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Abstract 

Introduction: Transcriptome-wide association study (TWAS) integrates expression quantitative trait 

loci (eQTL) data with genome-wide association study (GWAS) results to infer differential expression. 

TWAS uses multi-variant models trained using individual-level genotype-expression datasets, but 

methodological development is required for TWAS to utilise larger eQTL summary statistics.  

Methods: TWAS models predicting gene expression were derived using blood-based eQTL summary 

statistics from eQTLGen, the Young Finns Study (YFS), and MetaBrain. Summary statistic polygenic 

scoring methods were used to derive TWAS models, evaluating their predictive utility in GTEx v8. We 

investigated gene inclusion criteria and omnibus tests for aggregating TWAS associations for a given 

gene. We performed a schizophrenia TWAS using summary statistic-based TWAS models, comparing 

results to existing resources and methods. 

Results: TWAS models derived using eQTL summary statistics performed comparably to models 

derived using individual-level data. Multi-variant TWAS models significantly improved prediction 

over single variant models for 8.6% of genes. TWAS models derived using eQTLGen summary 

statistics significantly improved prediction over models derived using a smaller individual-level 

dataset. The eQTLGen-based schizophrenia TWAS, using the ACAT omnibus test to aggregate 

associations for each gene, identified novel significant and colocalised associations compared to 

summary-based mendelian randomisation (SMR) and SMR-multi. 

Conclusions: Using multi-variant TWAS models and larger eQTL summary statistic datasets can 

improve power to detect differential expression associations. We provide TWAS models based on 

eQTLGen and MetaBrain summary statistics, and software to easily derive and apply summary 

statistic-based TWAS models based on eQTL and other molecular QTL datasets released in the 

future.  
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Introduction 

Genome-wide association studies (GWAS) have identified many replicated genetic associations with 

complex traits and diseases (1). However, it is challenging to identify the molecular mechanisms 

underlying these genetic associations. Integration of GWAS summary statistics with functional 

genomic annotations, such as expression quantitative trait loci (eQTL) data, is a widely used 

approach for elucidating the molecular mechanisms underlying associated genetic variation (2–4). 

The integration of eQTL data with GWAS is of particular interest as there is a strong enrichment of 

eQTLs within genome-wide significant loci, indicating these loci are often mediated by altered gene 

expression (5).  

A popular approach for the integration of eQTL data with GWAS summary statistics is called 

transcriptome-wide association study (TWAS)(6,7). The TWAS approach aims to infer differential 

expression associated with the GWAS phenotype. TWAS does this by aggregating the effect of 

genetic variants associated with the phenotype whilst considering each variant’s effect on a given 

gene’s expression. This gene-based approach improves power to detect association by reducing the 

multiple testing burden compared to GWAS, and by aggregating genetic effects across variants in a 

functionally-informed manner. For TWAS, multi-SNP models predicting each gene's expression are 

used, herein referred to as ‘TWAS-models’. Traditionally, these TWAS models are trained using 

individual-level genotype and gene expression data.  

Another popular method that integrates GWAS summary statistics with eQTL data is Summary-based 

Mendelian Randomisation (SMR) (8). Similar to TWAS, SMR also infers whether a gene’s expression 

is associated with the GWAS phenotype. In contrast to TWAS, SMR aims to provide evidence for a 

causal role of a given SNP on a trait mediated through gene expression, focussing on the single 

largest cis-eQTL effect on gene expression. Currently, a key advantage of SMR over TWAS is that it 

can use eQTL summary statistics, which are more readily available than the individual-level genotype 

and expression data traditionally required to derive the multi-SNP models used for TWAS. However, 

often multiple eQTLs exist for a given gene and considering only the largest eQTL effect will reduce 

the power to detect associations with gene expression compared to TWAS models allowing multiple 

eQTL effects. While an extension of SMR incorporating multiple eQTL effects has been developed 

(SMR-multi)(9),further investigation of methods for integrating eQTL summary statistics with GWAS 

is required.  

A major limiting factor of eQTL databases is the small sample size they are often based upon. 

Recently, international consortia have pooled eQTL summary statistics from multiple cohorts and 

performed eQTL meta-analyses, thereby improving the estimation of eQTL effects. Two outstanding 

recent examples of this are eQTLGen (10) and MetaBrain (11). However, these resources can only be 

used with methods such as SMR, which do not require individual-level data. Methodology for 

integrating eQTL summary statistics within a TWAS framework must be developed to better utilize 

these eQTL summary statistic resources.  

There are parallels between the generation of TWAS multi-variant models and the generation of 

polygenic scores. Similarly, as GWAS transitioned from being carried out in a single sample to the 

meta-analysis of GWAS summary statistics from multiple cohorts, many polygenic scoring methods 

have been developed that require only GWAS summary statistics instead of individual-level 

genotype and phenotype data (12–15). With the establishment of large-scale eQTL meta-analyses, 

only providing summary statistics, a similar transition from the use of individual-level data to 

summary statistics is now timely for TWAS. The summary statistic-based p-value thresholding and 
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clumping polygenic scoring approach was previously evaluated for generating TWAS models but was 

found to perform worse than penalised regression models based on individual level data (7). 

However, polygenic scoring methodology has developed considerably in recent years, warranting 

the utility of summary statistic-based approaches for generating TWAS models to be revaluated.  

In this study, we assess a range of methods for deriving TWAS models predicting gene expression 

from eQTL summary statistics. We compare the predictive utility of summary statistic-based TWAS 

models to models derived using traditional methods requiring individual-level data. We additionally 

compare schizophrenia TWAS results generated using models from either eQTL summary statistics 

or individual-level data. Furthermore, we explore approaches for defining inclusion criteria for genes 

in TWAS, selecting the single best model for a given gene, and aggregating TWAS associations across 

models for a given gene. 
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Methods 

Samples 

eQTLGen 

The eQTLGen consortium has performed a meta-analysis of eQTL summary statistics from 37 

datasets, totalling 31,368 samples of whole-blood (80.4%) and peripheral blood mononuclear cells 

(19.6%)(10). The majority of samples are reported to be of European ancestry. Further details of 

each contributing dataset can be found in the original publication. Full cis-eQTL summary statistics 

were downloaded from the eQTLGen website (see Data Availability), and cis-eQTL summary statistics 

excluding GTEx were obtained via private communication with eQTLGen. For each gene, the 

eQTLGen cis-eQTL summary statistics include all variants within 1Mb of gene boundaries. The eQTL 

summary statistics only include a signed Z-score to indicate the direction and statistical significance 

of each eQTL. We converted the Z-score of each variant into a BETA and standard error (SE) to 

improve compatibility with downstream software. We estimated the BETA as (8) 

𝛽 =
𝑧

2𝑝(1 − 𝑝)(𝑛 + 𝑧2)
 (1) 

 

 

Where 𝑧 is the reported Z-score of the variant in the eQTLGen meta-analysis, 𝑝 is the test allele 

frequency in the European ancestry subset of the 1000 Genomes (1KG) reference sample (16), and 𝑛 

is the sample size for the variant in the eQTLGen meta-analysis. We calculated the SE as 

𝑆𝐸 =  
|𝛽|

|𝑧|
 

(2) 

 

 

YFS 

The Young Finns Study collected whole blood from 1,414 individuals across five regions of Finland 

(17). This dataset has been used several times for TWAS based on TWAS models available on the 

FUSION website (see URLs). We downloaded the TWAS models from the FUSION website for this 

study. For each gene, FUSION-released TWAS models include all variants within 0.5Mb of gene 

boundaries. The FUSION YFS dataset only contains TWAS models for the 4701 genes with a 

significant SNP-based heritability (p < 0.01). We used the same equations as used above for 

eQTLGen to convert the eQTL Z-score summary statistics within the FUSION top1 models to estimate 

BETA and SE for each eQTL.  

 

GTEx 

GTEx (Genotype-Tissue Expression) project release v8 was used as a target sample for evaluating the 

performance of TWAS models derived using different approaches. GTEx v8 genotype data was 

downloaded via dbGaP (phs000424.v8.p2) and converted from VCF to PLINK format. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.23.517213doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517213
http://creativecommons.org/licenses/by/4.0/


The whole blood normalised expression and standard GTEx eQTL analysis covariate data were 

downloaded from the GTEx portal (see URLs).  

 

Generating TWAS models from eQTL summary statistics 

FUSION is a widely used software for performing TWAS (see URLs)(6). Our study develops an 

approach concordant with that of FUSION to allow integration with broader TWAS methodology. 

Consistent with FUSION, SNP-based heritability and TWAS models were generated using HapMap3 

(see URLs) variants alone, as these variants are typically well imputed and available in most datasets, 

improving the portability of the TWAS models to other genotype or GWAS datasets. Variants are not 

selected based on overlap with specific target datasets. The variants considered for each gene were 

predetermined by the original study generating eQTL summary statistics or TWAS models. 

 

Estimating SNP-based heritability of gene expression  

FUSION typically suggests only using TWAS models for genes with a statistically significant SNP-based 

heritability estimate (p < 0.01). This criterion avoids the inclusion of genes for which TWAS models 

would be unlikely to provide accurate prediction, thereby reducing the multiple testing burden and 

limiting false positives from null TWAS models. FUSION estimates the SNP-based heritability of gene 

expression using genome-based restricted maximum likelihood (GREML) and individual-level 

genotype and gene expression data (6,18).  

We evaluated summary statistic-based methods for estimating the SNP-based heritability of gene 

expression, including linkage disequilibrium score regression (LDSC)(19), and three models 

implemented within genome-wide complex trait Bayesian analyses (GCTB) software (SBayesR, 

SBayesR-robust, and SBayesS)(20). SBayesR-robust is the same model as SBayesR but uses an 

alternative parameterisation procedure which is more robust to misspecification in summary 

statistics. We included LDSC for comparison with the knowledge that this method is likely to be 

inaccurate in this context, as only variants within 0.5-1Mb around the gene are considered, whereas 

LDSC is intended for genome-wide GWAS summary statistics. 

We applied these summary statistic methods to eQTL summary statistics derived from the GTEx v8 

whole blood FUSION models (European ancestry only) and compared estimates of SNP-based 

heritability from summary statistics methods to those reported by FUSION estimated using GREML 

and individual-level GTEx v8 data. The FUSION GTEx v8 models’ SNP-based heritability estimates 

were available for all genes rather than only genes with significant SNP-based heritability. To avoid 

excessive computation time, we estimated SNP-based heritability only for genes on chromosome 22 

(561 genes). 

In addition to SNP-based heritability estimation methods, we also explored a simpler approach for 

deciding whether genes should be included in the TWAS. We identified genes for inclusion if they 

had at least one genome-wide significant eQTL present (p < 5×10-8), or mBAT-combo estimated a 

significant gene association statistic (FDR < 0.05)(21). The mBAT-combo method combines gene 

associations from fastBAT (22) and mBAT using the aggregated Cauchy association omnibus test 

(ACAT-O)(23). 
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Deriving TWAS models predicting gene expression 

Models predicting gene expression were derived using several leading summary statistic methods, 

including SBayesR, SBayesR-robust, LDpred2, lassosum, PRS-CS, DBSLMM, SuSiE and top1 (defined 

below).  

SBayesR, SBayesR-robust (15), LDpred2 (14), lassosum (13), PRS-CS (12) and DBSLMM (24) are 

reported as leading polygenic scoring methods (25), and can be applied to gene-level eQTL summary 

statistics. Similar to the methods typically applied within FUSION, these methods use a range of 

approaches to model genetic effects, allowing for differences in the genetic architecture of genetic 

effects on gene expression. 

LDpred2, lassosum and PRS-CS are often applied using a range of hyperparameters, producing 

multiple sets of SNP effects. The optimal hyperparameters can then be identified using an external 

validation sample or estimated using a pseudovalidation method which does not require an external 

validation sample. Given an external validation sample is often not available, we used the 

pseudovalidation method for PRS-CS (fully Bayesian model), LDpred2 (auto model), and lassosum 

(pseudovalidation function) to infer the optimal hyperparameters from the eQTL summary statistics. 

By default, SBayesR, SBayesR-robust and DBSLMM directly estimate the hyperparameters from the 

summary statistics, so no additional pseudovalidation step is required. SBayesR and SBayesR-robust 

were applied using the GCTB-provided precomputed sparse and shrunk LD matrices derived in the 

European ancestry subset of UK Biobank. LDpred2 was applied using the LDpred2-provided LD 

matrices also generated in the European ancestry subset of UK Biobank. PRS-CS was applied using 

the PRS-CS-provided LD matrices generated in the European subset of the 1KG reference. Lassosum 

and DBSLMM were applied using individual-level data for the European ancestry subset of the 1KG 

reference. 

SuSiE is a method used to perform statistical fine-mapping of GWAS summary statistics to identify 

variants likely causal for the associated locus (26). SuSiE has also been shown to be useful for 

generating prediction models, by multiplying each variants’ effects size by the posterior inclusion 

probability (PIP) estimated by SuSiE (27). We applied SuSiE using default settings, allowing for up to 

10 causal signals within each associated locus. SuSiE was applied using LD matrices calculated using 

PLINK (28) and individual-level data for the European ancestry subset of the 1KG reference. 

The model referred to as ‘top1’ simply only considers the variant with the largest absolute Z-score. 

This model is congruent with the top1 model included by FUSION. 

DBSLMM and LDpred2 require an estimate of SNP-based heritability of the gene’s expression. If the 

SNP-based heritability could not be estimated using the methods above, or the estimate was ≤ 0, we 

assumed a SNP-based heritability of 0.1 to allow these methods to create models for all genes. 

We derived TWAS models using the above methods based on eQTL summary statistics from the full 

eQTLGen consortium, from the eQTLGen consortium excluding GTEx, and from YFS. We refer to YFS 

TWAS models from the FUSION website (derived using individual level data) as FUSION-YFS TWAS 

models and refer the YFS TWAS models derived using eQTL summary statistics as eQTL-YFS TWAS 

models.  

The script used derive to TWAS models from eQTL summary statistics is publicly available (see URLs). 

 

Evaluating SNP-weights in GTEx v8 
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We used PLINK (28), implemented by FeaturePred (see URLs), to predict gene expression using all 

TWAS models in the GTEx v8 target sample. The Pearson correlation between predicted expression 

and observed whole blood expression was then assessed. The GTEx whole blood normalised 

expression was adjusted to account for the standard eQTL analysis GTEx covariates, including genetic 

principal components, surrogate variables, batch, and sex. 

We compared the correlation between predicted and observed expression between TWAS models 

for each gene, determining the statistical significance of differences between models using the 

William’s test (also known as the Hotelling-Williams test) (29) as implemented by the ‘psych’ R 

package’s ‘paired.r’ function, with the correlation between model predictions of each method 

specified to account for their non-independence. A two-sided test was used when calculating p-

values. 

 

Model selection or aggregation methods 

Traditionally, TWAS is only performed using the model that explains the most variance in expression 

of a given gene, as identified by 5-fold cross validation in the training data. However, in the setting of 

using eQTL summary statistics, formal validation of each model is typically not possible. We explored 

two alternative approaches to obtain a single indicator of significance for each gene.  

 

Pseudovalidation to identify ‘best’ model for each gene 

We used the TWAS method to infer which model best predicted expression of a given gene. We  

adapted the FUSION software (see URLs) to test for an association between all TWAS models and the 

original eQTL summary statistics. The model with the largest TWAS Z-score for a given gene was 

assumed to be the most predictive model. 

 

Aggregating TWAS results across models 

We explored two approaches for aggregating TWAS associations, including FUSION’s omnibus test 

(FUSION-O) and the aggregated Cauchy association omnibus test (ACAT-O). 

FUSION-O is multiple degrees-of-freedom omnibus test, implemented in the FUSION software, 

which estimates and adjusts for the pairwise correlation between models for a given gene. Default 

parameters were used, whereby TWAS models are pruned to removed highly correlated models (R2 

> 0.9). 

ACAT-O is an aggregated Cauchy association omnibus test, which combines p-values without 

needing to specify the correlation between the models for each gene (23). This method was recently 

proposed as an omnibus test for TWAS models (30). ACAT-O is robust when combining p-values 

corresponding to different directions of effect, so can be applied to two-sided p-values from TWAS.  

 

Type I error rate 
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We performed 100 null TWAS to determine the type I error rate (false positive rate) of different 

strategies for deriving gene associations. Null TWAS results were generated by predicting expression 

based on the eQTLGen TWAS models into the European ancestry subset of the 1KG reference, and 

then testing for an association between predicted expression and a random normally distributed 

phenotype. We measured the type I error rate as the proportion of associations with a p-value < 

0.05. We measured the type I error rate under several scenarios, selecting gene models using the 

different criteria, and aggregating TWAS associations across models using different aggregation 

methods.  

 

TWAS of schizophrenia 

We performed TWAS of schizophrenia using the latest Psychiatric Genomics Consortium 

schizophrenia GWAS summary statistics (31). We used the summary statistics specific to European 

ancestry populations (Ncase = 52017, Ncontrol = 75889) to avoid LD mismatch with eQTL reference 

datasets. We used applied FUSION-YFS TWAS models, eQTL-YFS TWAS models, and eQTLGen TWAS 

models (including GTEx v8). 

We used and adapted version of FUSION software to perform TWAS testing for association using all 

TWAS models for each gene (see URLs). 

Colocalisation analysis for significant TWAS associations was carried out using the coloc R package 

(32), as implemented within the FUSION software. This Bayesian approach estimates the posterior 

probability that associations within a locus for two outcomes are driven by a shared causal variant. It 

thus enables the distinction between associations driven by pleiotropy (one causal SNP affecting 

both transcription and MD; posterior probability 4; PP4) and linkage (two causal SNPs in LD affecting 

transcription and MD separately; posterior probability 3; PP3). 

 

SMR analysis of schizophrenia 

We performed SMR analysis of schizophrenia using the publicly available SMR-formatted eQTLGen 

data. In contrast to TWAS models, the SMR-formatted eQTLGen data is not restricted to HapMap3 

variants. Instead, SMR identifies variants in common between the GWAS and eQTL summary 

statistics. Therefore, SMR will likely consider variants that are not considered in the TWAS. SMR was 

run with default parameters, using the European ancestry subset of the 1KG reference sample to 

estimate LD, restricted to variants with a minor allele frequency > 0.1%. 

In addition to SMR, which considers only the most significant eQTL for each gene, we performed 

SMR-multi, an extension of SMR allowing for multiple eQTL effects on gene expression. SMR-multi 

was performed simply by adding the ‘--smr-multi’ parameter when running SMR. Default parameters 

were used, including a p-value threshold of 5×10-8 to select eQTL for the analysis.  

SMR and SMR-multi uses the HEIDI test to determine whether there is effect size heterogeneity 

between the GWAS and eQTL summary statistics for the given gene. The presence of effect size 

heterogeneity indicates the association for each trait is being driven by different causal variants. This 

is conceptually similar to the colocalisation analysis performed within FUSION. Concordant with the 

original SMR study, we used a HEIDI p-value threshold of >0.05 to determine colocalisation of SMR 

results. 
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Extension to MetaBrain eQTL summary statistics 

MetaBrain is recently released largescale brain eQTL meta-analysis dataset (11). MetaBrain has 

released eQTL summary statistics for 5 brain tissues based on European ancestry individuals, 

including cortex (N = 2,970), basal ganglia (N = 208), spinal cord (N = 108), cerebellum (N = 492), and 

hippocampus (N = 168). Further details of the eQTL datasets included in MetaBrain can be found in 

the original publication (11).  

After validating our approach for converting eQTL summary statistics into TWAS models using 

eQTLGen and YFS, we applied the same approach to MetaBrain eQTL summary statistics. Consistent 

with our analysis of eQTLGen and YFS eQTL summary statistics, for each gene we estimated SNP-

based heritability using SBayesR, tested for evidence of eQTL signals using mBAT-combo, derived 

TWAS models using a range of summary statistic-based polygenic scoring methods, and then 

performed TWAS of schizophrenia using the MetaBrain TWAS models. We were unable to evaluate 

the predictive utility of MetaBrain TWAS models in GTEx due to sample overlap.  

To determine whether MetaBrain TWAS models can provide novel insights over existing TWAS 

models based on brain tissue, we compared TWAS results from MetaBrain cortex TWAS models with 

TWAS results based on PsychENCODE dorsolateral prefrontal cortex (DLPFC) TWAS models (N 

individuals = 1,321, N genes = 14,751) (33). The PsychENCODE DLPFC sample used to generate TWAS 

models is smaller than that in the MetaBrain cortex meta-analysis, but the PsychENCODE datasets 

were combined at the individual-level and the TWAS models were generated using the individual-

level based methods implemented within FUSION software. In contrast to the MetaBrain TWAS 

models, PsychENCODE TWAS models are not restricted to HapMap3 variants, instead considering all 

high-quality variants after imputation using the haplotype reference panel (34). 
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Results 

Predictive utility of TWAS models 

TWAS models were generated based on eQTLGen (excluding GTEx) and YFS eQTL summary statistics. 

TWAS models were then used to predict expression into the independent GTEx v8 sample, and the 

correlation between the predicted and observed whole blood expression values was calculated. We 

quantified the number of genes that had a predicted-observed correlation > 0.1, referred to as ‘valid 

genes’, and we also quantified the number of times each method performed best for a given gene. 

When deriving models based on the eQTLGen summary statistics, the method with the highest 

median correlation and largest number of valid genes was SBayesR-robust (median correlation = 

0.045, N valid = 2,449) (Table 1, Figure S1). However, SBayesR-robust was least likely to be the best 

model for a given gene (6.5%). The discrepancy between the high median correlation but lower 

relative performance of SBayesR-robust for each gene is due to the method estimating zero SNP-

based heritability for 18% of genes, thereby not providing a model for a large proportion of genes. 

The top1 model was most commonly the best model across genes (20.9%) despite having a relatively 

low median correlation of 0.035 across all genes. We found each model significantly improved in 

prediction over all other models for at least 16 genes (Table 1). The top1 model was found to 

perform significantly worse than the best model for 8.6% of genes in eQTLGen, highlighting the 

advantage of using models that go beyond the single strongest eQTL for each gene.    

When using the YFS summary statistics (Table S1, Figure S2), the relative performance of summary 

statistic methods varied slightly, with PRS-CS models performing best on average. Again, the top1 

model performed best for the largest number of genes (25.3%), but the top1 model also performed 

significantly worse than other models for 12.1% of genes.  

We also compared the predictive utility of eQTL-YFS models to FUSION-YFS models, derived using 

the YFS individual-level data (Table S1). The predictive utility of FUSION-YFS models was typically 

higher than that of eQTL-YFS models derived using summary statistic-based methods, with FUSION-

YFS also typically returning a larger number of valid genes. Despite eQTL-YFS models on average 

having a lower correlation with observed values, for many genes the eQTL-YFS models performed 

better than any FUSION-YFS model. 

Given the YFS dataset is one of the largest available for TWAS of blood, we tested whether using 

eQTLGen models significantly improved prediction of expression over FUSION based models for the 

same genes. Using the FUSION YFS dataset, 4633 genes were imputed into GTEx v8, of which 1,311 

had a predicted-observed correlation of 0.1 in GTEx v8. Using the eQTLGen dataset, 16,719 genes 

were imputed into GTEx v8, of which 3,800 had a predicted-observed correlation of 0.1 in GTEx v8. 

For genes imputed using both eQTLGen and FUSION YFS datasets (N genes = 4,606), there was a 

statistically significant increase in the median predicted-observed correlation when using the best 

eQTLGen model compared to the best YFS model (eQTLGen median r = 0.076, YFS median r = 0.063,  

Wilcoxon p < 2.2×10-16). Figure S3 shows a comparison of predicted-observed correlations for the 

best model in YFS and eQTLGen. On average, eQTLGen models for genes available in the YFS dataset 

were more accurate than genes that were not available in the YFS dataset (Figure S4).  

 

Comparison of eQTLGen TWAS and SMR results for schizophrenia 
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We compared the results of TWAS and SMR analysis using eQTLGen data. The number of genes 

tested, the number significant genes, the number of colocalised genes, and the overlap between 

TWAS and SMR are shown in Table 2. 

As a benchmark for comparison, SMR analysis using eQTLGen eQTL summary statistics identified 217 

Bonferroni significant genes, of which 67 passed the HEIDI test indicating colocalisation.  

 

Top1 model vs. SMR 

We first compared the top1 TWAS models for each gene, as like SMR, the top1 model only considers 

the strongest eQTL for each gene. Using top1 models, TWAS identified 309 Bonferroni significant 

genes, of which 204 were significant in the SMR analysis. There was a high Z-score correlation of 

0.929 across all genes tested in both TWAS and SMR. We examined the 13 genes that were 

significant in the SMR analysis but were not significant in the top1 TWAS models. For two of these 

genes the lead eQTL in the top1 TWAS model was not present in the schizophrenia GWAS, so the 

TWAS association based on this model was missing. This highlights the advantage of SMR analysing 

the intersect of the eQTL and GWAS summary statistics, in contrast to TWAS which selects variants 

for inclusion independent of the GWAS summary statistics. The remaining 11 genes that were 

significant in SMR but not in TWAS were caused by TWAS using only hapmap3 variants, leading to a 

difference in the lead eQTL used by SMR and TWAS. The use of different variants between methods 

typically makes a small difference to the inferred gene expression association due to linkage 

disequilibrium between variants. However, if there is evidence of effect size heterogeneity between 

eQTL and GWAS associations within a given locus, using different variants can lead to more 

substantial differences in the inferred gene expression association. This is demonstrated by the SMR 

and TWAS (top1 model) Z score correlation increasing to 0.972 among the 441 genes with a HEIDI p-

value > 0.95 (indicating strong evidence of colocalisation). 

 

Model selection and aggregation 

We then made comparisons to the TWAS associations for each gene when either selecting the best 

model using external validation in GTEx v8, selecting the best model using pseudovalidation, or 

performing TWAS using all models for each gene and then aggregating model specific results.  

Simulations showed that the type I error rate was significantly inflated when aggregating 

associations for each gene using FUSION-O (mean = 0.197, SD = 0.007), but the type I error was well 

controlled when using ACAT-O (mean = 0.054, SD = 0.003), highlighting that ACAT-O is better 

calibrated in this context. 

TWAS restricted to models externally validated in the GTEx v8 sample resulted in 294 Bonferroni 

significant genes, of which 76 colocalised with a coloc PP4 > 0.8. Restricting TWAS to genes with 

external validation in GTEx v8 led to a reduction to the number of genes tested, as 13.5% of the 

genes in the eQTLGen TWAS models were not present in the GTEx v8 expression data. Evaluation of 

the pseudovalidation approach to select models in GTEx v8 performed poorly (see Supplementary 

Information), but TWAS restricted to pseudovalidated models resulted in 455 Bonferroni significant 

genes, of which 90 colocalised with a PP4 > 0.8. Of the 455 significant genes, 166 were significant in 

the SMR analysis. Using TWAS with ACAT-O aggregation across models identified 634 Bonferroni 

significant genes, of which 115 colocalised (Table 2). Of the 634 significant ACAT-O genes, 208 were 
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Bonferroni significant in the SMR analysis. In line with our simulations showing FUSION-O has an 

inflated type I error rate, when applied to schizophrenia TWAS results FUSION-O identified 2,179 

Bonferroni significant genes. 

 

Gene inclusion criteria 

SNP-based heritability estimation was most accurate when using SBayesR (see Supplementary 

Information). Restricting the analysis to genes based on statistically significant SNP-based heritability 

substantially reduced the number of Bonferroni significant genes identified, the number of 

colocalised genes, and the overlap with significant genes in the SMR analysis. Restricting to genes 

with a significant mBAT-combo signal or a genome-wide significant eQTL led to 33 fewer Bonferroni 

significant genes, but the number of significant and colocalised genes increased by one gene. This 

indicates restricting the analysis to genes with significant evidence of eQTL effects present may 

reduce the number of associations driven by linkage (different causal variants) and thereby reduces 

the multiple testing burden to detect colocalised associations at statistical significance.  

 

Comparison to SMR-multi 

We additionally compared TWAS results to those of SMR-multi, a multi-variant extension to SMR. 

SMR-multi identified 508 Bonferroni significant associations, of which 108 passed the HEIDI test 

indicating colocalisation. This result highlights SMR-multi provides a gain in power compared to 

SMR, and many of the novel associations pass the HEIDI test and are therefore consistent with a 

causal model.  

Of the 508 Bonferroni significant associations, 186 were significant in the SMR analysis, 230 were 

significant across pseudovalidated TWAS models, and 315 were significant in the ACAT-O aggregated 

TWAS.  

Ultimately, the mBAT-combo-restricted and ACAT-O aggregated TWAS of schizophrenia identified 25 

genes as significant and colocalised that were not significant in either SMR or SMR-multi analyses 

(Table 3). 

 

Comparison of individual-level and summary statistic-based YFS TWAS 

We compared TWAS results when using models derived using individual-level YFS data (FUSION-YFS 

models) and models derived using YFS eQTL summary statistics (eQTL-YFS models). The number of 

genes tested, the number of significant genes, the number of colocalised genes, and the overlap 

between FUSION and eQTL based TWAS are shown in Table S2. 

Across all 4,685 genes, TWAS using FUSION-YFS models, selecting the best model per gene based on 

cross-validation r2 (CV.R2, standard TWAS approach), identified 93 Bonferroni significant genes.  

TWAS using eQTL-YFS models, selecting the best model using pseudovalidation (PseudoVal), resulted 

in 75 Bonferroni significant genes, 58 of which were also Bonferroni significant in the FUSION-YFS 

TWAS. The TWAS Z-score correlation between FUSION-YFS (CV.R2) and eQTL-YFS (PseudoVal) 

models was 0.851.  
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Consistent with eQTLGen results, ACAT-O improved power to detect associations, identifying 162 

Bonferroni significant genes, 87 of which were Bonferroni significant in the FUSION TWAS. We 

additionally show that applying ACAT-O to FUSION-YFS TWAS results also increased the number of 

identified associations, identifying 130 Bonferroni significant associations, indicating this approach 

improves power to detect associations even when the best TWAS model for each gene has been 

identified via 5-fold cross-validation. 

Similar to eQTLGen results, restricting the analysis to genes with significant SNP-based heritability 

substantially reduced the number of significant genes identified by TWAS (Table S2), but restricting 

the analysis to genes with significant mBAT-combo associations or with a genome-wide significant 

eQTL retained all significant associations. 

 

MetaBrain TWAS and comparison to PsychENCODE 

Based on our previous results using eQTLGen and YFS, for the MetaBrain TWAS, we only included 

genes with an FDR significant mBAT-combo association or genome-wide significant eQTL, and 

aggregated TWAS associations across models using ACAT-O. The number of genes retained for each  

MetaBrain tissue varied depending on the sample size available (Table S4). 

We compared the MetaBrain cortex and PsychENCODE TWAS results. TWAS using MetaBrain cortex 

eQTL summary statistics identified 374 significant genes, of which 59 showed strong evidence of 

colocalisation. TWAS using PsychENCODE models based on individual-level data, selecting the best 

model for each gene based on the out-of-sample variance explained, identified 211 significant genes, 

of which 78 showed strong evidence of colocalisation. Across TWAS using MetaBrain cortex and 

PsychENCODE DLPFC, 61 genes were identified as statistically significant using both, and 11 showed 

strong evidence of colocalisation using both. The 374 significant genes in the MetaBrain cortex 

TWAS were separated into 114 independent loci (0.5Mb window), of which 46 contained a 

significant gene in the PsychENCODE TWAS, indicating TWAS using MetaBrain identifies associations 

within novel loci. 

These results indicate MetaBrain cortex TWAS and PsychENCODE TWAS often identify different 

associations, with MetaBrain cortex identifying more significant associations, but fewer colocalised 

associations. 
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Table 1. Predicted-observed correlation using eQTLGen TWAS models and GTEx v8 target sample. N valid and % valid 
indicate the number and percentage of genes that had a predicted-observed correlation > 0.1. N sig. top indicates the 
number of genes for which a method showed a statistically significant improvement in prediction over all other methods. 

Method 
N 

valid 
Median r % valid N top 

Median r 
top 

% top 
N sig. 
top 

SBayesR-robust 2449 0.045 14.60% 1094 0.082 6.50% 22 

PRS-CS 2519 0.039 15.10% 1613 0.069 9.70% 16 

LDpred2 2385 0.036 14.30% 2156 0.061 12.90% 44 

DBSLMM 2116 0.036 12.70% 1981 0.059 11.90% 22 

lassosum 2385 0.035 14.30% 2469 0.055 14.80% 20 

top1 2326 0.035 13.90% 3493 0.057 20.90% 81 

SuSiE 2003 0.033 12.00% 2303 0.057 13.80% 24 

SBayesR 1392 0.026 8.30% 1603 0.049 9.60% 40 

 

Table 2. Summary of results for eQTLGen based TWAS and SMR analysis of schizophrenia, using different model selection 
criteria and aggregation methods. N test = Number of genes with non-missing TWAS Z scores in the output; N sig. = Number 
of significant genes after Bonferroni correction; N sig. overlap with SMR = Number of significant genes also significant in 
SMR; ObsVal = the model was selected according to the model generated from eQTLGen (excl. GTEx v8) with the highest 
predicted-observed correlation in the GTEx v8 target sample; Pseudovalidation Z score; PseudoVal = the model was selected 
with the highest Pseudovalidation Z score; TWAS.P = the model was selected with the smallest TWAS p-value (most 
significant); top1 = the top1 model was selected; FUSION.O = results for each model was aggregated using the FUSION-O 
test; ACAT.O = results for each model was aggregated using the ACAT-O test; SNP-h2 = only genes with a statistically 
significant SBayesR SNP-based heritability were retained; mBAT-combo, only genes with either a significant mBAT-combo 
gene association or genome-wide significant eQTL were retained. 

Approach N test N sig. 
N sig. 
coloc. 

N sig. 
overlap with 

SMR 

N sig. coloc. 
Overlap 

with SMR 

SMR 15330 217 67 217 67 

eQTL (top1) 18574 309 105 204 44 

eQTL (ObsVal) 16562 294 76 147 32 

eQTL (SNP-h2; ObsVal) 14225 203 61 102 30 

eQTL (mBAT-combo; ObsVal) 14870 284 76 147 32 

eQTL (PseudoVal) 19156 455 90 166 36 

eQTL (SNP-h2; PseudoVal) 15950 342 73 120 34 

eQTL (mBAT-combo; PseudoVal) 16692 449 90 166 36 

eQTL (ACAT.O) 19156 634 115 208 43 

eQTL (SNP-h2; ACAT.O) 15950 443 98 152 42 

eQTL (mBAT-combo; ACAT.O) 16692 601 116 209 44 

eQTL (FUSION.O) 19147 2179 121 202 39 

eQTL (SNP-h2; FUSION.O) 15856 1460 101 145 37 

eQTL (mBAT-combo; FUSION.O) 16684 1754 122 203 39 
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Table 3. Significant and colocalised eQTLGen schizophrenia TWAS associations that were not significant in SMR or SMR-
multi. Showing genes with significant mBAT-combo association or genome-wide significant eQTL, that were Bonferroni 
significant after aggregation across TWAS model using ACAT-O, and colocalised using a coloc PP4 threshold of 0.8. Mean 
TWAS Z indicates the mean TWAS Z-score across models for each gene to indicate the direction of the association.  

Location Name 
Mean 

TWAS Z 
ACAT-O P 

(Bonferroni) 
Coloc 
PP4 

SMR P 
(Bonferroni) 

SMR-multi P 
(Bonferroni) 

HEIDI P 

1:6684926-6695646 THAP3 -5.17 7.03E-06 0.981 0.391 0.108 0.073 

1:8484705-8494898 RP5-1115A15.1 -4.10 5.08E-04 0.968 0.131 1.000 0.001 

1:36179476-36185073 C1orf216 4.43 1.09E-03 0.896 0.139 0.061 0.778 

1:150237804-150241980 APH1A -4.02 6.07E-04 0.938 1.000 0.825 0.010 

1:160185505-160254920 DCAF8 4.70 3.01E-04 0.945 0.689 1.000 0.857 

2:71503691-71662199 ZNF638 3.85 1.24E-06 0.847 1.000 1.000 0.015 

3:9391373-9440263 SETD5-AS1 4.47 1.56E-05 0.868 1.000 1.000 0.423 

3:63850233-63989138 ATXN7 -5.06 1.11E-06 0.982 0.394 0.394 0.272 

4:156263810-156298122 MAP9 4.12 1.12E-03 0.978 0.623 0.222 0.444 

6:111804714-111919505 TRAF3IP2-AS1 -4.12 8.10E-04 0.988 1.000 1.000 0.185 

7:100277130-100287071 GIGYF1 4.42 3.72E-05 0.974 0.085 1.000 0.470 

8:26240414-26363152 BNIP3L 4.37 1.37E-06 0.998 1.000 1.000 0.363 

9:131932713-131933219 RP11-247A12.7 4.58 4.74E-05 0.861 0.089 0.358 0.604 

10:64571756-64679660 EGR2 -3.18 6.04E-04 0.993 1.000 1.000 0.341 

11:57520715-57587018 CTNND1 3.36 7.13E-04 0.881 0.336 1.000 0.005 

11:65479467-65487075 KAT5 4.34 1.49E-03 0.804 1.000 1.000 0.369 

16:4560676-4588829 CDIP1 4.74 4.97E-04 0.829 1.000 1.000 0.275 

17:5185558-5289129 RABEP1 -2.51 1.26E-06 0.946 0.068 0.346 0.571 

17:12692856-12894960 ARHGAP44 -4.36 5.32E-04 0.891 1.000 1.000 0.018 

17:17713713-17740325 SREBF1 -3.40 6.96E-04 0.867 0.180 0.486 0.150 

17:17942606-17971718 GID4 -4.23 4.13E-04 0.884 0.210 0.502 0.033 

17:43471275-43511787 ARHGAP27 2.48 2.32E-05 0.992 1.000 1.000 4.47E-06 

17:53246184-53250993 CTC-462L7.1 3.65 3.88E-06 0.86 0.884 1.000 0.899 

19:50138549-50143458 RRAS -5.57 1.17E-08 0.996 0.148 0.089 0.658 

22:25844072-25916821 CRYBB2P1 -4.96 2.81E-11 0.932 1.000 1.000 0.052 
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Discussion 

This study derives and evaluates a TWAS-based framework for integrating eQTL summary statistics 

with GWAS summary statistics to infer differential gene expression associated with the GWAS 

phenotype. We use eQTL summary statistics from eQTLGen and YFS datasets to derive TWAS 

models, evaluating the predictive utility of these models within the independent GTEx v8 target 

sample. We use the eQTL summary statistic-based TWAS models to perform TWAS of schizophrenia, 

comparing results to those identified using existing methods and resources. 

 

Predictive utility of summary statistic-based TWAS models 

We show that summary statistic methodology can be applied to eQTL summary statistics to derive 

multi-variant TWAS models predicting gene expression in external datasets. We demonstrate that 

multi-variant TWAS models based on eQTL summary statistics often significantly improve prediction 

of gene expression over the top1 model using only the single largest eQTL, although the best model 

varies across genes. Furthermore, TWAS models derived using individual-level data provided only a 

small improvement over eQTL summary statistic-based TWAS models, and as a result, TWAS models 

using the larger eQTLGen summary statistics provided significantly improved prediction over models 

based on the YFS individual-level data. This was demonstrated by showing the number of ‘valid’ 

genes (with predicted-observed correlation > 0.1) increased when using eQTLGen data compared to 

YFS data, and by showing the predicted-observed correlation for genes increased when using 

eQTLGen data over YFS data. These findings support the use of multi-variant TWAS models based on 

larger eQTL summary statistics when corresponding individual-level data is not available.  

 

TWAS model selection and aggregation   

TWAS models can be integrated with GWAS summary statistics to perform TWAS or used to predict 

gene expression levels in individual-level data. Traditionally, in both these situations, the TWAS 

model with the highest predictive utility is selected for each gene, determined using cross-validation 

in the training data. Given we typically do not have a validation dataset to evaluate eQTL summary 

statistic-based TWAS models, we explored two alternative approaches to either select or aggregate 

TWAS models. 

We evaluated the TWAS method as a form of pseudovalidation, to select the model best predicting 

gene expression. However, using the same eQTL summary statistics to derive and test the TWAS 

models appeared to lead to overfitting, with larges biases towards more complex models. Further 

methodological development is required to infer the optimal model for a given gene using summary 

statistics alone. In the meantime, we recommend using the best model identified using formal 

validation, as we have done by evaluating the eQTLGen TWAS models in the independent GTEx v8 

target sample.  

When performing TWAS, it is possible to aggregate evidence of association across TWAS models for 

a given gene. We explored two approaches for this, including ACAT-O and FUSION-O. Simulations 

highlighted the type I error rate was well controlled when using ACAT-O, but not FUSION-O. Using 

ACAT-O to aggregate associations for each gene identified more significant associations than using 

either formal validation or pseudovalidation to select the single ‘best’ model, indicating that ACAT-O 
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model aggregation can improve statistical power to detect significant associations. Therefore, when 

multiple models for each gene can be considered, such as TWAS, model aggregation may be 

preferable to selecting the single best model.  

 

TWAS of schizophrenia and comparison to existing resources 

We performed a TWAS of schizophrenia using TWAS models derived from eQTLGen summary 

statistics. Comparison to SMR and SMR-multi showed that using the TWAS approach to integrate 

eQTL summary statistics with GWAS can identify novel associations over SMR and SMR-multi. 

However, SMR and SMR-multi also identified associations that were not significant in the TWAS, 

indicating that these different approaches can each offer novel insights. Our TWAS, restricted to 

genes with strong eQTL effects and aggregating using ACAT-O across TWAS models, identified 25 

significant and colocalised genes that were not identified using either SMR or SMR-multi. This 

illustrates that TWAS can provide novel insights over existing methods that can be used to further 

our understanding of disease aetiology.  

We further extend our summary statistic-based approach to MetaBrain eQTL summary statistics, 

comparing schizophrenia TWAS results to those generated using the smaller but individual-level 

PsychENCODE dataset. Compared to PsychENCODE, the MetaBrain TWAS identified a larger number 

of significant associations but fewer associations colocalised. This suggests that MetaBrain TWAS 

increases power to detect associations over existing resources, but the signals often do not 

colocalise. One possible explanation for the reduced likelihood of colocalisation is that MetaBrain is 

a meta-analysis of multiple datasets which often leads to different individuals being considered 

across variants, which may increase the likelihood of effect size heterogeneity when compared to 

the GWAS summary statistics. Additionally, many associations were unique to either MetaBrain or 

PsychENCODE TWAS, indicating TWAS models from both sources can offer novel insights. 

 

Gene inclusion criteria 

Often in there is insufficient data to identify robust eQTL associations for a given gene. Including 

TWAS models for genes with weak eQTL associations are unlikely to be useful for prediction in 

external individual-level data or for TWAS analysis, which may introduce noise into downstream 

analyses and unduly increase the multiple testing burden. Therefore, we explored two approaches 

for identifying genes with a sufficient eQTL signal present, including statistically significant SNP-

based heritability of gene expression, and identifying genes with either a significant mBAT-combo 

association or genome-wide significant eQTL present. We found that restricting TWAS to genes with 

statistically significant SNP-based heritability substantially reduced the number of significant and 

colocalised TWAS associations, indicating this approach reduced the power of TWAS. In contrast, 

restricting the TWAS to genes with either a significant mBAT-combo association or genome-wide 

significant eQTL present retained most significant TWAS associations, and slightly increased the 

number of colocalised genes, highlighting that this approach is a useful criterion when selecting 

TWAS models for downstream analysis. 

 

Comparison with OTTERS 
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A recent preprint describes a similar approach to ours for the integration of eQTL summary statistics 

in a TWAS framework, called OTTERS (30). Our findings are congruent, with summary statistic 

methods applied to eQTLGen providing novel opportunities and associations. Notable advances 

made by our study are as follows. First, in addition to lassosum and PRS-CS models for gene 

expression we include DBSLMM, LDpred2, SBayesR, SBayesR-robust, and SuSiE. In contrast OTTERS 

includes two alternative methods including the p-value thresholding and clumping approach, and 

SDPR. Second, we explore criteria for including genes in TWAS, including SNP-based heritability and 

the mBAT-combo gene association test, with the latter avoiding the inclusion of many genes with 

invalid prediction. OTTERS generates models for all genes, potentially including models with no 

predictive utility. Third, our approach for deriving TWAS models is very fast, taking 1-3 minutes per 

gene, in contrast to the  ~20 minutes reported in the OTTERS preprint. Fifth, our study provides 

additional comparisons with existing methods and resources, providing a comparison of methods to 

existing TWAS models from the YFS sample, and providing a comparison to eQTLGen results derived 

using SMR and SMR-multi. 

 

Limitations 

There are limitations to the application of eQTL summary statistics to the TWAS framework. Most 

summary statistic methods require the use of an LD reference, matched to the ancestry of the 

population used to generate the summary statistics. Misspecification of LD reduces the accuracy of 

summary statistic-based methods, leading to reduced accuracy of prediction models. Furthermore, 

summary statistic-based methods, such as colocalisation are sensitive to misspecification that can 

occur when using summary statistics from largescale meta-analyses. Integration of methods that 

attempt to resolve these LD mismatch and misspecification issues may further improve the value of 

eQTL summary statistic datasets (35,36). A further limitation of using eQTL summary statistics is the 

absence of a validation sample to identify the optimal hyperparameters or model for a given gene, 

and the current inaccuracy of our proposed pseudovalidation approach. Although we provide formal 

validation results for the eQTLGen TWAS models derived in this study, further investigation of 

pseudovalidation methods should be explored that diminish the likelihood of overfitting for future 

eQTL summary statistic datasets. 

 

Implications 

We have developed our approach for the integration of eQTL summary statistics in line with the 

existing and popular FUSION software for performing TWAS. This allows others to easily integrate 

TWAS models from novel eQTL summary statistics resources. We have made the TWAS models 

derived from eQTLGen and MetaBrain publicly available for others to use (see Data Availability). The 

scripts used to define gene inclusion criteria and compute prediction weights is also highly efficient, 

taking 1-3 minutes per gene, and can be run in parallel for each gene, allowing other researchers to 

easily compute TWAS models from eQTL summary statistics as they are released. 

GWAS methodology transitioned from the use of individual-level data to summary statistics to 

overcome data sharing restrictions and increase the sample size and statistical power. Our study 

facilitates a similar transition, specifically for methodology applied to eQTL data and other molecular 

QTL data (e.g., methylation, protein). The application of summary statistic-based methods to eQTL 
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summary statistics provides novel and enhanced opportunities for the utilisation of eQTL summary 

statistics to understand and predict complex phenotypes.  
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Data availability 

• TWAS models from eQTLGen summary statistics and corresponding validation results in 

GTEx v8: https://doi.org/10.5281/zenodo.7068381  

• TWAS models from MetaBrain summary statistics: https://doi.org/10.5281/zenodo.7121234  

• YFS TWAS models: http://gusevlab.org/projects/fusion/  

• eQTLGen cis-eQTL summary statistics: https://www.eqtlgen.org/cis-eqtls.html  

• Schizophrenia GWAS summary statistics: https://www.med.unc.edu/pgc/download-results/  

• HapMap3 SNP-list: https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2  

• GTEx Portal: https://gtexportal.org/home/datasets  

• Software: 

o FUSION repository: https://github.com/gusevlab/fusion_twas  

o FeaturePred repository: https://github.com/opain/Predicting-TWAS-features  

o eQTL_to_TWAS repository: https://github.com/opain/eQTL_to_TWAS  
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Supplementary Information 

Pseudovalidation of TWAS models 

In the setting of using eQTL summary statistics, formal validation of each model is not possible, so 

we tested a TWAS-based pseudovalidation approach to infer which model best predicted expression 

of a given gene. 

On average, when using pseudovalidation to select the best model, the predicted-observed 

correlation was 0.026 lower than the best model identified by testing in GTEx (Figure S5). Between 

pseudovalidation and external validation in GTEx, the average rank correlation of methods was 

0.097, and pseudovalidation selected the best model for 16% of genes. Confusion matrices were 

created to determine predictive utility of pseudovalidation for each model (Figure S5). There was a 

substantial difference in performance of pseudovalidation across models, with a very low sensitivity 

for the top1 model despite often performing best. The bias towards more complex models may be a 

result of overfitting due to the use of the eQTL summary statistics to both train the TWAS models 

and test their predictive performance. The median correlation between predicted and observed 

expression for models selected by pseudovalidation was 0.024, indicating using pseudovalidation to 

select the model for each gene will lead to poorer prediction of expression than any one method 

applied to all genes.  

We also evaluated pseudovalidation results for FUSION-YFS based models, comparing the reported 

5-fold cross-validation variance explained in the YFS sample. The concordance between 

pseudovalidation and formal validation was similar in YFS as it was in eQTLGen (Figure S6).  

 

SNP-based heritability of gene expression 

We compared the SNP-based heritability of the 561 genes on chromosome 22 based on GTEx v8 

whole blood eQTL summary statistics to the SNP-based heritability reported by FUSION using GREML 

and the individual-level GTEx v8 data (Figure S7, Table S3). We also highlight the number of genes 

for which each method converged when estimating SNP-based heritability. The summary statistic 

method providing SNP-based heritability estimates most similar to GREML was SBayesR, with a 

correlation of 0.902 between SBayesR and GREML SNP-based heritability estimates. SBayesR 

successfully converged for 560 out of 561 genes. SNP-based heritability estimates from SBayesR-

robust were highly correlated with those of SBayesR (0.975), but the correlation with GREML 

estimates was lower (0.863) and the method only converged for 285 genes. SNP-based heritability 

estimates from LDSC were highly inaccurate, with most estimates outside the 0−1 range, and the 

correlation with GREML estimates was 0.556. The poor performance of LDSC was expected as it is 

not designed to accurately estimates SNP-based heritability within a specific locus. 

FUSION traditionally only generates TWAS models for genes with a SNP-based heritability p<0.01. Of 

the 561 genes considered, GREML identified 301 genes with significant SNP-based heritability, which 

was more SNP-based heritable genes than any summary statistic-based method estimating SNP-

based heritability. Of the summary statistic-based methods, SBayesR identified the largest number 

of genes with a statistically significant SNP-based heritability (N=275) and identified the most SNP-

based heritable genes that were also identified as SNP-based heritable by GREML (N=271). 

Concordant with the correlation analysis with GREML estimates, the other methods were also less 

congruent with GREML in terms of overlapping SNP-based heritable genes. 
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We also evaluated an alternative approach for defining inclusion criteria for genes in the TWAS, 

including genes if they had a genome-wide significant eQTL present, or mBAT-combo estimated a 

significant gene association statistic (FDR < 0.05). Using these criteria identified the largest of 

number of genes (N=302) compared to other summary statistic-based methods, and the largest 

number genes identified as significant by GREML (N=287). This method converges for all genes. 
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Supplementary Figures 

 

Figure S1. Median predicted-observed correlation using eQTLGen summary statistics and GTEx v8 target sample. 

 

 

Figure S2. Median predicted-observed correlation using YFS summary statistics and GTEx v8 target sample. 
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Figure S3. Predicted-Observed correlation for the best model within FUSION YFS and eQTLGen datasets. 

 

 

Figure S4. Distribution of predicted-observed correlation of genes in eQTLGen stratified by their presence in the FUSION YFS 
panel. 
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Figure S5. Comparison of predicted-observed correlation in the GTEx v8 sample of the best model identified in GTEx v8 and 
the best model identified using pseudovalidation. Confusion matrix shows true best model on x-axis, and predicted best 
model on y-axis. 

 

 

Figure S6. Comparison of predicted-observed correlation in the YFS sample of the best model identified using 5-fold cross 
validation in the YFS sample and the best model identified using pseudovalidation. Confusion matrix shows true best model 
on x-axis, and predicted best model on y-axis. 
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Figure S7. Pairwise comparison of SNP-based heritability estimates. Lower triangle shows scatterplot of SNP-based 
heritability estimates from each method with the red line indicating a correlation of 1. The diagonal elements are density 
plots showing the distribution of SNP-based heritability estimates for each method. The upper triangle shows the Pearson 
correlation between SNP-based heritability estimates and the number of estimates available for both methods. 
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Supplementary Tables 

 

Table S1. Predicted-observed correlation using FUSION-YFS and eQTL-YFS TWAS models, and GTEx v8 target sample. N valid 
and % valid indicate the number and percentage of genes that had a predicted-observed correlation > 0.1. Columns labelled 
‘eQTL’ only compare the performance of models derived using eQTL summary statistics. N sig. top (eQTL) indicates the 
number of genes for which an eQTL summary statistic-based method showed a statistically significant improvement in 
prediction over all other eQTL summary statistic-based methods. 

Method 
N 

valid 
Median 

r 
% valid 

N 
top 

Median 
r top 

% top 
N top 
(eQTL) 

Median 
r top 

(eQTL)  

% top 
(eQTL) 

N sig. 
top 

(eQTL) 

BSLMM (FUSION) 1065 0.05 23.00% 394 0.093 8.50% NA NA NA NA 

Elastic Net (FUSION) 1067 0.05 23.00% 397 0.09 8.60% NA NA NA NA 

Lasso (FUSION) 1071 0.049 23.10% 406 0.088 8.80% NA NA NA NA 

PRS-CS (eQTL) 963 0.048 20.80% 244 0.084 5.30% 483 0.084 10.40% 7 

BLUP (FUSION) 952 0.047 20.50% 412 0.074 8.90% NA NA NA NA 

DBSLMM (eQTL) 834 0.044 18.00% 346 0.066 7.50% 511 0.065 11.00% 5 

SBayesR-robust (eQTL) 628 0.043 13.60% 107 0.067 2.30% 174 0.068 3.80% 6 

top1 (FUSION) 959 0.043 20.70% 3 0.003 0.10% NA NA NA NA 

Top1 (eQTL) 958 0.043 20.70% 707 0.072 15.30% 1169 0.076 25.30% 77 

lassosum (eQTL) 861 0.042 18.60% 430 0.061 9.30% 754 0.069 16.30% 26 

LDpred2 (eQTL) 657 0.039 14.20% 362 0.053 7.80% 482 0.052 10.40% 23 

SuSiE (eQTL) 707 0.039 15.30% 599 0.062 12.90% 759 0.064 16.40% 29 

SBayesR (eQTL) 534 0.035 11.50% 222 0.052 4.80% 297 0.052 6.40% 10 

 

Table S2. Summary of results for FUSION-YFS and eQTL-YFS based TWAS of schizophrenia, using different model selection 
criteria and aggregation methods. N test = Number of genes with non-missing TWAS Z scores in the output; N sig. = Number 
of significant genes after Bonferroni correction; N sig. overlap with FUSION (CV.R2) = Number of significant genes also 
significant in the FUSION-YFS (CV.R2) TWAS; CV.R2 = the model was selected with the highest variance explained in YFS 
(default behaviour in FUSION); PseudoVal = the model was selected with the highest Pseudovalidation Z score; TWAS.P = 
the model was selected with the smallest TWAS p-value (most significant); FUSION.O = results for each model was 
aggregated using the FUSION OMNIBUS test; ACAT.O = results for each model was aggregated using the ACAT-O test; SNP-
h2 = only genes with a statistically significant SBayesR SNP-based heritability were retained; mBAT-combo, only genes with 
either a significant mBAT-combo gene association or genome-wide significant eQTL were retained. 

Approach N test N sig. 
N sig. 
coloc. 

N sig. overlap 
with FUSION 

(CV.R2) 

N sig. coloc. 
overlap with 

FUSION (CV.R2) 

FUSION (CV.R2) 4685 93 21 93 21 

eQTL (PseudoVal) 4685 75 12 58 12 
eQTL (SNP-h2; PseudoVal) 4028 49 9 39 9 

eQTL (mBAT-combo; PseudoVal) 4677 75 12 58 12 

eQTL (ACAT.O) 4685 162 28 87 18 
eQTL (SNP-h2; ACAT.O) 4028 104 22 64 15 

eQTL (mBAT-combo; ACAT.O) 4677 162 28 87 18 

eQTL (FUSION.O) 4683 605 33 82 17 
eQTL (SNP-h2; FUSION.O) 4026 487 27 60 14 

eQTL (mBAT-combo; FUSION.O) 4675 604 33 82 17 
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Table S3. Analysis of 561 genes on chromosome 22. Compares each method in terms of the number of genes for which each 
SNP-based heritability method converged successfully (N converge), the number of genes identified with statistically 
significant SNP-based heritability (N significant), and the number of SNP-based heritable genes identified in common with 
GREML. The number of genes identified as significant by mBAT-combo or containing a genome-wide wide significant 
variant are also included. Note. mBAT-combo refers to selecting genes with a mBAT-combo FDR < 0.05 or at least one 
genome-wide significant eQTL. 

Method N converge N significant N GREML overlap 

GREML 561 301 301 
LDSC 558 256 184 

SBayesR 560 275 271 
SBayesR-robust 285 263 243 

SbayesS 414 247 244 
mBAT-combo 561 302 287 

 

Table S4. Number of genes for each MetaBrain tissue with either an FDR significant mBAT-combo association or a genome-
wide significant eQTL. 

Panel N gene 

MetaBrain - Cortex 11594 

MetaBrain - Basalganglia 922 

MetaBrain - Cerebellum 5873 

MetaBrain - Hippocampus 709 

MetaBrain - Spinalcord 479 
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