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. <i>Nat Med</i> 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccina virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol</i> 78, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinai virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	524		protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody
 vaccination. <i>Nature</i> 543, 248-251 (2017). Petsch, B. <i>et al.</i> Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. <i>Nat Biotechnol</i> 30, 1210-1216 (2012). Edghill-Smith, Y. <i>et al.</i> Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. <i>Nat Med</i> 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 53, 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 - included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol</i> 78, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	525		responses in nonhuman primates. <i>Virology</i> 306 , 181-195 (2003).
 Petsch, B. <i>et al.</i> Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. <i>Nat Biotechnol</i> 30, 1210-1216 (2012). Edghill-Smith, Y. <i>et al.</i> Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. <i>Nat Med</i> 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol</i> 18, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	526	17.	Pardi, N. et al. Zika virus protection by a single low-dose nucleoside-modified mRNA
 influenza A virus infection. <i>Nat Biotechnol</i> 30, 1210-1216 (2012). Edghill-Smith, Y. <i>et al.</i> Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. <i>Nat Med</i> 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 53, 534 1281-148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccinai virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol</i> 78, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	527		vaccination. Nature 543, 248-251 (2017).
 Edghill-Smith, Y. <i>et al.</i> Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. <i>Nat Med</i> 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol J</i>8, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	528	18.	Petsch, B. et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against
 for protection against monkeypox virus. <i>Nat Med</i> 11, 740-747 (2005). Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol</i> 78, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	529		influenza A virus infection. Nat Biotechnol 30 , 1210-1216 (2012).
 Lederer, K. <i>et al.</i> SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53, 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	530	19.	Edghill-Smith, Y. et al. Smallpox vaccine-induced antibodies are necessary and sufficient
533Center Responses Associated with Neutralizing Antibody Generation. Immunity 53,5341281-1295 e1285 (2020).53521.Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity53650, 1132-1148 (2019).53722.Sang, Y. et al. An mRNA vaccine with broad-spectrum neutralizing protection against538Omicron variant sublineages BA.4/5 -included SARS-CoV-2. Signal Transduct Target539Ther 7, 362 (2022).54023.Wu, J. et al. Screening and evaluation of potential inhibitors against vaccinia virus from541767 approved drugs. J Med Virol 91, 2016-2024 (2019).54224.Zhang, L. et al. A bioluminescent imaging mouse model for Marburg virus based on a543pseudovirus system. Hum Vaccin Immunother 13, 1811-1817 (2017).54425.Fogg, C. et al. Protective immunity to vaccinia virus induced by vaccination with multiple545recombinant outer membrane proteins of intracellular and extracellular virions. J Virol54678, 10230-10237 (2004).54726.Golden, J.W. et al. Polyclonal antibody cocktails generated using DNA vaccine548technology protect in murine models of orthopoxvirus disease. Virol J 8, 441 (2011).54927.Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective550antibodies directed against vaccinia virus envelope antigens. Virology 254, 71-80 (1999).	531		for protection against monkeypox virus. <i>Nat Med</i> 11 , 740-747 (2005).
 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). 22. Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). 23. Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). 24. Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). 544 25. Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). 26. Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8, 441 (2011). 27. Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	532	20.	
 1281-1295 e1285 (2020). Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. <i>Immunity</i> 50, 1132-1148 (2019). 22. Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). 23. Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). 24. Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). 544 25. Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). 26. Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8, 441 (2011). 27. Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	533		Center Responses Associated with Neutralizing Antibody Generation. <i>Immunity</i> 53,
 536 50, 1132-1148 (2019). 537 22. Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 - included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). 540 23. Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). 542 24. Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). 544 25. Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). 547 26. Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol</i> 78, 441 (2011). 549 27. Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 			
 536 50, 1132-1148 (2019). 537 22. Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against Omicron variant sublineages BA.4/5 - included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). 540 23. Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). 542 24. Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). 544 25. Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). 547 26. Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol</i> 78, 441 (2011). 549 27. Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 		21.	
 Omicron variant sublineages BA.4/5 -included SARS-CoV-2. <i>Signal Transduct Target</i> <i>Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol</i> J 8, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	536		50 , 1132-1148 (2019).
 <i>Ther</i> 7, 362 (2022). Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol</i> 18, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	537	22.	Sang, Y. <i>et al.</i> An mRNA vaccine with broad-spectrum neutralizing protection against
 Wu, J. <i>et al.</i> Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol</i> J8, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	538		Omicron variant sublineages BA.4/5 -included SARS-CoV-2. Signal Transduct Target
 541 767 approved drugs. <i>J Med Virol</i> 91, 2016-2024 (2019). 542 24. Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a 543 pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). 544 25. Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple 545 recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 546 78, 10230-10237 (2004). 547 26. Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine 548 technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8, 441 (2011). 549 27. Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	539		<i>Ther</i> 7 , 362 (2022).
 542 24. Zhang, L. <i>et al.</i> A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). 544 25. Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). 547 26. Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol</i> J8, 441 (2011). 549 27. Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	540	23.	Wu, J. et al. Screening and evaluation of potential inhibitors against vaccinia virus from
 543 pseudovirus system. <i>Hum Vaccin Immunother</i> 13, 1811-1817 (2017). 544 25. Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple 545 recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 546 78, 10230-10237 (2004). 547 26. Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine 548 technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8, 441 (2011). 549 27. Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	541		767 approved drugs. <i>J Med Virol</i> 91 , 2016-2024 (2019).
 544 25. Fogg, C. <i>et al.</i> Protective immunity to vaccinia virus induced by vaccination with multiple 545 recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 546 78, 10230-10237 (2004). 547 26. Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine 548 technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8, 441 (2011). 549 27. Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	542	24.	Zhang, L. et al. A bioluminescent imaging mouse model for Marburg virus based on a
 recombinant outer membrane proteins of intracellular and extracellular virions. <i>J Virol</i> 78, 10230-10237 (2004). Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	543		pseudovirus system. <i>Hum Vaccin Immunother</i> 13 , 1811-1817 (2017).
546 78 , 10230-10237 (2004).54726.Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine548technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8 , 441 (2011).54927.Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254 , 71-80 (1999).	544	25.	Fogg, C. et al. Protective immunity to vaccinia virus induced by vaccination with multiple
 547 26. Golden, J.W. <i>et al.</i> Polyclonal antibody cocktails generated using DNA vaccine 548 technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8, 441 (2011). 549 27. Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	545		recombinant outer membrane proteins of intracellular and extracellular virions. J Virol
 technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8, 441 (2011). Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	546		78 , 10230-10237 (2004).
 549 27. Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective 550 antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254, 71-80 (1999). 	547	26.	Golden, J.W. et al. Polyclonal antibody cocktails generated using DNA vaccine
550 antibodies directed against vaccinia virus envelope antigens. <i>Virology</i> 254 , 71-80 (1999).	548		technology protect in murine models of orthopoxvirus disease. <i>Virol J</i> 8 , 441 (2011).
	549	27.	Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective
551 28. Sakhatskyy, P., Wang, S., Chou, T.H. & Lu, S. Immunogenicity and protection efficacy of	550		antibodies directed against vaccinia virus envelope antigens. Virology 254 , 71-80 (1999).
	551	28.	Sakhatskyy, P., Wang, S., Chou, T.H. & Lu, S. Immunogenicity and protection efficacy of
552 monovalent and polyvalent poxvirus vaccines that include the D8 antigen. <i>Virology</i> 355 ,	552		monovalent and polyvalent poxvirus vaccines that include the D8 antigen. <i>Virology</i> 355 ,
553 164-174 (2006).	553		164-174 (2006).
554 29. Turner, J.S. <i>et al.</i> SARS-CoV-2 mRNA vaccines induce persistent human germinal centre	554	29.	Turner, J.S. et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre
555 responses. <i>Nature</i> 596 , 109-113 (2021).			·
556 30. Stittelaar, K.J. <i>et al.</i> Modified vaccinia virus Ankara protects macaques against respiratory		30.	
557 challenge with monkeypox virus. <i>J Virol</i> 79 , 7845-7851 (2005).			
558 31. Golden, J.W. <i>et al.</i> Side-by-side comparison of gene-based smallpox vaccine with MVA	558	31.	Golden, J.W. et al. Side-by-side comparison of gene-based smallpox vaccine with MVA

559		in nonhuman primates. <i>PLoS One</i> 7 , e42353 (2012).
560	32.	Rubins, K.H. et al. The host response to smallpox: analysis of the gene expression
561		program in peripheral blood cells in a nonhuman primate model. Proc Natl Acad Sci U S
562		A 101 , 15190-15195 (2004).
563	33.	Zaucha, G.M., Jahrling, P.B., Geisbert, T.W., Swearengen, J.R. & Hensley, L. The pathology
564		of experimental aerosolized monkeypox virus infection in cynomolgus monkeys (Macaca
565		fascicularis). <i>Lab Invest</i> 81 , 1581-1600 (2001).
566	34.	Hickman, H.D. et al. Anatomically restricted synergistic antiviral activities of innate and
567		adaptive immune cells in the skin. <i>Cell Host Microbe</i> 13 , 155-168 (2013).
568	35.	Remakus, S., Rubio, D., Ma, X., Sette, A. & Sigal, L.J. Memory CD8+ T cells specific for a
569		single immunodominant or subdominant determinant induced by peptide-dendritic cell
570		immunization protect from an acute lethal viral disease. J Virol 86, 9748-9759 (2012).
571	36.	Xu, R.H., Fang, M., Klein-Szanto, A. & Sigal, L.J. Memory CD8+ T cells are gatekeepers of
572		the lymph node draining the site of viral infection. <i>Proc Natl Acad Sci U S A</i> 104, 10992-
573		10997 (2007).
574	37.	Crotty, S. & Ahmed, R. Immunological memory in humans. <i>Semin Immunol</i> 16, 197-203
575		(2004).
576	38.	Crotty, S. et al. Cutting edge: long-term B cell memory in humans after smallpox
577		vaccination. J Immunol 171 , 4969-4973 (2003).
578	39.	Liu, Q. et al. A novel high-throughput vaccinia virus neutralization assay and preexisting
579		immunity in populations from different geographic regions in China. <i>PLoS One</i> 7 ,
580		e33392 (2012).
581		
JUT		

581

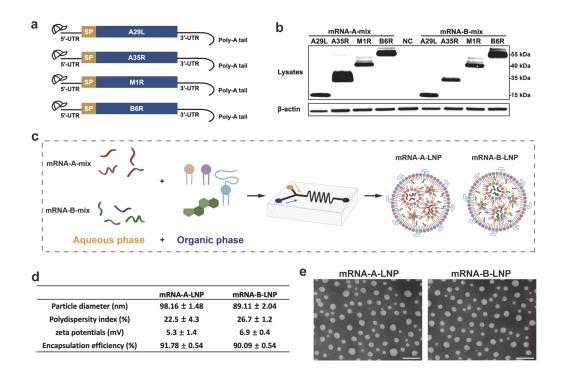
- ACKNOWLEDGEMENTS 582
- The study was supported by the National Key R&D Program of China 583

(2021YFC2302405) and the National Natural Science Foundation of China 584

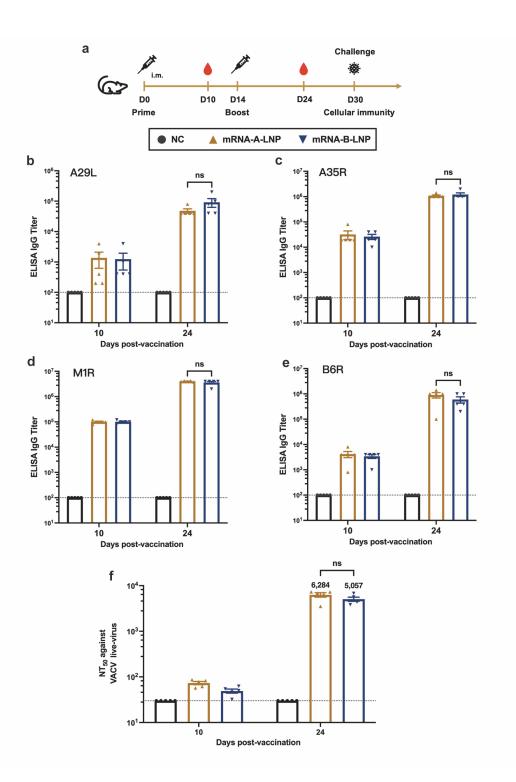
(Grant No. 81830101). 585

586

AUTHOR CONTRIBUTIONS 587


- JY and SW conceived the project. YS and ZZ synthesized the mRNA vaccine 588
- and performed the experiments. FL, YW and WH performed animal challenge 589
- experiments. HL, CY, HS, JL, YC, JM, XW, and JF provided experimental 590
- support. JY designed the MPXV mRNA sequence. YS, ZZ and JY analyzed all 591

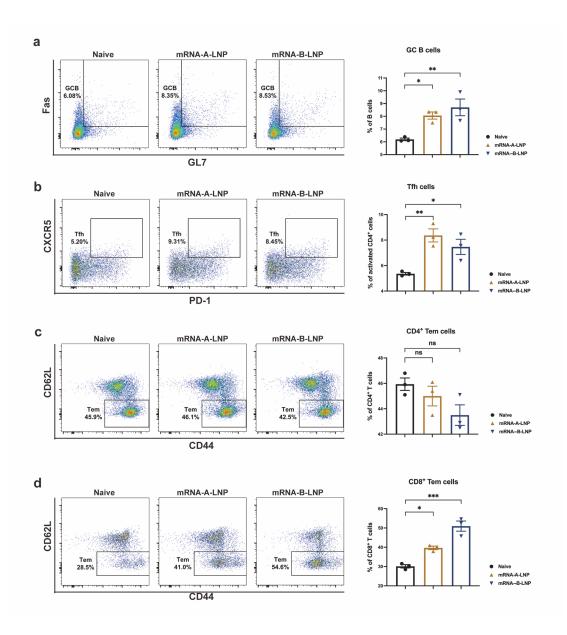
- the data and wrote the manuscript. JY and SW edited and revised the
- 593 manuscript. All authors read and approved the final version of the manuscript.


594

595 **COMPETING INTERESTS**

596 The authors declare no competing interests.

599	Figure 1. Design and encapsulation of mRNA-A-LNP and mRNA-B-LNP
600	(a) The mRNA construct expressing the MPXV-specific antigen A29L, A35R,
601	M1R, B6R. (b) The MPXV-specific antigen A29L, A35R, M1R and B6R was
602	expressed by mRNA in HEK293T cells. Cells were transfected with four
603	mRNAs (1 μ g/mL) each from mRNA-A-mix and mRNA-B-mix for 20 hours
604	using Lipofectamine 3000 transfection reagent. (c) Preparation mechanism of
605	mRNA-A-LNP and mRNA-B-LNP. Briefly, the four mRNAs were mixed in an
606	acidic aqueous solution, then injected with organic phase lipids, and the
607	mixture was extruded through a microfluidic chip. (d) The physicochemical
608	parameters of mRNA-A-LNP and mRNA-B-LNP. Data are shown as mean \pm
609	SEM. (e) A representative transmission electronic microscopic (TEM) image
610	presented the morphology of mRNA-A-LNP and mRNA-B-LNP. Scale bar =
611	200 nm.

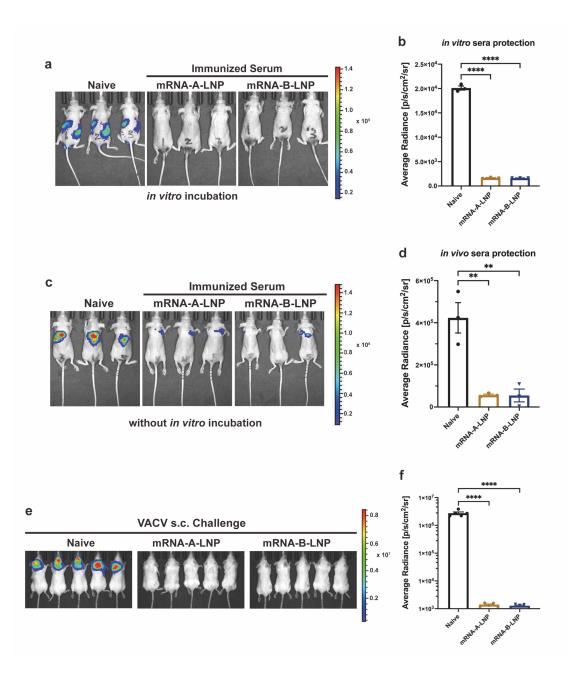


613

Figure 2. Humoral Immune Response in mRNA-A-LNP and mRNA-B-

- 615 LNP-Vaccinated Mice
- 616 Female BALB/c mice were immunized with 40 μg mRNA-A-LNP vaccine (n =
- 5) or 40 μ g mRNA-B-LNP vaccine (n = 5) or were designated negative

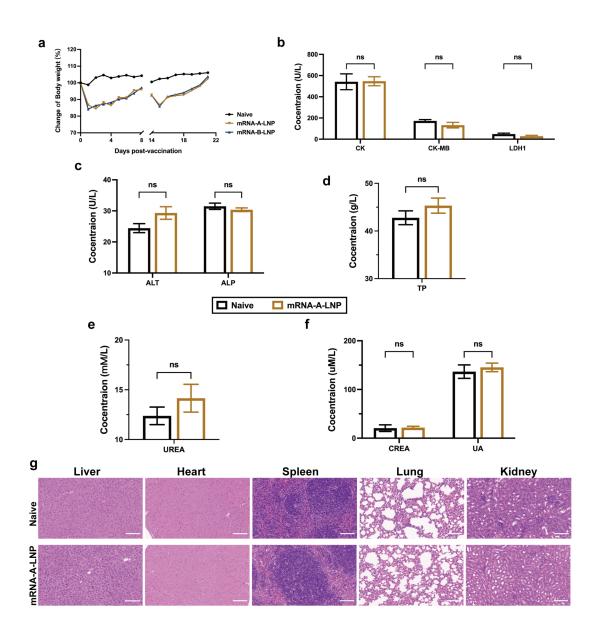
618	controls (n = 5). Two intramuscular immunizations were on day 0 and day 14,
619	respectively. Serum was collected 10 and 24 days after the initial vaccination.
620	(a) Schematic diagram of immunization, sample collection, and challenge
621	schedule. (b-e) The MPXV-specific antigen A29L, A35R, M1R and B6R IgG
622	antibody titer was determined by ELISA. (f) The NT50 was determined by
623	neutralizing antibody assay based on live VACV. The dashed line indicates
624	the limit of detection of the assay. Data are shown as mean \pm SEM.
625	Significance was calculated using two-way ANOVA with multiple comparison
626	tests (n.s., not significant; **p < 0.01).


628


```
630 mRNA-B-LNP-Vaccinated Mice
```

(a-b) MPXV-specific GC B cells (a) and Tfh cells (b) in DLNs were detected by

- flow cytometry. (c-d) MPXV-specific CD4⁺ (c) and CD8⁺ (d) Tem cells in
- spleen were detected by flow cytometry. Data are shown as mean ± SEM.
- 634 Significance was calculated using one-way ANOVA with multiple comparison
- 635 **tests (n.s., not significant; *p < 0.05, **p < 0.01, ***p < 0.001)**.


637

639 Challenge in Mice.

(a-b) *In vitro* serum protection. Serum (13 μ I) and virus (4 x 10³ TCID₅₀) were mixed for one hour before the i.v. and i.p. challenges of the 4-week-old nude mice (n = 3). Bioluminescent signal measurements were taken 6 hours after the viral challenge. (c-d) *In vivo* serum protection. Serum (50 μ I) was first injected intravenously into the 4-week-old nude mice (n = 3), followed one

645	hour later by s.c. challenge with VACV (2.5 x 10^5 TCID ₅₀). Bioluminescent
646	signal measurements were taken 24 hours after the viral challenge. (e-f) Thirty
647	days after initial immunization, mice ($n=5$) were s.c. challenged with VACV (4
648	x 10^5 TCID ₅₀). The viral load of mice was measured by bioluminescence
649	imaging, and the bioluminescence signal of mice was measured 24 hours
650	after the challenge. Data are shown as mean \pm SEM. Significance was
651	calculated using one-way ANOVA with multiple comparison tests (** $p < 0.01$,
652	****p < 0.0001).

- (a) The body weight records of mice on the first eight days after each
- vaccination. (b-f) Heart, liver and kidney function were determined by blood
- biochemical parameters (n = 5). CK, CK-MB and LDH1 represent heart
- 659 function (b), ALT, ALP and TP represent liver function (c-d), while UREA,
- 660 CREA and UA represent kidney function (e-f). (g) Representative
- histopathology (H&E) of different tissues, heart, liver, spleen, lung and kidney

- 662 from naive mice or mRNA-A-LNP-immune mice. The H&E stained sections
- shown in the data are representative results from three test mice 48 hours
- post-inoculation. Scale bar = 100 μ m, 30 ×. Data are shown as mean ± SEM.
- 665 Significance was calculated using two-way ANOVA with multiple comparison
- 666 tests (n.s., not significant; *p < 0.05, **p < 0.01).
- 667