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Abstract 

Arboviral diseases such as dengue, Zika, chikungunya or yellow fever are a 

worldwide concern. The abundance of vector species plays a key role in the emergence 

of outbreaks of these diseases, so forecasting these numbers is fundamental in 

preventive risk assessment. Here we describe and demonstrate a novel approach that 

uses state-of-the-art deep learning algorithms to forecast disease vector numbers. Unlike 

classical statistical and machine learning methods, deep learning models use time series 

data directly as predictors and identify the features that are most relevant from a 

predictive perspective. We demonstrate the application of this approach to predict 
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temporal trends in the number of Aedes aegypti mosquito eggs across Madeira Island 

for the period 2013 to 2019. Specifically, we apply the deep learning models to predict 

whether, in the following week, the number of Ae. aegypti eggs will remain unchanged, 

or whether it will increase or decrease, considering different percentages of change. We 

obtained high predictive accuracy for all years considered (mean AUC = 0.92 ± 0.05 

sd). We also found that the preceding numbers of eggs is a highly informative predictor 

of future numbers. Linking our approach to disease transmission or importation models 

will contribute to operational, early warning systems of arboviral disease risk. 
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1. Introduction 

Arboviral diseases such as dengue, Zika, chikungunya or yellow fever are a 

worldwide concern, with large health, social and economic costs. More than half of the 

world’s population is at risk of disease and economic costs are large, with the costs of 

dengue alone estimated at US$ 9 billion/year (Mayer et al., 2017; Messina et al., 2019; 

Shepard et al., 2016). Such diseases are transmitted by mosquitoes of the genus Aedes 

whose distribution is expanding - and projected to expand further in the future - due to 

climate change and increased transportation and human mobility (Kraemer et al., 2019; 

Salami et al., 2020b; Santos et al., 2022). These species are now established in many 

regions of the world, including in several areas of Europe (Capinha et al., 2014; Oliveira 

et al., 2021), where outbreaks of Aedes-borne diseases occurred recently (Brady and 

Hay, 2019; Sousa et al., 2012). There are no widespread or effective vaccines or 

treatment for most of these diseases yet, and the spread of Aedes spp. calls for integrated 
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tools to predict their presence and number in space and time, to inform timely control 

initiatives. 

Accurate forecasts of Aedes spp. numbers are critical to inform public health 

decision making and implement preventive measures. Since the abundance of vector 

species plays a key role in disease outbreak emergence (e.g., Jupille et al., 2016; Li et 

al., 2019; Messina et al., 2019), forecasting such numbers is essential for preventive risk 

assessment. Most forecasts of mosquito numbers are performed with “classical” 

statistical and machine learning models, such as generalized linear models sensu lato 

(e.g., generalized additive models, generalized linear mixed models). These models use 

tabular-type data (i.e., a one-to-one relationship between values of dependent and 

predictor variables), which implies that the temporal variation in the predictors must be 

discretized prior to the modelling. This is often performed by applying generic 

statistical functions (e.g., means or sums) across fixed temporal windows (e.g., weeks, 

months, years) (e.g., Cheng et al., 2020; da Cruz Ferreira et al., 2017; Li et al., 2019; 

Monaghan et al., 2019; Poh et al., 2019; Ripoche et al., 2019). Despite its widespread 

use, this approach it is likely sub-optimal in a high number of cases as there is no 

guarantee that the resulting set of predictors will be the most adequate from a predictive 

perspective. This sub-optimality concerns both the statistical functions used to 

summarize the data and the time scales represented. Recent studies have identified how 

even simple changes in these parameters can have a strong impact in the quality of the 

predictions (e.g., Poh et al., 2019). 

Here we describe and demonstrate the application of a deep learning-based 

approach, as an alternative to the classical approaches (e.g., Cheng et al., 2020; da Cruz 

Ferreira et al., 2017; Li et al., 2019; Monaghan et al., 2019; Poh et al., 2019; Ripoche et 

al., 2019) for predicting disease vector numbers. We present a novel approach to 
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forecast disease vector numbers that uses state-of-the-art deep learning algorithms and 

tools (Capinha et al., 2021; Van Kuppevelt et al., 2020). We apply it to predict temporal 

trends in Aedes aegypti mosquito egg numbers. Our major innovation, compared with 

the state of the art in the field, is that most forecasts of mosquito numbers are performed 

with “classical” statistical and machine learning models (e.g., Cheng et al., 2020; da 

Cruz Ferreira et al., 2017; Li et al., 2019; Monaghan et al., 2019; Poh et al., 2019; 

Ripoche et al., 2019). To our knowledge, this is the first time that time series 

classification with deep learning is used for modelling the variation of disease vector 

numbers. 

Deep neural networks are artificial neural networks (ANN; Lek and Guégan, 

1999; Olden et al., 2008) composed of a large number of trainable parameters (LeCun et 

al., 2015), which are able to perform complex tasks with high performance, such as 

computer vision and natural language processing but also image and sound data 

classification (Christin et al., 2019; LeCun et al., 2015). In the context of disease vector 

abundance prediction, a key difference of deep learning models over conventional 

approaches is that the former allow using time series directly as predictors and the 

relevance of the features found in these data is evaluated by the models themselves 

(Capinha et al., 2021; Fawaz et al., 2019). Importantly, this relevance (both in terms of 

the type of data transformation to perform and the temporal extent considered) is guided 

by the capacity of the models to accurately predict the dependent variable. In other 

words, deep learning models specifically aim at identifying the set of time series 

features that most accurately predict disease vector numbers, as opposed to conventional 

models, which rely on human expertise for this purpose. 

As case study, we use the yellow fever mosquito (Aedes aegypti) in the Madeira 

Island, Portugal. This species was first found on this island in 2005 (Margarita et al., 
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2006) and from late 2012 to early 2013 it was responsible for an outbreak of dengue 

fever, the first ever in Madeira and the first recorded in Europe since 1927, which 

infected more than 2000 people (Lourenço and Recker, 2014; Sousa et al., 2012). Due 

to strong socio-economic relations with South America (namely Brazil and Venezuela), 

the importation of arbovirus from tropical regions has been considered highly probable 

(Lourenço and Recker, 2014; Seixas et al., 2019), making the occurrence of future 

outbreaks of this and other arboviruses possible (Lourenço and Recker, 2014). Because 

of this, the numbers of Ae. aegypti across the island have been closely monitored by 

local health authorities in recent years and are a key indicator of disease outbreak risk. 

We describe and analyse a deep learning-based approach that provides accurate 

week-ahead forecasts of change in the numbers of Ae. aegypti in the Madeira Island. We 

use time series of the species abundance and of weather variables as predictors and 

integrate these into a standardized modelling workflow, which could be adapted to 

provide operational, real-time forecasts, and thus applied in early warning systems of 

disease risk. 

 

2. Material and methods 

2.1. Mosquito abundance data 

Mosquito abundance data were made available by the Regional Health Direction 

of the Autonomous Region of Madeira (Direção Regional da Saúde; 

https://www.madeira.gov.pt/drs/), the regional health authority responsible for the 

entomological and epidemiological surveillance in the archipelago. These data 

originated from 140 ovitraps placed in different locations across the Madeira Island, 

including air- and seaports, schools, health units and other public and private places, 
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from 2013 to 2019 (Fig 1). This network of traps is monitored weekly, recording the 

number of eggs of Ae. aegypti in each trap. 

 

2.2. Environmental predictors 

As environmental predictors of change in the number of eggs of Ae. aegypti, we 

considered the following weather variables at a daily resolution: mean (Tmean), 

maximum (Tmax) and minimum (Tmin) temperature, mean (RHmean), maximum 

(RHmax) and minimum (RHmin) relative humidity, and accumulated precipitation 

(Pre). These variables were selected because of their known role in driving population 

dynamics of mosquito species (e.g., Cheng et al., 2020; da Cruz Ferreira et al., 2017; Li 

et al., 2019; Monaghan et al., 2019; Ripoche et al., 2019). Data for these variables was 

obtained from local weather stations and made available by the Portuguese Institute for 

Sea and Atmosphere (Instituto Português do Mar e da Atmosfera; www.ipma.pt).  

 

2.3. Forecasting changes in the number of eggs of Aedes aegypti 

We aimed at forecasting relative changes in the numbers of Ae. aegypti eggs 

instead of their absolute numbers. This a common strategy in risk assessment 

frameworks (e.g., Carbajo and Vezzani, 2015; Tsuda et al., 2016; Vanwambeke et al., 

2011). Accordingly, for each trap and observation week, we classified the variation in 

the number of eggs into one of 7 classes: no change in the number of eggs; decrease 

between 1 and 25%; decrease between >25 and 50%; decrease >50%; increase between 

1 and 25%; increase between >25 and 50%, and increase >50%. 

In addition to the weather predictors (see above), we also used the preceding 

values of egg numbers as predictor of the response variable. To match with the daily 
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resolution of the weather predictors, we replicated the weekly number of eggs 7 times 

(i.e., one per each day of the corresponding week).  

All predictors represented the six-month period that preceded the week of the 

observation. In other words, the classes of change in number of eggs were modelled as a 

function of variation in the predictor variables up to 6-months into the past.  

This kind of modelling exercise, where time series data is used to predict one of 

two or more classes, falls withing the scope of time series classification (Capinha et al., 

2021; Keogh and Kasetty, 2003). Several deep learning architectures can be used for 

time series classification, differing in the type of layers they have and on how 

information flows between them (Fawaz et al., 2019). Because we have no a priori 

reason to expect that a specific deep learning architecture will perform better than 

others, we evaluated a large number of models having distinct architectures and 

parametrizations (the so called ‘automated machine learning’ or ‘autoML’ approach; 

Guyon et al., 2019; Van Kuppevelt et al., 2020).  

For this purpose, we use mcfly (Van Kuppevelt et al., 2020), a python library that 

allows testing four deep learning architectures frequently used for time series 

classification: Convolutional Neural Networks (CNN), which have been mostly used for 

image pattern recognition (Brodrick et al., 2019; Wäldchen and Mäder, 2018) but that 

are also suited for time series classification (Zhao et al., 2017); Deep Convolutional 

Long Short-Term Memory networks (DeepConvLSTM), combining convolutional with 

LSTM recurrent neural networks (Chung et al., 2014), which were developed for 

sequence-type input data such as time series (Fawaz et al., 2019); Residual Networks 

(ResNet), which were proposed for image recognition (He et al., 2016) but used recently 

for time series classification with good performance (Fawaz et al., 2019); and Inception 

Time networks (InceptionTime), which are a very recent type of architecture proposed 
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explicitly for time series classification (Fawaz et al., 2019). For more details on these 

modelling architectures see Capinha et al. (2021) and Van Kuppevelt et al. (2020). 

 

2.4. Data partition 

The ‘autoML’ workflow in mcfly requires using multiple partitions from the full 

data set of response and predictor variables. Here we followed the partition scheme of 

Capinha et al. (2021), consisting of four partitions that are used at the various stages of 

model selection and training, and a fifth partition that is used to assess the predictive 

performance of the fully trained (‘final’) model. To ensure independence between the 

data used for model training and the data used for model testing, we used the data of 

each year (i.e., 2013 to 2019) separately for model testing (partition ‘T’), and the data 

for the remaining years for model training. The aim of this procedure is to mimic an 

operational setting where data available for previous years is used to train a model that 

will be employed in the real-time forecasting of changes in the number of eggs for the 

coming week. 

The data used for model training and selection were randomly partitioned into: 

data for training candidate models (25% of the data; At); data for validating candidate 

models (50%; Av); data for training the selected candidate model (75%; Bt = At + Av); 

validation data to determine the optimal number of epochs to train the selected 

candidate model (25%; Bv). Data partition was performed in R with package dismo 

(Hijmans et al., 2017; R Core Team, 2020). 

 

2.5. Model selection procedure 

The model selection procedure was performed as follows (Capinha et al., 2021; 

Van Kuppevelt et al., 2020): we randomly generated 5 models for each of the four 
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available deep-ANN architecture types (20 models in total) and trained each one with a 

small subset of the training data (data partition At) for 4 epochs (an “epoch” corresponds 

to the complete training dataset being passed forward and backward across the network 

one time; Capinha et al., 2021). The accuracy of candidate models, as provided by mcfly 

(i.e., the “proportion of cases correctly classified”), was then compared using a left-out 

validation data set (data partition Av) and the model with the highest performance was 

selected for training on the full training data (data partition Bt; Bt = At + Av) for up to 30 

epochs.  

We identified the optimal number of training epochs using data partition Bv. A 

too low number of epochs may result in underfitting of the model and thus in reduced 

predictive performance (since important patterns in the data may be missed), while an 

excessive number of epochs may result in overfitting of the model, which will reduce its 

generality and ability to classify new data. The predictive performance of the model at 

each training epoch each was assessed by measuring the area under the receiving 

operating characteristic curve (AUC), which is usually used in ecology and is not 

influenced by differences in the prevalence of classes (Dyderski et al., 2018). AUC was 

computed within R, using package cvAUC (LeDell et al., 2014; R Core Team, 2020).  

Finally, the performance of the model trained with the optimal number of epochs 

was evaluated using a test data set (data set T), using AUC as the accuracy metric as 

well. This procedure was repeated so that each year was used as test data (as partition 

‘T’). 

 

2.6. Importance of predictors 

We assessed the importance of each predictor variable by performing 

simulations with randomized test data, where in each simulation one predictor variable 
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was randomized at a time, while keeping the others unchanged (Molnar, 2020), and 

comparing the AUC from such simulations with the AUC from the original models. We 

did this for each different test year. We prepared the randomized data in R (using 

function sample from package base) (R Core Team, 2020). 

 

See Appendix A for example data and code for implementing data importation 

and modelling procedures. For more details on the deep learning techniques we used 

please see Capinha et al. (2021) and Van Kuppevelt et al. (2020). 

 

3. Results 

Regarding the percentage of observations per class of variation in the number of 

eggs between subsequent weeks, the class with more observations was “no change”, in 

all the years (table 1); these correspond mainly to cases where the number of eggs was 

continuously zero. The second and third most represented classes correspond to the 

largest (>50%) decrease and increase (respectively), and the classes the least 

represented correspond to the lower decreases or increases in the number of eggs (i.e., 1 

to 25% and >25 to 50%; table 1). 
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Fig 1. Location of the ovitraps in the Madeira island. 

 

Table 1. Percentage of observations per class of change in number of eggs between 

subsequent weeks in each year. “inc.” stands for increase and “dec.” stands for 

decrease in the number of eggs. 

  2013 2014 2015 2016 2017 2018 2019 

no change 81.7 78.0 77.6 74.7 74.9 79.4 75.3 

inc. 1-25% 0.7 0.6 0.7 1.0 0.6 0.7 0.8 

inc. 25-50% 0.8 1.0 1.4 1.2 1.6 1.0 0.9 

inc. >50% 7.4 8.9 9.1 10.4 10.3 8.4 10.4 

dec. 1-25% 0.6 0.6 0.8 0.9 0.8 0.5 0.7 

dec. 25-50% 0.3 0.7 0.7 0.4 0.5 0.3 0.5 

dec. >50% 8.5 10.1 9.8 11.5 11.4 9.6 11.4 

 

Concerning the performance of the candidate models, the best validation 

accuracies were achieved by model 12 in all the years (accuracy = 0.833 ± 0.005; mean 
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of years ± sd) (Fig 2), a model having a Deep Convolutional Long Short-Term Memory 

(DeepConvLSTM) architecture.  

Model 19, also with a DeepConvLSTM architecture had high validation 

accuracies too (accuracy = 0.829 ± 0.003; mean of years ± sd), followed by model 14, 

with a Convolutional Neural Network (CNN) architecture and validation accuracy of 

0.821± 0.005 (mean of years ± sd). 

 

Fig 2. Validation accuracy for candidate models. For each candidate model (1-20 on 

the vertical axis), each bar corresponds to one test year (from top to bottom: 2019 to 

2013). The best model in all years is model 12, having a DeepConvLSTM architecture.  

 

After full training and identification of the optimal number of training epochs, 

this model delivered an excellent average predictive performance for all years (mean 

AUC = 0.92 ± 0.05 sd). Only in a few cases the performance went below this threshold, 

namely for class “increase >50%” where performance was fair (i.e., AUC from 0.7 to 
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0.8) for years 2013 and 2016, and good (AUC 0.8 to 0.9) for the remaining years, and 

for class “increase 25-50%” for year 2017, where the model performance was good 

(AUC = 0.88) (table 2). 

 

Table 2. AUC obtained in simulations with the original models: mean (and 

standard deviation) of classes and AUC per class. The year used for testing model 

performance is given in the column headers. “inc.” stands for increase, “dec.” stands for 

decrease. 

  2013 2014 2015 2016 2017 2018 2019 

mean  

(sd) 

0.92 

(0.06) 

0.93 

(0.04) 

0.92 

(0.04) 

0.90 

(0.06) 

0.91 

(0.05) 

0.91 

(0.05) 

0.92 

(0.05) 

c
la

s
s
 

no change 0.92 0.94 0.94 0.91 0.93 0.92 0.92 

inc. 1-25% 0.95 0.94 0.93 0.91 0.92 0.92 0.94 

inc. 25-50% 0.93 0.93 0.93 0.90 0.88 0.92 0.94 

inc. >50% 0.78 0.83 0.83 0.78 0.81 0.80 0.80 

dec. 1-25% 0.95 0.96 0.94 0.94 0.94 0.93 0.95 

dec. 25-50% 0.96 0.94 0.94 0.93 0.95 0.96 0.93 

dec. >50% 0.94 0.95 0.96 0.94 0.93 0.94 0.93 

 

Concerning the importance of variables, AUC decreased most notoriously when 

the predictor ‘number of eggs’ was randomized, a result observed for all test years (Fig 

3). Slight decreases in performance are also apparent when temperature was randomized 

(either mean, maximum or minimum) for most test years. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.22.517519doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.22.517519
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

 

Fig 3. AUC (mean of classes and standard deviation) for simulations performed 

with original (not randomized) and randomized predictor variables (e.g., the 

columns “nb eggs” correspond to the simulations performed with randomized number 

of eggs, the columns “Tmean” correspond to the simulations performed with 

randomized mean temperature, and so on), for each year used as test data (indicated in 

the horizontal axis). Tmean, Tmax, Tmin: mean, maximum and minimum temperature 

(respectively), RHmean, RHmax, RHmin: mean, maximum and minimum relative 

humidity (respectively), Pre: precipitation. 

 

4. Discussion 

Obtaining accurate predictions of disease vector distribution and numbers is 

critical to inform decision making and implement timely and effective control actions, 

in line with the United Nations Sustainable Development Goals 3 and 13 of ending 
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vector-borne disease epidemics and strengthening early warning capacity of global 

health risks (UN General Assembly, 2015). 

In this work we used a deep learning approach to forecast the numbers of Ae. 

aegypti in Madeira island. To our knowledge, this is the first time that time series 

classification with deep learning is used for predicting variation of disease vector 

numbers. We also showed that the predictive accuracy of the approach was high, with 

the cross-class performances being good to excellent for all years considered. 

We provide the code and data files we used as appendix for those who which to 

replicate our study. Validation was conducted by assessing the performance of the 

models using seven different data sets and time periods independently, providing 

independent validation and demonstrating the advantages of the approach, given the 

high predictive accuracy obtained. 

We selected the candidate model with the highest validation accuracy in all 

years as the final model to train with the full training data set and obtain the predictions. 

However, other models also achieved high validation accuracies. Future work could 

include testing whether making predictions with an ensemble of such models would 

increase the robustness of predictions. However, for the purpose of demonstrating our 

approach we considered appropriate to use only the model with the highest validation 

accuracy. 

Our results are supportive of a wider testing and application of deep learning for 

predicting disease vector numbers. A defining feature of this approach is that it allows 

using raw time series data as predictors, being able to automatically identify relevant 

information such as thresholds and lag effects (Fawaz et al., 2019; Ryo et al., 2019) that 

could otherwise be missed when using classical approaches, which rely on temporally 

aggregated (and thus simplified) variables (Capinha et al., 2021). This capacity of deep 
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learning models can be an important asset in face of the growing availability of time 

series data, namely from mosquito monitoring programs and environmental sensors 

(e.g., satellite imagery and meteorological stations; Reichstein et al., 2019), that can be 

directly fed into the models (Capinha et al., 2021).  

We also identified that the number of eggs in the previous weeks was the most 

important predictor of variation in number of eggs, in agreement with previous studies 

(da Cruz Ferreira et al., 2017), and which suggests this variable has a high intrinsic 

predictability (Pennekamp et al., 2019). The relative importance of individual predictors 

representing other factors (temperature, relative humidity, and precipitation) was lower, 

despite an apparent relevance being also detected for temperature-related time series. 

We note that in the case of temperature and relative humidity, this apparently lower 

relevance may also result from correlations between the three measurements used to 

represent these factors (i.e., minimum, mean and maximum values). In other words, the 

models may be obtaining relevant information from time series representing a different 

measurement of the same factor. 

The approach presented here did not consider spatial structure explicitly. Given 

that the previous number of eggs had high explanatory power, the past number of eggs 

in nearby traps as predictors could also be included. We could also consider a leave one 

trap out method of validation, to see if the developed models are general spatially. 

Our models use tabular-type data and thus the temporal variation in the 

predictors was discretized prior to modelling. Although not the objective of our work, 

there are statistical models that can estimate lags between time series and disease 

outcomes, allowing the exploration of temporal lags without specifying lags a priori 

(e.g., Davis et al., 2018; Smith et al., 2020). Additionaly, longer time series could also 
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be considered as this has been reported for infectious disease predictions (e.g., Smith et 

al., 2020). 

Deep learning is a promising avenue but there is room for improvement and 

limitations to be mentioned and addressed in future studies. On one hand, the approach 

presented can be adapted for other specific classification tasks, and model generation 

and selection in mcfly can be fine-tuned. For example, the selection of candidate models 

can be adjusted to generate only one type of model architecture (Capinha et al., 2021; 

Van Kuppevelt et al., 2020). 

Also, deep learning approaches could be compared with the more classical 

statistical and machine learning approaches to assess how model performances differ 

between methods. Our study design could be complemented with a comparison with a 

simple baseline model and with “classical” statistical and machine learning models, 

such as generalized linear models sensu lato (e.g., Li et al., 2019; Poh et al., 2019; 

Ripoche et al., 2019). However, our objective was to show our approach works, which 

is clearly demonstrated by the high predictive accuracy obtained. Furthermore, the 

ecological interpretability of deep learning models and their outputs should be improved 

(Reichstein et al., 2019). This is being now tackled by the field of “explainable artificial 

intelligence” to understand how the models work and explain their outcomes (Shickel 

and Rashidi, 2020; Siddiqui et al., 2019). 

Despite these challenges, we presented a well performing modelling framework 

that can be used by non-experts in deep learning (Capinha et al., 2021; Van Kuppevelt 

et al., 2020) to predict disease vector numbers. Our work has a clear public health 

relevance. Integrating this approach into existing disease transmission or importation 

models (Lieberthal and Gardner, 2021; Salami et al., 2020b, 2020a) or with disease-

related Internet search activity (Aiken et al., 2020; Yang et al., 2017) and using high 
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resolution environmental data will likely contribute to improve operational, early 

warning systems of disease risk and guide the implementation of mosquito control 

measures.  
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Appendix A. Supplementary material 

S1 Text. Code for implementing data importation and modelling procedures. 

 

S1 Data. At classes eggs. Data file with egg classes from At partition. 

S1 Data. At nb eggs. Data file with number of eggs from At partition. 

S1 Data. At prec. Data file with precipitation from At partition. 

S1 Data. At rhmax. Data file with maximum relative humidity from At partition. 

S1 Data. At rhmean. Data file with mean relative humidity from At partition. 

S1 Data. At rhmin. Data file with minimum relative humidity from At partition. 

S1 Data. At tmax. Data file with maximum temperature from At partition. 

S1 Data. At tmean. Data file with mean temperature from At partition. 

S1 Data. At tmin. Data file with minimum temperature from At partition. 

 

S2 Data. Av classes eggs. Data file with egg classes from Av partition. 
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S2 Data. Av nb eggs. Data file with number of eggs from Av partition. 

S2 Data. Av prec. Data file with precipitation from Av partition. 

S2 Data. Av rhmax. Data file with maximum relative humidity from Av partition. 

S2 Data. Av rhmean. Data file with mean relative humidity from Av partition. 

S2 Data. Av rhmin. Data file with minimum relative humidity from Av partition. 

S2 Data. Av tmax. Data file with maximum temperature from Av partition. 

S2 Data. Av tmean. Data file with mean temperature from Av partition. 

S2 Data. Av tmin. Data file with minimum temperature from Av partition. 

 

S3 Data. Bt classes eggs. Data file with egg classes from Bt partition. 

S3 Data. Bt nb eggs. Data file with number of eggs from Bt partition. 

S3 Data. Bt prec. Data file with precipitation from Bt partition. 

S3 Data. Bt rhmax. Data file with maximum relative humidity from Bt partition. 

S3 Data. Bt rhmean. Data file with mean relative humidity from Bt partition. 

S3 Data. Bt rhmin. Data file with minimum relative humidity from Bt partition. 

S3 Data. Bt tmax. Data file with maximum temperature from Bt partition. 

S3 Data. Bt tmean. Data file with mean temperature from Bt partition. 

S3 Data. Bt tmin. Data file with minimum temperature from Bt partition. 

 

S4 Data. Bv classes eggs. Data file with egg classes from Bv partition. 

S4 Data. Bv nb eggs. Data file with number of eggs from Bv partition. 

S4 Data. Bv prec. Data file with precipitation from Bv partition. 

S4 Data. Bv rhmax. Data file with maximum relative humidity from Bv partition. 

S4 Data. Bv rhmean. Data file with mean relative humidity from Bv partition. 

S4 Data. Bv rhmin. Data file with minimum relative humidity from Bv partition. 
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S4 Data. Bv tmax. Data file with maximum temperature from Bv partition. 

S4 Data. Bv tmean. Data file with mean temperature from Bv partition. 

S4 Data. Bv tmin. Data file with minimum temperature from Bv partition. 

 

S5 Data. T classes eggs. Data file with egg classes from T partition. 

S5 Data. T nb eggs. Data file with number of eggs from T partition. 

S5 Data. T prec. Data file with precipitation from T partition. 

S5 Data. T rhmax. Data file with maximum relative humidity from T partition. 

S5 Data. T rhmean. Data file with mean relative humidity from T partition. 

S5 Data. T rhmin. Data file with minimum relative humidity from T partition. 

S5 Data. T tmax. Data file with maximum temperature from T partition. 

S5 Data. T tmean. Data file with mean temperature from T partition. 

S5 Data. T tmin. Data file with minimum temperature from T partition. 

 

S6 Data. T nb eggs random. Data file with randomized number of eggs from T 

partition. 

S6 Data. T prec random. Data file with randomized precipitation from T partition. 

S6 Data. T rhmax random. Data file with randomized maximum relative humidity 

from T partition. 

S6 Data. T rhmean random. Data file with randomized mean relative humidity from T 

partition. 

S6 Data. T rhmin random. Data file with randomized minimum relative humidity 

from T partition. 

S6 Data. T tmax random. Data file with randomized maximum temperature from T 

partition. 
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S6 Data. T tmean random. Data file with randomized mean temperature from T 

partition. 

S6 Data. T tmin random. Data file with randomized minimum temperature from T 

partition. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.22.517519doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.22.517519
http://creativecommons.org/licenses/by-nc-nd/4.0/

