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Abstract 
Characterization of somatic mutations at single-cell resolution is essential to study cancer evolution, 

clonal mosaicism, and cell plasticity. However, detection of mutations in single cells remains 

technically challenging. Here, we describe SComatic, an algorithm designed for the detection of 

somatic mutations in single-cell transcriptomic and ATAC-seq data sets without requiring matched 

bulk or single-cell DNA sequencing data. Using >1.5M single cells from 383 single-cell RNAseq and 

single-cell ATAC-seq data sets spanning cancer and non-neoplastic samples, we show that SComatic 

detects mutations in single cells, even in differentiated cells from polyclonal tissues not amenable to 

mutation detection using existing methods. In addition, SComatic permits the estimation of 

mutational burdens and de novo mutational signature analysis at single-cell and cell-type resolution. 

Notably, using matched exome and single-cell RNAseq data, we show that SComatic achieves a 20 to 

40-fold increase in precision as compared to existing algorithms for somatic SNV calling without 

compromising sensitivity. Overall, SComatic opens the possibility to study somatic mutagenesis at 

unprecedented scale and resolution using high-throughput single-cell profiling data sets.  
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Main 
Characterization of somatic mutations at single-cell resolution is essential to study genetic 

heterogeneity and cell plasticity in cancer1, clonal mosaicism in non-neoplastic tissues2, and to identify 

the mutational processes operative in both malignant and phenotypically normal cells3,4. Single-cell 

genome sequencing provides the most direct way to study mutations in single cells. However, single-

cell genomics methods are not easily scalable, and suffer from high rates of genomic drop-outs and 

artefacts introduced during whole-genome amplification5. To circumvent the issues associated with 

whole-genome amplification, other approaches rely on bulk sequencing of single-cell-derived colonies 

grown in vitro or clonal populations directly isolated from tissues6–8. However, in vitro growth of single-

cell-derived colonies is laborious and limited to cell types amenable to cell culture5,7,9, and isolation of 

clonal units is not technically feasible for some tissues. More recently, the development of ultra-

sensitive sequencing methods using strand-specific barcoding has permitted detection of mutations 

at single-molecule resolution, even in polyclonal tissues10,11. Yet, cell type information is lost unless 

cell sorting is performed prior to sequencing. Due to these technical limitations, our understanding of 

the patterns of somatic mutations across cell types and their impact on cell fates and phenotypes 

remains limited. 

 

An alternative strategy consists of detecting somatic mutations in sequencing reads from high-

throughput single-cell profiling assays directly, such as single-cell RNA-seq (scRNA-seq) and single-cell 

assay for transposase-accessible chromatin using sequencing (scATAC-seq). The main advantage of 

this approach is the possibility to harness the high throughput of single-cell profiling assays to map 

the lineage of cells to transcriptional or regulatory programmes12,13 without the need for complex 

experimental protocols for joint profiling of the DNA and RNA from the same cell3,8,14–16. Nevertheless, 

detection of mutations is strongly limited due to the variability in gene expression across cell types, 

allelic drop-out events, transcriptional bursts, RNA editing, limited depth of coverage, and sequencing 

artefacts17–19. Therefore, existing algorithms rely on detecting mutations, such as single-nucleotide 

variants (SNVs) or indels, previously identified using matched bulk or single-cell DNA sequencing 

data18,20–22. These approaches are limited because matched DNA sequencing data are rarely available 

for existing high-throughput single-cell data sets, and due to sampling biases or genetic heterogeneity 

between the samples undergoing DNA sequencing and single-cell profiling. Therefore, algorithms 

designed to detect somatic mutations in single-cell data sets de novo without requiring matched DNA 

sequencing data are critically needed. 

 

To address this need, we developed SComatic, an algorithm for de novo detection of somatic SNVs in 

single-cell profiling data sets, including scRNA-seq and scATAC-seq data, without requiring matched 

bulk or single-cell DNA sequencing data. Using a total of 1,575,862 non-neoplastic and cancer cells 

from 317 scRNA-seq and 66 scATAC-seq published data sets (Supplementary Table 1), we show that 

SComatic achieves a 20 to 40-fold increase in precision as compared to existing algorithms for somatic 

SNV calling without compromising sensitivity. In addition, we show that SComatic permits the 

detection of mutational burdens and de novo discovery of mutational signatures at cell-type 

resolution, even for differentiated cells and cells from polyclonal tissues showing high levels of genetic 

heterogeneity, which are not amenable to mutation detection using existing experimental or 

computational methods. SComatic is implemented in Python 3 and is available at 

https://github.com/cortes-ciriano-lab/SComatic.  
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Results 
 

Overview of SComatic 
We developed SComatic to detect somatic mutations using single-cell sequencing data without 

requiring matched bulk or single-cell DNA sequencing data (Fig. 1). In brief, SComatic computes base 

counts for every position of the genome across cell types from the same individual using cell type 

annotations established through e.g., marker gene expression (Fig. 1 and Methods). Somatic 

mutations are distinguished from germline polymorphisms and artefacts using a set of hard filters and 

statistical tests (Fig. 1). Specifically, SComatic only considers genomic positions with coverage in at 

least 5 cells from at least 2 cell types. Candidate somatic SNVs are distinguished from background 

sequencing errors and artefacts using a Beta-binomial test parameterized using non-neoplastic 

samples (Methods). Next, mutations detected in multiple cell types are considered to be germline 

polymorphisms or artefacts and are thus discounted as somatic. The key idea is that germline variants 

should be present in all cell types, whereas somatic mutations should only be detected in cell types 

from the same differentiation hierarchy,  unless mutations were acquired in a progenitor or stem cell 

prior to clonal diversification or during early development8,23,24. Candidate mutations overlapping 

known RNA editing sites or single-nucleotide polymorphisms (SNPs) with population frequencies 

greater than 1 % in gnomAD25 are also filtered out. In addition, SComatic uses a ‘Panel of Normals’ 

generated using a large collection of non-neoplastic samples to discount recurrent sequencing or 

mapping artefacts. For example, in 10x Chromium scRNA-seq data, recurrent errors are enriched in 

LINE and SINE elements, such as Alu elements (Supplementary Fig. 1), which are thus not considered 

for mutation calling. Finally, to make a mutation call, SComatic requires a sequencing depth of at least 

5 reads in the cell type in which the mutation is detected, and that the mutation is detected in at least 

3 sequencing reads from at least 2 different cells of the same type (Supplementary Fig. 2 and 

Methods).  

 

Validation of SComatic using matched single-cell RNA-seq and exome sequencing data  
To compare the patterns of mutations detected by SComatic against DNA sequencing data, we 

analysed scRNA-seq data generated using the 10X Genomics Chromium technology and matched 

whole-exome sequencing (WES) data from 8 cutaneous squamous cell carcinoma (cSCC) and matched 

adjacent normal tissue samples26. First, we compared the mutations detected by SComatic in epithelial 

cells using scRNA-seq data with those detected in matched WES data (Methods). For this analysis, we 

focused on the 9,788,377 positions in the genome across the 8 samples with sufficient coverage in 

both the scRNA-seq and WES data (Fig. 2d and Methods). In these regions, we detected 266 of the 

10,477 (2.4%) mutations found in the WES data, which we considered true positive mutations. Using 

SComatic, we detected 179 mutations in the scRNA-seq data (Fig. 2d), 78 (44%) of which were also 

detected in the WES data (Methods). For 49/179 (27%) of the mutations, we found at least 1 read in 

the WES data supporting the mutated allele, which was however insufficient evidence to call a 

mutation by our WES analysis pipeline (Methods). Finally, 52/179 (29%) mutations were only detected 

in the scRNA-seq data. Of these, 38/52 (73%) were detected in sample P7. Interestingly, 59 of the 85 

(69%) WES-specific mutations were also detected in P7 only. Mutational signature analysis revealed 

that 43 (83%) of the mutations only detected in the scRNA-seq data and 70 (82%) of the WES-specific 

mutations were attributed to single-base substitution (SBS) mutational signatures SBS7a, SBS7b and 

SBS7d, which are linked with mutagenesis caused by exposure to ultraviolet (UV) radiation, consistent 

with the expected predominant signature for these samples26 (Fig. 2e). In addition, the variant allele 
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fraction (VAF) of the mutations detected in WES and scRNA-seq data were not correlated for P7, unlike 

for other samples (Supplementary Fig. 3). Therefore, these results suggest that, for sample P7, the 

lack of sequencing reads in the WES data supporting those mutations detected by SComatic in the 

scRNA-seq data (and vice versa) is likely due to high genetic heterogeneity.  

 

Next, we applied SComatic to detect somatic mutations across all genomic positions with sufficient 

coverage in the scRNAseq data (Methods). We detected 810 and 186 SNVs in the tumour and matched 

normal samples, respectively (Supplementary Table 1), which mapped to 3’-UTR (40%), intronic (27%) 

and exonic regions (24%) (Supplementary Fig. 4). After normalizing by breadth of coverage (Methods), 

we estimated an average mutation rate per haploid genome for epithelial cells from the cSCC and 

normal skin samples of 12.8 and 3.7 mutations per Mb, respectively (note that we report mutational 

burdens for single cells as mutations per haploid genome because only one allele is usually detected 

per cell and genomic position). These rates are significantly higher as compared to non-epithelial cells 

in the data set, which had a median of 0.33 and 0.40 mutations per Mb in tumour and matched normal 

samples, respectively (P < 0.001, Mann-Whitney U-test; Supplementary Fig. 5). Mutational signature 

analysis attributed 71% and 84% of the mutations detected in epithelial cells from tumour and 

matched normal skin samples, respectively, to signatures associated with exposure to UV radiation 

(SBS7a-d; Fig. 2b-c and Methods), consistent with prior DNA sequencing studies of somatic mutations 

in sun-exposed skin7,27. The remaining mutations were mostly attributed to SBS5 and SBS40 signatures 

(19.6% and 13.4% for the tumour and matched normal samples, respectively), which have been 

previously identified in non-neoplastic skin samples7. The mutation rates computed using the 

mutations detected using scRNA-seq data for epithelial cells were highly correlated with the rates 

estimated using the WES data (R2 = 0.97, P = 0.0024; Fig. 2f and Methods), indicating that SComatic 

permits the calculation of mutation burdens at cell-type resolution. 

 

Together, these results show a high concordance between the mutations detected in scRNA-seq by 

SComatic and WES, and highlight that methods for calling mutations in single-cell data based on 

genotyping mutations previously identified in genome sequencing data are likely to have low 

sensitivity in samples with high levels of genetic heterogeneity.  

 

SComatic outperforms existing mutation detection algorithms 
Next, we compared the performance of SComatic against top-performing pipelines designed for 

detecting somatic mutations in scRNA-seq data22 using popular variant calling algorithms (VarScan228, 

SAMtools29 and Strelka230). To this aim, we used the matched WES and scRNA-seq data from epithelial 

cells from 7 out of the 8 cSCC tumours26 described above. We excluded patient P7 from this analysis 

due to the high level of genetic heterogeneity observed between the matched scRNA-seq and WES 

data (Supplementary Fig. 2). SComatic achieved a sensitivity of 0.59 (95% CI [0.58-0.60]), which was 

slightly lower than VarScan2 (0.62, 95% CI [0.61-0.63], P = 1.86 x 10-4), and significantly higher as 

compared to SAMtools (0.38, 95% CI [0.37-0.39], P < 10-15). Strelka2 showed a significantly higher 

sensitivity than SComatic (0.78, 95% CI [0.78-0.79], P < 10-15; Fig. 3a). However, SComatic 

outperformed by a large margin all other methods in terms of precision: 0.88 for SComatic (95% CI 

[0.87-0.89]) vs 0.043 for Strelka2 (P < 10-15, two-sided Student’s t-test; Fig. 3a). SComatic also achieved 

significantly higher F1 score values than other methods (0.71 vs < 0.08, respectively; P < 10-15; Fig. 3a). 

Notably, we obtained similar differences in performance between methods when also including 

sample P7 in the benchmarking set (Supplementary Fig. 6).  
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To further compare the performance of these algorithms, we performed mutational signature analysis 

by fitting COSMIC signatures to the observed mutational spectra (Methods). We found that 77% of 

the mutations detected by SComatic were attributed to signatures SBS7a-d (R2 = 0.96 and P < 10-15, 

Fig. 3b-c), and the mutational spectrum was highly consistent with the WES data (cosine similarity = 

0.99, Fig. 3d). By contrast, the mutations detected by VarScan2, SAMtools and Strelka2 were 

attributed to signatures SBS1 and SBS5 and were significantly different from the patterns of mutations 

detected in WES (cosine similarities < 0.47; Fig. 3d). Collectively, these results indicate that existing 

methods for detecting somatic mutations in scRNA-seq have high false positive rates, whereas 

SComatic enables the detection of somatic mutations at single-cell resolution at high precision without 

compromising sensitivity.  

 

Detection of somatic mutations in samples with high mutational burdens  
We next assessed the performance of SComatic to detect somatic mutations in samples characterised 

by a high mutational burden. To this aim, we applied SComatic to scRNA-seq data from 70 treatment-

naïve primary colorectal tumours, including 37 mismatch repair deficient (MMRd) tumours showing 

microsatellite instability (MSI), and 40 matched normal adjacent colon samples31,32. Using SComatic, 

we called 8,997 somatic SNVs across all samples (7,531 SNVs in MSI, 1,127 in microsatellite stable 

(MSS), and 339 in the matched normal samples; Supplementary Table 1), most of which mapped to 

non-coding elements, primarily UTR regions (37%) and introns (27%) (Supplementary Fig. 4). 

Consistent with previous colorectal cancer genome studies33,34, our analysis revealed that epithelial 

cells in MSI tumours showed a significantly higher mutational burden than epithelial cells from MSS 

tumours (24.7 vs 8.3 SNVs per Mb, P < 1.11 x 10-12; two-sided Mann-Whitney U-test) and normal 

adjacent colon samples (0.51 SNVs per Mb; P < 1.77 x 10-15). By contrast, the mutational burden for 

non-epithelial cells was low and comparable between MSI and MSS tumours (0.41 vs 0.52, P = 0.06; 

two-sided Mann-Whitney U-test), as expected for non-malignant cell types (Fig. 4a, Supplementary 

Fig. 5b). Moreover, the mutational burden estimated by SComatic using scRNA-seq data from 

epithelial cells in MSI tumours was comparable with that of MMRd tumours estimated using exome-

sequencing data from The Cancer Genome Atlas (TCGA)33,34 (Fig. 4b; P > 0.05; Student’s t-test).  

 

Mutational signature analysis attributed the mutations detected in MSI tumours to SBS signatures 

associated with MMRd (SBS6, SBS14, SBS15, SBS21, SBS26 and SBS44), SBS5 and SBS40 (Fig. 4c-d; 

Methods). In one sample (C172), 82.9% of mutations were attributed to signatures SBS10a, SBS10b 

and SBS28 (Fig. 4a,c,d), suggesting that hypermutation in this sample is driven by POLE deficiency35,36. 

In MSS tumours, most mutations were attributed to signatures SBS5 and SBS40, consistent with 

published compendia of mutational signatures extracted from large cancer genome sequencing 

studies36.  

 

We next compared the mutational burdens estimated by SComatic against VarScan2, SAMtools and 

Strelka2 using the colorectal cancer scRNA-seq data. As opposed to SComatic, the mutational burdens 

computed using the mutations detected by the other algorithms were not different between 

MSI/POLE-deficient and MSS or normal adjacent samples, consistent with the low specificity of 

existing methodologies for mutation calling using scRNA-seq data (Supplementary Fig. 7).  
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Together, these results indicate that SComatic permits the identification of the mutational processes 

operative in hypermutated samples at single-cell resolution without requiring matched genomic 

sequencing data. 

 

Detection of mutations using scRNA-seq data from samples with low mutational burdens 
We further tested the performance of SComatic to detect mutations in samples with low mutational 

burdens. To this aim, we applied SComatic to scRNA-seq data for CD34+-enriched cells from 5 

individuals with myeloproliferative neoplasms (MPN), a type of blood cancer caused by the clonal 

expansion of a single hematopoietic stem cell (HSC)8. We detected an average of 0.12 mutations per 

Mb per haploid genome, which primarily mapped to intronic regions (62%, Supplementary Figure 4). 

Mutational signature analysis revealed that 96% of the mutations detected by SComatic were 

attributed to signatures SBS5 and SBS40 (Fig. 5a-b), consistent with single-cell whole-genome 

sequencing (WGS) studies of HSCs from healthy donors6,37 and MPN patients8,38. In addition, we found 

a positive correlation between the average mutation rate of HSCs estimated by SComatic and the 

patients’ age at the time of sampling (Pearson’s r = 0.79; P = 0.09, Fig. 5c), in agreement with previous 

studies8. Altogether, these results show that SComatic accurately detects mutational burdens and 

signatures in samples with low mutational burdens. 

 
To further test whether SComatic can be used for the analysis of somatic mutations in samples with 

high levels of genetic heterogeneity (e.g., polyclonal tissues) and in differentiated cells, we next 

analysed 10X scRNA-seq data from 78 samples obtained from 6 heart regions across 14 donors39. We 

detected a total of 2,132 somatic SNVs (Supplementary Table 1), 78% of which mapped to intronic 

regions (Supplementary Fig. 4). By extrapolating to the entire genome, we estimated an average 

mutation rate per haploid genome of 302 mutations for cardiomyocytes (range 92-1,284; Fig. 5d), 

which was significantly lower than the mutation rates estimated for adipocytes (1,179 SNVs per cell 

and haploid genome) and smooth muscle cells (581; Supplementary Fig. 8a). Mutational signature 

analysis revealed that 46.7% of these mutations were attributed to SBS5 and SBS40 (Fig. 5e,f). In 

addition, 35.4% of mutations were attributed to SBS44, consistent with a recent study of somatic 

mutagenesis in human cardiomyocytes using single-cell genome sequencing40. The mutational 

burdens for cardiomyocytes estimated by SComatic were comparable to those estimated using single-

cell WGS data40 (Supplementary Fig. 9; P = 0.08; two-sided Wilcoxon’s rank test).  

 

Next, we applied SComatic to 24 scRNA-seq data sets from 8 non-neoplastic tissues across 15 human 

donors generated by the GTEx consortium41. We found a total of 524 SNVs and estimated an average 

mutation load of 598 mutations per cell and haploid genome (Fig. 5g, Supplementary Fig. 8b and 

Methods). As observed in the heart cell atlas, adipocytes had the highest mutation burdens (1,430 

mutations per cell and haploid genome), whereas muscle cells showed the lowest burdens (251; 

Supplementary Fig. 8b). As observed in other polyclonal tissues7, mutational signature analysis 

revealed that most of these mutations were attributed to the mutational signatures SBS5 and SBS40 

(92.1 %, Fig. 5h,i). Together, these results suggest that SComatic permits the study of the patterns and 

rates of mutations in polyclonal tissues. 

 

Performance of SComatic on single-cell ATAC-seq data sets 
Next, we applied SComatic to detect somatic mutations using sciATAC-seq data generated for 459,056 

cells from 66 samples spanning 24 non-neoplastic tissues42. SComatic detected a total of 389 somatic 
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SNVs (Supplementary Table 1). The distribution of mutations was different as compared to scRNA-seq 

data sets, as most mutations mapped to intergenic (32%), promoter (19%), and intronic regions (18%) 

(Supplementary Fig. 4). We found low single-cell mutational burdens with an average load of 300 

mutations per cell and haploid genome, with ductal cells showing the highest rates (933 per haploid 

genome), and skeletal myocytes (9 mutations) and follicular cells (0 mutations) the lowest burdens 

(Supplementary Figs. 10a-c). As observed in other polyclonal tissues, 99% of the SNVs were attributed 

to SBS5 and SBS40 (Supplementary Fig. 10b,c). Importantly, the genome-wide mutation rates were 

comparable for cell types represented in scRNA-seq and sciATAC-seq data sets, indicating that 

SComatic permits the estimation of mutation rates across different single-cell profiling assays 

(Supplementary Fig. 11).  

 

Patterns of clonality at cell-type resolution 
Motivated by the importance of clonal mosaicism to somatic evolution and disease2,43, we next 

assessed whether the single-cell resolution provided by SComatic permits analysis of the patterns of 

clonality across cell types. To this aim, we computed the fraction of mutant cells per cell type across 

the single-cell data sets analysed (Supplementary Table 1, Supplementary Fig. 12 and Methods). We 

detected clonal mutations in epithelial cells from the cSCC samples, but not in epithelial cells from 

non-neoplastic skin samples, consistent with the high level of polyclonally in normal skin 

(Supplementary Fig. 12a,b). The clonality of mutations in epithelial cells in both MSI and MSS 

colorectal samples spanned a dynamic range of values, as expected for tumours harbouring both 

clonal and subclonal mutations (Supplementary Fig. 12c,d). The mutations detected in non-neoplastic 

cell types from both cancer and non-neoplastic samples showed overall low (<0.2) mutant cell 

fractions, in agreement with genome sequencing studies of non-neoplastic tissue samples7 

(Supplementary Fig. 12d-f). Together, these results show that SComatic permits the study of clonality 

patterns of both cancer and non-neoplastic cell types. 

 
De novo mutational signature analysis 
Clustering of samples based on the cosine similarity of mutational spectra revealed groups consistent 

with the relative activity of known mutational processes quantified though refitting of COSMIC 

mutational signatures (Supplementary Fig. 13). Thus, we sought to determine whether the mutations 

detected by SComatic permit the identification of mutational processes using de novo mutational 

signature extraction. Decomposition of the mutations identified in epithelial cells from hypermutated 

colorectal cancer samples using COSMIC signatures revealed a strong contribution of signatures 

associated with POLE and MMRd. By contrast, the signatures extracted from epithelial cells in MSS 

tumours showed strong contributions of SBS5 and SBS40, consistent with the mutational processes 

expected for these tumours (cosine similarities > 0.96, Supplementary Fig. 14). We identified two 

signatures in cSCC samples, one of which showed a cosine similarity >0.98 when decomposed into the 

COSMIC signatures attributed to UV-light mutagenesis (SBS7a, SBS7b and SBS7c), and the other was 

decomposed into a combination of signatures (SBS5 and SBS40), in agreement with the WES data 

(cosine similarity = 0.7, Supplementary Fig. 14). Despite the limited number of mutations and samples 

available for analysis, the signatures extracted from the mutations detected in non-neoplastic samples 

from GTEx and the heart cell atlas were decomposed into SBS5 and SBS40 (cosine similarity > 0.36; 

Supplementary Fig. 14), which is consistent with the mutational signatures identified in WGS studies 

of non-neoplastic samples7. The signatures detected in cardiomyocytes showed a strong contribution 

of SBS44, which is related to MMRd and recently reported in a recent study of cardiomyocytes using 
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single-cell WGS40. Together, these results indicate that SComatic permits de novo mutational signature 

analysis using mutations detected in single-cell data. 

 
Discussion 
Here, we show that SComatic permits de novo detection of somatic SNVs at single-cell resolution. In 

contrast to existing methods relying on genotyping sites known to be mutated in the sample under 

study, SComatic detects somatic SNVs in single-cell data sets directly without requiring matched bulk 

or single-cell DNA sequencing data. This is particularly relevant to study somatic mutagenesis in cell 

types and samples that cannot be reliably analysed using existing single-cell genomics methods, such 

as differentiated cells and polyclonal tissues showing high levels of genetic heterogeneity5,7. Critically, 

we show that SComatic vastly outperforms existing pipelines for the detection of somatic SNVs in 

single cell data sets, which allows the identification of mutational processes in both cancer and non-

neoplastic cells, including those from differentiated cells and polyclonal tissues in which mutations 

cannot be reliably studied using current experimental or computational approaches. 

 

Despite its higher performance as compared to existing tools, we note that SComatic is limited by the 

sparsity and low sequencing depth of current single-cell sequencing assays. As single-cell methods 

improve, SComatic will allow to derive further insights from single-cell sequencing data sets, such as 

phylogenetic analysis, identification of driver mutations in cancer and non-neoplastic cells, and the 

study of clonal mosaicism, including the estimation of mutations under positive selection driving clonal 

expansions. Although we have previously shown that somatic mutations can be detected in off-target 

regions, such as introns44, only a small fraction of the genome has sufficient sequencing coverage to 

be amenable to mutation detection. Therefore, other methodologies are required to study the rates, 

patterns, and selection of mutations in those regions missed by scRNA-seq and ATAC-seq or 

overlapping known RNA editing sites. In addition, SComatic relies on predefined cell type annotations 

using e.g., marker genes or gene expression clustering. Therefore, the quality of the mutations 

identified is contingent on reliable cell type annotations, which can be challenging in cases in which 

clonally unrelated cells cannot be easily distinguished using gene expression data alone8,44. Finally, we 

applied SComatic to study the patterns of clonality and mutation rates in clonal and polyclonal tissues. 

Although the cell-type mutation rates we estimate are comparable across assays, we note that the 

bias introduced by allele-specific expression, polyploidization, and limited sequencing depth might 

affect the burden or clonality estimates for other data sets.  

 

Overall, SComatic opens the possibility to study somatic mutagenesis using single-cell data sets 

generated for human samples under the auspices of large-scale initiatives, such as the Human Cell 

Atlas or the Human Tumour Atlas Network45,46, as well as the analysis of mutational burdens and 

processes in other organisms. 
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Methods 
 

Processing of single-cell data sets 
Single-cell RNA-seq data from cancer and non-neoplastic samples were downloaded in fastq format 

and processed uniformly. Specifically, raw sequencing reads were aligned to the GRCh38 build of the 

human reference genome using Cell Ranger47 version 6.0.1 and default parameter values to generate 

alignment files in Binary Alignment Map (BAM) format and count matrices. Cell type annotations were 

downloaded from the original publications from which the data were downloaded (Supplementary 

Table 1). Cell annotations were used to assign sequencing reads to individual cells. Single cells without 

cell type annotations were discarded. Raw sciATAC-seq reads were mapped to the GRCh38 build of 

the human reference genome using BWA-MEM v0.7.17-r118848. Aligned sequencing reads in BAM 

format were then processed following the Genome Analysis Toolkit (GATK) v4.1.8.0 Best Practices 

workflow to remove duplicates and recalibrate base quality scores49.  

 

Detection of somatic mutations in single-cell data sets using SComatic 
SComatic consists of the following steps: 

 

- Processing of alignment files 

First, the BAM file containing the sequencing reads for all cell types in a sample is split into cell-type-

specific BAM files using precomputed cell type annotations. To this aim, sequencing reads are assigned 

to individual cells using molecular barcodes (tag “CB” in BAM files processed using Cell Ranger). Before 

identifying candidate mutation sites, reads with a mapping quality lower than 255 (or 30 for sciATAC-

seq data) or with more than 5 mismatches are filtered out. In addition, to ignore sequencing artefacts 

enriched in terminal ends of the reads or adapter sequences not properly trimmed, the base quality 

for the first 5 bases at the 3’ and 5’ ends of each read is set to 050.  

 

- Collecting base count information 

Next, the count of each base in each cell type for every position in the genome is recorded in a base 

count matrix indexed by cell types and genomic coordinates using the pileup functionality from the 

Pysam module51. For this analysis, a minimum base quality of 30 is required, and only sites with a 

sequencing depth of 5 reads across at least 2 cell types are considered. Sites overlapping RNA editing 

sites are removed52,53. In addition, sites mapping to polymorphisms in the gnomAD25 database version 

v2.0.1 with a population frequency greater than 1% are removed.  

 
- Detecting potential somatic SNVs  

To distinguish technical artefacts, such as recurrent sequencing or mapping errors, from true somatic 

mutations, SComatic models the background error rate using a Beta-binomial distribution. Specifically, 

non-reference allele counts at homozygous reference sites are modelled using a binomial distribution 

with parameter P (error rate), which is a random variable that follows a Beta distribution with 

parameters α and β50. To infer the parameter values, SComatic uses base count information for 1 

million sites in the genome randomly selected from a panel of unrelated non-neoplastic samples 

generated using the same sequencing technology. Next, for each site in the genome and cell type, the 

Beta-binomial distribution is used to test whether the non-reference allele counts are significantly 

higher than expected given the background error rate, and thus, considered as a potential somatic 

mutation. Candidate somatic mutations are required to be present in only cells from the candidate 
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cell type. To test this, SComatic requires that the Beta-binomial test is not significant when applied to 

all other cell types independently and when applied to the base counts aggregated across all other 

cell types. The threshold for statistical significance for the Beta-binomial is set to 0.001.  

 

- Filtering out recurrent artefacts 

Due to the enrichment of artefacts in repetitive regions (Supplementary Fig. 1) and the high error rate 

of Illumina sequencers at homopolymer tracts54, mutations mapping to or within 4bp of 

mononucleotide tracts are removed. Finally, mutations mapping less than 5bp apart from each other 

are filtered out, except for doublet base substitutions (DBS) dinucleotide changes previously reported 

to be generated by specific mutational processes, such as CC>TT mutations associated with UV-light-

induced mutagenesis in skin (COSMIC signature DBS1) or characteristic DBS peaks observed in 

colorectal cancers (COSMIC signatures DBS2,3,4,6,7,8,10 and 11).36 

 

In addition, SComatic generates a ‘Panel of Normals’ to discount positions affected by recurrent 

artefacts (sites with non-reference allele counts significantly higher than the background error rate 

modelled with the Beta-binomial distribution). To this aim, SComatic uses a large collection of non-

neoplastic datasets to assess the frequency of non-reference allele counts at each genomic site in the 

genome. This analysis serves to filter out candidate mutations mapping to regions of the genome 

prone to sequencing or mapping artefacts, germline variants missed by other filters, and candidate 

mutations found in at least 2 unrelated samples, which are considered to be germline polymorphisms. 

 

- Calling somatic mutations 

Finally, to make a mutation call, SComatic requires mutations to be supported at least 3 reads from at 

least 2 cells from the same cell type. To tune this parameter, we performed mutational signature 

analysis on subsets of mutations defined based on the number of cells harbouring each mutation. For 

this analysis, we focused on the somatic mutations detected by SComatic in epithelial cells from MSI 

tumours. Our analysis revealed that the mutational spectra and mutational signature contributions 

were consistent across subsets of mutations present in 2 or more cells (Supplementary Fig. 2), 

indicating that requiring mutations to be present in at least 2 cells to make a call is adequate to detect 

true somatic mutations 

 

Estimation of mutational burdens 
To compute the mutational burden at the cell type level, we divided the total number of somatic 

mutations detected in each cell type by the total number of callable sites across all cells of the same 

type (Supplementary Fig. 15). Cell types with less than 500,000 callable sites were not included in this 

analysis. To estimate single-cell mutational burdens, we divided the number of mutations detected in 

each unique cell by the number of sites with a sequencing depth of at least 1 read and within the set 

of callable sites across all cells of the same type. We only considered the autosomes for computing 

mutational burdens. The sensitivity of single-cell assays to detect both alleles is low due to limited 

sequencing depth and allele-specific expression17. That is, we only detect one read per cell for most 

genomic position in the genome. Thus, our estimated mutational burdens for single cells mostly reflect 

the mutational burdens per haploid genome. We decided to report mutational burdens per haploid 

genome instead of correcting for ploidy because ploidy information for single cells was not available 

for the data sets analysed. We could not assume that all cells are diploid as the data sets analysed 

contained cell types, such as cancer cells and cardiomyocytes, that often undergo polyploidization. 
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Mutational signature analysis 
Mutational signature analysis was performed using the R package MutationalPatterns55 and the 

COSMIC Mutational Signatures catalogue version 336. We used the function fit_to_signatures with 

default parameter values to estimate the contribution of each mutational process to the mutational 

spectrum observed in each sample. To account for differences in the frequency of each of the 96 

trinucleotide contexts in which mutations can be detected between the whole genome and the 

regions profiled using scRNA-seq or scATAC-seq, we normalised the frequency of mutations detected 

at each trinucleotide context. To this aim, we first computed the frequency of each trinucleotide 

context in the human genome using the function get_trinuc_norm from the R package SigMA 

(https://github.com/parklab/SigMA). Next, for each single-cell data set we estimated the frequency 

of each trinucleotide context across callable regions using a custom Python script, 

TrinucleotideContextBackground.py, which is provided as part of SComatic. To normalize the 

mutational spectra detected in each single-cell data set to the frequency of each trinucleotide in the 

whole genome, we divided the fraction of mutations detected at each trinucleotide context by the 

frequency of such context in the whole genome relative to its frequency in the single-cell data set 

being analysed. 

 

For fitting COSMIC signatures, we only used the mutational processes known to be operative in each 

sample type analysed7,36: (1) SBS1, SBS5, SBS6, SBS10a, SBS10b, SBS14, SBS15, SBS17a, SBS17b, SBS18, 

SBS21, SBS26, SBS28, SBS37, SBS40 and SBS44 for colorectal cancer samples; (2) SBS1, SBS2, SBS5, 

SBS7a, SBS7b, SBS7c, SBS7d, SBS13, SBS32 and SBS40 for skin squamous cell carcinoma samples; (3) 

SBS1, SBS2, SBS4, SBS5, SBS7a, SBS7b, SBS13, SBS16, SBS17b, SBS18, SBS22, SBS23, SBS32, SBS40, 

SBS41 and SBS88 for MPNs and non-neoplastic samples. We also included SBS6, SBS8, SBS19, SBS32, 

SBS35, SBS39, and SBS44 when analysing heart samples40. The goodness of fit was determined by 

computing the cosine similarity between the observed and the reconstructed mutational spectra using 

the estimated signature contributions.  

 

De novo mutational signature extraction was performed using non-negative matrix factorization 

(NMF) as implemented in the R package MutationalPatterns using somatic SNVs detected in each of 

the following sample groups: epithelial cells from MSI and POLE-deficient colorectal cancer samples, 

epithelial cells from MSS colorectal cancer samples, epithelial cells from cSCC and matched normal 

skin samples, cardiomyocytes from the heart cell atlas, and all cell types from the GTEx dataset. The 

extracted signatures were decomposed into COSMIC v3 signatures using the fit_to_signatures 
function after normalizing them to the trinucleotide frequencies of the whole genome. The goodness 

of fit of the decomposition of de novo signatures was estimated by computing the cosine similarity 

between the extracted mutational signature and the mutational spectrum reconstructed based on the 

estimated COSMIC signature contributions. 

 

Whole-exome sequencing data analysis  
Raw sequencing reads were mapped to the GRCh38 build of the human reference genome using BWA-

MEM29 (version 0.7.17-r1188). Aligned sequencing reads in BAM format were processed to remove 

duplicates and recalibrate base quality scores following the GATK (version 4.1.8.0) Best Practices 

workflow56,57. Point mutations were detected using Strelka230 (version 2.9.10) and MuSE58 (version 

1.0rc) using default parameter values and the matched normal samples as germline controls. For 

benchmarking purposes, we only considered those somatic mutations detected by both algorithms.  
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Comparison of mutations detected in scRNA-seq and WES data 
To compare the mutations detected using matched WES and scRNA-seq data, we computed the base 

counts for all positions in the genome using the WES data. For this analysis, we only focused on regions 

with a coverage of at least 50x in the WES data from the cancer sample and 10x in the matched normal 

sample. In the case of the scRNA-seq data, we only interrogated regions with a sequencing depth of 

at least 10 reads in the epithelial cells, and with a depth of 5 reads in at least 2 additional cell types. 

Only regions that passed these filtering criteria for the scRNA-seq and WES data were considered for 

benchmarking purposes.  

 

As we considered the WES data as the baseline for comparison, we categorized the mutations as: (1) 

true negatives: non-mutated sites; (2) WES-specific mutations: mutations detected in the WES but not 

in scRNA-seq data; (3) scRNA-seq-specific: mutations detected in the scRNA-seq data with no reads 

supporting the mutant allele in the WES data; (4) low-confidence true positives: mutations detected 

in the scRNA-seq data with at least one read supporting the alternative allele and no reads supporting 

any other alternative allele in WES, but not called by our WES mutation detection pipeline; (5) true 

positives: mutations detected in both the scRNA-seq and WES data; and (6) WES and low-quality 

scRNA-seq: somatic mutations detected in WES but filtered out by SComatic. To compute performance 

metrics, we estimated the sensitivity, precision and F1-score values for each algorithm using 50 

bootstrap resamples. We then compared the performances between callers using the Student's t-test 

correcting for multiple hypothesis testing using the FDR method.  

 

Methods references 
47.  Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nature 

Communications 8, 14049 (2017). 
48. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv [q-

bio.GN] (2013). 
49. Van Der Auwera, G. A. & O’Connor, B. D. Genomics in the cloud. (O’Reilly Media, 2020). 
50. Muyas, F., Zapata, L., Guigó, R. & Ossowski, S. The rate and spectrum of mosaic mutations during 

embryogenesis revealed by RNA sequencing of 49 tissues. Genome Med. 12, 49 (2020). 
51. pysam: Pysam is a Python module for reading and manipulating SAM/BAM/VCF/BCF files. It’s a 

lightweight wrapper of the htslib C-API, the same one that powers samtools, bcftools, and tabix. 
(Github). 

52. Lo Giudice, C., Tangaro, M. A., Pesole, G. & Picardi, E. Investigating RNA editing in deep 
transcriptome datasets with REDItools and REDIportal. Nat. Protoc. 15, 1098–1131 (2020). 

53. Kiran, A. & Baranov, P. V. DARNED: A DAtabase of RNa EDiting in humans. Bioinformatics 26, 
1772–1776 (2010). 

54. Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res. 39, 
e90 (2011). 

55. Blokzijl, F., Janssen, R., van Boxtel, R. & Cuppen, E. MutationalPatterns: comprehensive genome-
wide analysis of mutational processes. Genome Med. 10, (2018). 

56. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation 
DNA sequencing data. Nat. Genet. 43, 491–498 (2011). 

57. Van Der Auwera, G. &. O. & Connor, B. D. Genomics in the Cloud: Using Docker, GATK, and WDL 
in Terra. (2020). 

58.  Fan, Y. et al. MuSE: accounting for tumor heterogeneity using a sample-specific error model 
improves sensitivity and specificity in mutation calling from sequencing data. Genome Biol. 17, 
178 (2016) 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.22.517567doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.22.517567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 15 

Data availability 
The raw WES and scRNA-seq data for the skin squamous cell carcinoma and matched normal samples 

are available at the Gene Expression Omnibus (GEO) database under the accession number 

GSE144240. The raw scRNA-seq data from myeloproliferative neoplasms and colorectal cancer 

patients are available through controlled access application via dbGaP under dbGaP Study Accession 

numbers phs002308.v1.p1 and phs002407.v1.p1, respectively. The cell type annotations for the 

colorectal cancer data set31 are available at GEO database under the accession number GSE178341. 

Raw sequencing data and cell type annotations for 6 additional colorectal cancer patients32 included 

in this study are available at GEO database under the accession number GSE144735. The cell type 

annotations for the MPN data set were obtained from our previous study8. The raw scRNA-seq data 

and cell type annotations for the human heart cell atlas39 were downloaded from the Human Cell Atlas 

Data Portal (https://data.humancellatlas.org/). The raw single-cell ATAC-seq data and cell type 

annotations are available at GEO database under the accession number GSE184462. The raw sequence 

data from GTEx samples are available at the Analysis Visualization and Informatics Lab-space (AnVIL; 

https://anvil.terra.bio/#workspaces/anvil-datastorage/AnVIL_GTEx_V9_hg38) and can be 

downloaded through controlled data access application via dbGaP under Study Accession number: 

phs000424. 

 

Code availability 
SComatic is available at: https://github.com/cortes-ciriano-lab/SComatic. 
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Figure 1

Figure 1. Overview of SComatic.Methodology for detecting somatic mutations in high-throughput single-cell profiling data
sets.
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Figure 2

Figure 2. Validation of SComatic using matched scRNA-seq and exome sequencing data. a) Mutational burdens for epithelial
cells using the somatic SNVs detected by SComatic in cSCC and matched normal skin scRNA-seq data sets. The number of
mutations is normalized to account for the variable number of callable sites in each sample. b) Fraction of somatic SNVs
detected in epithelial cells attributed to COSMIC signatures. SBS signatures associated with ultraviolet radiation (SBS7a,b,c
and d) and clock-like mutational processes (SBS5 and SBS40) are collapsed for visualization purposes. c) Mutational spectra
computed for the mutations detected using SComatic in epithelial cells from cSCC and matched normal skin scRNA-seq data.
The cosine similarities between the observed and reconstructed mutational spectra are shown. d) Venn diagram showing the
overlap of the somatic SNVs detected by SComatic in epithelial cells using scRNA-seq data and exome sequencing data from
the cSCC samples. e) Decomposition of the mutations detected in scRNA-seq data only (scRNA-seq-specific mutations) into
COSMIC signatures. f) Correlation between the mutational burdens estimated using the mutations detected in WES and the
mutations detected by SComatic in the scRNA-seq data. Only genomic regions with sufficient sequencing depth in both the
WES and scRNA-seq data were considered for this analysis.
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Figure 3

Figure 3. Comparison of the performance of SComatic against other mutation detection methods. a) Performance of Strelka2,
SAMtools, VarScan2 and SComatic for the detection of somatic mutations in the scRNA-seq data from cSCC samples. The error
bars show the 95% bootstrap confidence interval for each statistic computed using 50 bootstrap resamples. b) Decomposition
into COSMIC signatures of the mutations detected in scRNA-seq data by each algorithm and the mutations detected in WES data.
c) Correlation between the number of mutations detected in each trinucleotide context using the WES and scRNA-seq data. FDR-
adjusted P values are shown. d) Comparison between the mutational spectra of the mutations detected using WES and scRNA-
seq data using each of the algorithms benchmarked. The cosine similarity between the mutational spectra computed using the
mutations detected in the scRNAs-seq and the WES data are shown.
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Figure 4

Figure 4. Detection of somatic mutations in scRNA-seq data from colorectal cancer samples. a) mutational burden of
epithelial cells computed using SComatic. The number of mutations is normalized to the number of callable sites per sample. b)
Distribution of the mutational burden of epithelial cells from MSI tumours detected using SComatic and the mutational burden
of MSI tumours from TCGA computed using WES data. The red horizontal line shows the mean for each group. c)
Decomposition of the mutational spectra computed using SComatic into COSMIC signatures. Mutational signatures associated
with MMRd (SBS6, SBS14, SBS15, SBS21, SBS26 and SBS44), POLE deficiency (SBS10a, SBS10b and SBS28) and clock-like
mutational processes (SBS5 and SBS40) are collapsed for visualization purposes. d) Trinucleotide context of somatic mutations
detected by SComatic using the scRNA-seq data from colorectal cancer samples.
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Figure 5

Figure 5. Detection of somatic mutations in samples with a low tumour mutational burden. a) Trinucleotide context of somatic
mutations detected in hematopoietic stem cells (HSC) from MPN patients. b) Decomposition of the somatic mutations detected in
HSCs from MPN patients into COSMIC signatures. c) Correlation between the mutational burden of HSCs estimated using SComatic
and the age of patients at the time of sampling (Pearson’s r = 0.79; P = 0.09). d) Average number of mutations detected per cell
and genome in cardiomyocytes from the heart cell atlas across donors. e) Decomposition of the mutations detected in
cardiomyocytes into COSMIC signatures. f) Trinucleotide context of mutations detected in cardiomyocytes from the heart cell
atlas. g) Average mutational burden of individual cells across the tissues included in the GTEx scRNA-seq dataset. The number on
top of the bars indicates the number of cells per cell type. h) Decomposition of the mutations detected across all cells from the
GTEx data set into COSMIC signatures. i) Trinucleotide context of mutations detected across all single cells from the GTEx data set.
The numbers on top of the bars in d and g indicate the number of cells per cell type analysed.
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Supplementary Figures

Supplementary Figure 1. Recurrent artefacts are enriched in repetitive elements. a) Genomic distribution of artefactual
sites included in the “Panel of Normals” (PoN) generated using scRNA-seq data across different types of repetitive elements.
b) Enrichment of artefactual sites in repetitive element classes. The dashed red line indicates no enrichment or depletion.

Supplementary Figure 2. Mutational signature analysis of the somatic mutations detected across an increasingly larger
number of cells. Decomposition into COSMIC signatures of the somatic mutations detected in the MSI colorectal cancer data
sets across increasingly higher cut-off values for the number of cells required to harbour a mutation to make a call. Overall,
the contribution of mutational signatures associated with MMRd is constant across increasingly stringent cut-off values,
indicating that requiring mutations to be detected in at least 2 cells to make a call is adequate to discover true somatic
mutations. Mutational signatures associated with MMRd (SBS6, SBS14, SBS15, SBS21, SBS26 and SBS44), POLE-deficiency
(SBS10a, SBS10b and SBS28) and clock-like mutational processes (SBS5 and SBS40) are collapsed for visualization purposes.
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Supplementary Figure 3. Comparison of the variant allele fraction (VAF) of mutations detected in WES data and scRNA-
seq data from epithelial cells using SComatic.

Supplementary Figure 4. Genomic distribution of somatic mutations detected by SComatic in single-cell data sets.
Distribution of somatic mutations across genomic regions.

Pan-tissue (sciATAC-seq)
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Supplementary Figure 5. Mutational burden across cell types. a) Mutational burden across cell types detected in the scRNA-seq
data from cSCC and matched normal skin samples. b) Mutational burden across cell types detected in the colorectal cancer (CRC)
and matched normal colon samples. Mac: macrophages; ASDC: AXL+SIGLEC6+ dendritic cells; LC: Langerhans cells; MDSC:
myeloid-derived suppressor cells; PDC: Plasmacytoid dendritic cells; TNKILC: T-cells, natural killer cells, Innate lymphoid cells. Box
plots show median, first and third quartiles (boxes), and the whiskers encompass observations within a distance of 1.5× the
interquartile range from the first and third quartiles.

Supplementary Figure 6. Comparison of the performance of SComatic against other mutation detection methods including
sample P7. Performance of Strelka2, SAMtools, VarScan2 and SComatic for the detection of somatic mutations in scRNA-seq
data from cSCC samples (including sample P7). The error bars show the 95% bootstrap confidence interval for each statistic
computed using 50 bootstrap resamples.

Supplementary Figure 7. Comparison of the mutational burden of epithelial cells computed using the mutations
detected by Strelka2, SAMtools, VarScan2 and SComatic using the scRNA-seq data from colorectal cancers. Each dot
represents a sample, and the black horizontal line shows the median for each group.
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Supplementary Figure 8. Mutational burdens estimated for single cells. Average mutational burden for single cells across the
cell types detected in the scRNA-seq data from (a) the heart cell atlas, (b) pan-tissue GTEx, and (c) pan-tissue sciATAC-seq data
sets. Each dot represents the average number of mutations estimated for each cell per sample. Only samples with at least 100
cells per cell type and datasets with at least two samples are shown. The horizontal line shows the median value across samples.

Supplementary Figure 9. Rate of SNVs in cardiomyocytes computed using scRNA-seq from the Heart Cell Atlas and scWGS data
from Choudhury et al. (Nature Aging, 2022). Mutation burdens were normalised to mutations per Mb and are expressed as
mutations per cell and haploid genome. The mutation burdens estimated using scWGS data by Choudhury et al. (Nature Aging,
2022) were divided by the ploidy of each cell. The P value was computed using the two-sided Wilcoxon’s test.

Mutations per cell (haploid genome)
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Supplementary Figure 10. Somatic mutation detection in sciATAC-seq data. a) Average mutational burden at the single cell level
estimated using the somatic mutations detected by SComatic in sciATAC-seq data. The mutational burden is expressed as
mutations per cell and haploid genome. The number on top of the bars indicates the number of cells per cell type. b)
Trinucleotide context of mutations detected across all cell types in the sciATAC-seq dataset. c) Decomposition of the mutations
detected in sciATAC-seq data across all cell types into COSMIC signatures (reconstructed cosine similarity = 0.79). The
contributions of SBS5 and SBS40 are collapsed for visualization purposes.

Supplementary Figure 11. Comparison of the mutational burdens estimated for single cells across datasets. Each dot
represents the average number of mutations detected per cell and haploid genome for each donor. The horizontal line shows
the median value across samples. Only datasets with at least two samples and cell types present in at least two datasets are
shown.
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Supplementary Figure 12. Clonality of the mutations detected in scRNA-seq data. a) Pearson correlation between the VAF of
somatic mutations in WES and scRNA-seq data from the cSCC samples. Distribution of the cell fraction of mutations detected in
scRNA-seq data from b) cSCC tumours and matched normal skin samples, c) colorectal tumours and matched normal samples,
and d) epithelial cells from colorectal tumour samples. Distribution of the cell fraction of mutations detected across cell types
from e) the heart cell atlas, and f) the GTEx data set. Each dot in f represents an individual SNV and the red horizontal line shows
the mean for each group.

Supplementary Figure 13. Comparison of the mutational patterns detected across the data sets analysed in this study. a)
Pairwise cosine similarities between the mutational spectra computed using the mutations detected across cell types from each
data set. b) Hierarchical clustering based on the cosine similarity comparison (shown in a) of the mutational spectra detected in
each data set using SComatic.

Mutant Cell Fraction      
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Supplementary Figure 14. De novo mutational signature analysis of the somatic mutations discovered by SComatic. a)
Trinucleotide context of the de novo signatures discovered in the data sets analysed. De novo mutational signatures were extracted
independently from each dataset. The decomposition of the de novo signatures into COSMIC signatures was also run for each
dataset independently. b) Cosine similarities between the de novo signatures and the reconstructed mutational spectra using the
estimated signature contributions. c) Pairwise cosine similarities between each pair of mutational signatures extracted de novo.
Mutational signatures associated with MMRd (SBS6, SBS14, SBS15, SBS21, SBS26 and SBS44), POLE deficiency (SBS10a, SBS10b and
SBS28), ultraviolet radiation (SBS7a,b,c and d) and clock-like mutational processes (SBS5 and SBS40) are collapsed for visualization
purposes.
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Supplementary Figure 15. Number of callable sites per cell type and data set.

Supplementary Tables

Technology Data set Sample type MSI status Number of 
samples

Number of 
donors

Number of 
cells

Number of 
SNVs

Number of SNVs in 
cell types

Number of cells 
harbouring each 

mutation
PMID

sciATACseq
(DNA)

Pan-tissue Normal - 66 4 459056 1032 389 2.7 34774128

scRNA-seq

CRC

Matched 
normal

MSS 56 40 119694 719 339 2.1
34450029, 
32451460scRNA-seq

Tumour
MSI/POLE 68 37 120789 178107 7531 23.6

scRNA-seq MSS 66 33 144512 19097 1127 16.9

scRNA-seq GTEx (Pan-
tissue)

Normal NA 24 15 205426 1790 524 3.4 35549429

scRNA-seq Heart cell 
atlas

Normal - 78 14 441777 4524 2132 2.1 32971526

scRNA-seq MPN Tumour - 5 5 36555 2264 847 2.7
33621486

scRNA-seq
cSCC

Matched 
normal

- 10 10 21800 2122 186 11.4

scRNA-seq Tumour - 10 10 26253 18142 810 22.4 32579974
Total 383 230 1575862 227797 13885

Supplementary Table 1. Summary of the data analysed and the somatic mutations detected in each data set.
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