
1 

Accurate microRNA annotation of animal genomes 

using trained covariance models of curated microRNA 

complements in MirMachine 
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Highlights 

• An annotation pipeline using trained covariance models of microRNA families 

 

• Enables massive parallel annotation of microRNA complements of genomes 

 

• MirMachine creates meaningful annotations for very large and extinct genomes 

 

• microRNA score to assess genome assembly completeness 

 

Summary 

Understanding the evolution of organismic complexity and the genomic basis of gene-
regulation is one of the main challenges in the postgenomic era. While thousands of new 
genomes are available today, no accurate methods exist to reliably mine those for 
microRNAs, an important class of post-transcriptional regulators. Currently, their 
prediction and annotation depend on the availability of transcriptomics data sets and 
hands-on expert knowledge leading to the large discrepancy between novel genomes 
made available and the availability of high-quality microRNA complements. Using the 
more than 16,000 microRNA entries from the manually curated microRNA gene database 
MirGeneDB, we generated and trained covariance models for each conserved microRNA 
family. These models are available in MirMachine, our new pipeline for automated 
annotation of conserved microRNAs. We show that MirMachine can be used to accurately 
and precisely predict conserved microRNA complements from genome assemblies, 
correctly identifying the number of paralogues, and by establishing the novel microRNA 
score, the completeness of assemblies. Built and trained on representative metazoan 
microRNA complements, we used MirMachine on a wide range of animal species, 
including those with very large genomes or additional genome duplications and extinct 
species such as mammoths, where deep small RNA sequencing data will be hard to 
produce. With accurate predictions of conserved microRNAs, the MirMachine workflow 
closes a long-persisting gap in the microRNA field that will not only facilitate automated 
genome annotation pipelines and can serve as a solid foundation for manual curation 
efforts, but deeper studies on the evolution of genome regulation, even in extinct 
organisms. MirMachine is freely available (https://github.com/sinanugur/MirMachine) and 
also implemented as a web application (www.mirmachine.org). 
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Introduction 

MicroRNAs are among the most conserved regulatory elements in animal genomes and 

have crucial roles in development and disease (Bartel, 2018; Fromm et al., 2015). They 

have long been proposed as disease biomarkers (Mendell and Olson, 2012; Umu et al., 

2022; Wang et al., 2016), phylogenetic markers for studying animal systematics (Tarver 

et al., 2013, 2018), and for understanding the evolution of complexity in metazoans 

(Heimberg et al., 2008; Peterson et al., 2009). Currently, however, the annotation and 

naming of bona fide microRNA complements requires assembled genome references, 

small RNA sequencing (smallRNAseq) data from different tissues and developmental 

stages, and substantial hands-on curation of the outputs from microRNA prediction tools 

(Friedländer et al., 2008; Hackenberg et al., 2009; Wheeler et al., 2009). Because these 

tools were not designed to handle the amount of sequencing data or genome assembly 

sizes available today and often have high false-positives rates, using them is a tedious 

process that requires years of training, often extensive computational resources, 

experience and substantial amounts of time (Fromm et al., 2022a). Especially in larger 

projects that are not focused on microRNAs, but rather might attempt to annotate them 

along with other coding and non-coding genes, the required level of attention to detail is 

often missing which inevitably results in biologically meaningless microRNA results 

(Fromm et al., 2018, 2019a, 2022b, 2022a; Witwer and Halushka, 2016) as well as 

thousands of spurious microRNA annotations (Fromm et al., 2015). These shortcomings, 

coupled with the availability of high-quality and publicly available microRNA annotations 

suited for comparative genomics studies led to the construction of the curated microRNA 

gene database MirGeneDB (Fromm et al., 2015, 2020a, 2022c). MirGeneDB version 2.1 

(2022) now contains microRNA complements for 75 metazoan species spanning all major 

metazoan phyla over ~850 million years of animal evolution (Fromm et al., 2022c). Since 

each gene and family were manually curated in all species in MirGeneDB, highly accurate 

alignments across this wide span of animal evolution are available that capture a high 

proportion of the sequence variability for each family. Importantly, each microRNA gene 

and family is associated with a detailed phylogenetic reconstruction of the evolutionary 

node of origin and estimated age. This dataset, hence, represents a starting point to better  
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understand features of microRNAs (Kang et al., 2021) and to generate better tools for the 

prediction of microRNAs. 

Despite MirGeneDB curating a relatively large number of phyla, the number of species 

currently covered (75 species) is a far cry relative to the thousands of high-quality animal 

genomes currently available (Hotaling et al., 2021) (Figure 1).  

Figure 1: The number of available animal genome assemblies grows exponentially and with more than 

4500 currently (2021) available datasets has dramatically grown (Clark et al., 2016). 

Very few of these species have been annotated for microRNAs, or have small RNA 

sequencing data published, thus, comparatively little progress has been made on the 

suggested microRNA applications (but see (Fromm et al., 2013; Peterson et al., 2021; 

Wheeler et al., 2009; Zolotarov et al., 2022) for examples using manual curation). This 

discrepancy persists because, among other things, no reliable in silico method currently 

exists to annotate conserved or species-specific microRNA complements from genomic 

references only. Despite the availability of computational methods for the search of short 

RNAs such as microRNAs (Velandia-Huerto et al., 2021) and sophisticated machine-

learning based tools for non-coding RNA applications (Amin et al., 2019), there is 

currently no approach satisfying the demands of high precision, low false discovery rates 

and minimized computational demand in a fully automated and user-friendly pipeline 

(Yazbeck et al., 2017). It is a widely acknowledged problem for machine learning 
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applications in genomics in general that existing tools are based on incomplete models 

(Sacar et al., 2013; Whalen et al., 2021). This is the case for microRNA families from 

miRBase (Kalvari et al., 2021). Such models, for instance covariance models (CMs) of 

individual RNA classes, families or genes, as used in the Rfam database (Kalvari et al., 

2021), are technically quite accurate in detection of many non-coding RNA families (Eddy 

and Durbin, 1994). However, they require high quality alignments from curated RNAs 

ideally coupled with detailed evolutionary information to distinguish families and genes 

over evolutionary time that, until recently, did not exist for microRNAs.  

Taking advantage of the manually curated and evolutionarily informed microRNA 

complements of 75 metazoan organisms in MirGeneDB 2.1, we here built and trained 

high-quality CMs for 1,157 conserved microRNA families and integrated them into a fully 

automated pipeline for microRNA annotation: MirMachine. We show that MirMachine 

produces highly accurate microRNA annotations in a time-efficient manner from animal 

genomes of all classes, including very large and recently duplicated genomes, as well as 

from genomes of extinct species. Using the example of 88 eutherian genomes, we further 

show that MirMachine predictions can be summarized in a microRNA score that predicts 

low contiguity or completeness of genome assemblies. MirMachine is freely available 

(https://github.com/sinanugur/MirMachine) and also implemented as a user-friendly web 

application (www.mirmachine.org).
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Results 

Accurate Covariance models of 508 conserved microRNA families 

16,670 microRNA precursor sequences from 75 species were downloaded from 

MirGeneDB and all variants from the same genes, antisense loci, and species-specific 

microRNAs (i.e., not conserved in any other species) were removed arriving at a total of 

14,953 genes representing 508 families (Figure 2A). 

Figure 2: Developing MirMachine covariance models (CMs). A) The MirMachine workflow uses microRNA 

family-based precursor sequence alignments and structural information to build CMs that B) show very 

good overall prediction performances when models are run on C) 75 MirGeneDB species using distinct 

models for protostomes (yellow) and deuterostomes (green) or combined models (not shown).  

We then split deuterostome (N=42) and protostome (N=29) representatives and all 

microRNA genes for each family were aligned, and covariance models (CM) were built 

(388 microRNA family models for deuterostomes and 143 microRNA family models for 

protostomes). Using machine-learning, these models were subsequently trained on the 

full MirGeneDB dataset to derive optimal cutoffs for their prediction. To measure the 

prediction accuracy of these models we then used the models on all MirGeneDB species 

comparing the predictions to the actual complements. An overall very high mean 

prediction accuracy of 0.975 (Matthews Correlation coefficient (MCC)) for combined 

models, and 0.975 for deuterostomes, and 0.966 for protostome-models, respectively, 

was found (Figure 2B, left & Figure 2C). Two microRNA families, MIR-430 and MIR-1677 

from the deuterostome models, showed substantially lower MCC scores due to a well-

known variability within the MIR-430 family (Bazzini et al., 2012; Choi et al., 2007; 

Giraldez et al., 2006) and a combination of low level of complexity and high variation 

between orthologues in the Diapsida-specific MIR-1677 (Supplementary Figure 1). 
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Supplementary Figure 1: Alignment of Mir-1677 genes from MirGeneDB shows low conservation that 

explains poor performance of MIR-1677 CMs in MirMachine. 

Conversely, we observe high mean species accuracies of 0.91 for combined models, 0.92 

for deuterostomes and 0.92 for the protostome models (Figure 2B, right). The reason that 

the turtle (Chrysemys picta bellii) has such a low MCC is due to the identification of nearly 

two thousand likely artifactual hits for MIR-1677.  

MirMachine CMs models are not dependent on individual species 

To identify potential effects from circular logic of predicting microRNAs of a species that 

were included to build the query models, we retrained all models for deuterostomes 

without including human and all protostome models without including the polychaete 

Capitella teleta. We then used the new deuterostome and protostome CMs to predict 

microRNA complements in human and C. teleta, respectively. We found that MCC for H. 

sapiens only very slightly decreased in accuracy from 0.97 to 0.96 highlighting the 

robustness of MirMachine covariance models in deuterostomes. In protostomes, the 

effect on MCC was stronger for leaving out C. teleta with a decrease from 0.92 to 0.76. 

Specifically, some families were not found, including the bilaterian families MIR-193, MIR-

210, MIR-242, MIR-278, MIR-281, MIR-375, the protostome families MIR-12, MIR-1993 

and the lophotrochozoan family MIR-1994, which were still predicted, but fell below a 

newly defined threshold. This highlights a markable higher sequence divergence within 

protostomes, which is likely due to the age of the group, the lower number of 

representative clades, lower number of paralogues and orthologues per family, and a 

lower number of species in general. The annelid families MIR-1987, MIR-1995, MIR-

2000, MIR-2685, MIR-2687, MIR-2689 and MIR-2705 were not searched because no 
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models were built given the absence of a second annelid species, highlighting the 

importance of including at least two representative species for each clade in MirGeneDB 

(Fromm et al., 2022c). 

Performance of MirMachine prediction versus MirGeneDB complement 

To get a comprehensive understanding of the performance of MirMachine on the 

microRNA complements of MirGeneDB species, we looked in more detail at the 

performance of CMs, and their respective cut-offs, for a selection of major microRNA 

families (N=305) including all gene-copies (N=12,430) (Figure 3). When comparing the 

MirGeneDB complements (Figure 3A) with the predictions from MirMachine (Figure 3B), 

similarities were striking and overall differences limited to few families (Figure 3C); 

indicating either potentially false positives (231) or false negatives (421), respectively 

(Supplementary File 1). These are of further interest as they either represent missed 

microRNAs in MirGeneDB, or significant deviations from the general CMs and, hence, 

possibly incorrectly assigned microRNA paralogues in MirGeneDB.  

Figure 3: Detailed comparison of MirMachine predictions on 75 MirGeneDB species and 305 representative 

microRNA families in the form of banner-plots. Columns are microRNA families sorted by phylogenetic 

origin and rows are species. Heatmap indicates number of paralogues / orthologues per family. A) the 

currently annotated microRNA complements in MirGeneDB 2.1 (Fromm et al., 2022c). B) MirMachine 

predictions for the same species and families show very high similarity to A. C) Differences between A and 

B highlighted as potential false-positives (pink) or false negatives (gray). D) MirMachine predictions below 

cut-off based on training of CMs on MirGeneDB show a range of potential random predictions and 

pseudogenes, highlighting the effect of curation & machine learning on models. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.23.517654doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517654
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Finally, we found a substantial number of low-scoring MirMachine predictions of 

microRNA families that did not reach the determined cutoff based on trained CMs (Figure 

3D) and therefore are not considered bona fide microRNAs.  However, we found that 

these also contain pseudogenized microRNA orthologues (or paralogues) exemplified by 

a hitherto unknown human LET-7 pseudogene that is not found expressed in any 

MirGeneDB sample (Figure 4). To our knowledge, this is the first report of, and 

MirMachine the respective tool for, pseudogene-predictions for microRNAs. 

Pseudogenes, or ‘gene-fossils’, are potentially very useful to determine the rate of gene 

duplication and follow the evolution of sequence changes in organisms and might be 

included in studies studying cause and consequences of duplications on microRNAs 

(Peterson et al., 2021).  

Figure 4: The human Chr.17 LET-7 pseudogene. A) sequence alignment of the currently annotated 12 bona 

fide LET-7 family members in human and the pseudogene candidate discovered by MirMachine. Non-

random sequence similarities, including LIN28 binding sites (pink) are apparent with few noteworthy 

differences (asterisks) such as in position 2 on the 5’ end (red box indicates mature annotation, position 2 

equals seed-sequence) or a triplet insertion at the 3’ end (blue box indicates star sequence annotation) are 

indications for non-functionality. B) Structural comparison of a representative bona fide LET-7 member 

(Hsa-Let-7-P2c1, green triangle) with the pseudogene (yellow triangle) highlights similarities of pseudogene 

candidate to bona fide microRNA, but points out disruptive nature of nucleotide changes for the structure 

(asterisks) very likely affecting a potential Drosha processing. C) sequence conservation of bona fide Hsa-

Let-7-P2c1 (top) and the pseudogene (bottom) in 24 primate genome (ENSEMBL v100) highlights the 
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sequence conservation of bona fide microRNAs from the loop showing some changes, the star (blue) few 

changes and the mature (red) showing none, while the pseudogene shows many more changes and seems 

to be enriched in disruptive changes in the mature / seed region. 

 

The microRNA complements of eutherians reveal the microRNA score as simple 

feature for genome contiguity 

Applying MirMachine to a testcase, we downloaded 89 eutherian genomes currently 

available in Ensembl that are not curated in MirGeneDB and annotated their conserved 

microRNA complements. Altogether 38,550 genes in 260 families, in about 4,400 CPU 

hours, were found and showed an overall very high concordance between species (Figure 

5A). As expected, Catharrini (pink) and Muridae (light green) specific microRNAs were 

only found in the respective representatives, but surprisingly, six species (Figure 5, yellow 

arrows) showed substantial absences of microRNA families. We therefore wondered 

whether these absences indicate microRNA losses due to biological simplifications (see 

(Fromm et al., 2013)), proposed random events (Dunn, 2014; Thomson et al., 2014), or 

whether they might be due to technical reasons (Tarver et al., 2018). Given that the outlier 

species (Alpaca, Shrew, Hedgehog, Tree shrew, Pika, and Sloth) have no particularly 

reduced morphology, we reasoned that the source might be technical and recovered N50 

contiguity values for all genomes. We found that all six genomes had substantially lower 

N50 values than all other genomes, indicating that microRNAs might be able to predict 

completeness of genome assemblies (Figure 5B). Therefore, we next developed a simple 

microRNA scoring system defined as the percentage of expected conserved microRNA 

families found from a genome (in this case including 175 microRNA families found in most 

eutherians according to MirGeneDB (Fromm et al., 2022c), and showed that microRNA 

scores below 80% correlate with very poor N50 values <10kb and that N50 values of 

100kb indicate microRNA scores of 90% and higher (Figure 5C, red and blue lines). A 

noteworthy exception is the microbat Myotis lucifugus with a N50 of 64kb and a microRNA 

score of 74%, which might be explainable by previously suggested genome evolution 

mode through loss (Huang et al., 2016; Jebb et al., 2020). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.23.517654doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517654
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

Figure 5: MirMachine predicts conserved microRNA complements of 89 eutherian mammals available on 

Ensembl and not currently represented in MirGeneDB. A) banner plot of results for MirMachine predictions 

on 88 eutherian mammalian species for selected range of major microRNA families and genes showed 

very strong homogeneity of microRNA complements in general and identified a number of clear outliers 

(yellow arrows, including Alpaca, Shrew, Hedgehog, Tree shrew, Pika, and Sloth). B) Stacked histogram 

sorted by N50 values). Outlier species (yellow arrows: same as in A)) all have very low N50 values, 

indicating an artificial absence of these phylogenetically expected microRNA families. C) The microRNA 

score predicts the assembly contingency and is the proportion of phylogenetically expected microRNA 

families that are found in respective genomes (here eutherians). microRNA scores below 80% (red 

horizontal line) tend to have low N50 values (red vertical line indicates N50 below 10,000 nucleotides), 

while scores above 90% indicate N50 higher than 10,000 nucleotides. Noteworthy exception is the bat 

Myotis lucifugus which might be explainable by previously suggested genome evolution mode through loss 

(Huang et al., 2016; Jebb et al., 2020).  
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MirMachine predicts microRNAs from extinct organisms and very large genomes 

High quality in silico annotation of genomes is particularly important for organisms where 
no RNA is likely to ever become available. This is the case for species such as mammoths 
that went extinct millennia or even millions of years ago (but see (Fromm et al., 2019b)). 
Using available data from extinct and extant elephantids (Palkopoulou et al., 2015, 2018), 
we ran MirMachine on 16 afrotherian genomes, including the hyrax (Procavia capensis) 
from Ensembl and the tenrec (Echinops telfairi) from MirGeneDB, and 14 elephantids 
including extant savanna elephants (Loxodonta africana), forest elephants (Loxodonta 
cyclotis) and asian elephants (Elephas maximus) respectively (Figure 6A, green 
elephantid silhouettes), but also extinct american mastodon (Mammuthus americanum), 
straight-tusked elephants (Palaeoloxodon antiquus), columbian mammoth (Mammuthus 
columbi) and the woolly mammoths (Mammuthus primigenius) (Figure 6A, red elephantid 
silhouettes). We find a very high degree of similarities between afrotherians, and striking 
congruence between extinct and extant species which indicates the high accuracy of the 
MirMachine workflow. More so we find patterns of microRNA losses that could be 
phylogenetically informative (Figure 6A, arrows). For instance, we do not find MIR-210 in 
any of the elephant species, which might be a elephantid specific loss (Figure 6A, pink 
arrow), we further find that P. antiquus and L.cyclotis have both lost MIR-1251 (Figure 
6A, light blue arrow), and a shared loss of MIR-675 and MIR-1343 (Figure 6A, purple 
arrows), both supporting previously identified sister group relationships (Palkopoulou et 
al., 2018). 
 

Figure 6: MirMachine enables microRNA complement annotations from extinct and very large genomes. A) 

MirMachine predictions from afrotherians show no clear differences between extinct and extant genomes, 

but likely phylogenetically informative losses of microRNA families (colored arrows). B) MirMachine 

predictions in organisms with extensive genome expansions (pink arrows) show no expansion of 

microRNAs, but organisms with known genome duplications (green arrows) do. A number of shared 

microRNA copies in sterlet (A. ruthenus) and paddlefish (P. spatula) support a common genome duplication 

event in the last common ancestor of Acipenseriformes (yellow arrows). 
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A pertaining challenge for microRNA prediction and annotation of extant species, is the 

occurrence of additional whole genome duplication events and, not necessarily 

connected, extreme genome expansions. This often leads to computational challenges 

where identical copies are hard to distinguish based on read-mappings or genomes are 

simply so large that existing pipelines need extensive computational resources often 

facing programmatic limits. Therefore, we next investigated the performance of 

MirMachine in vertebrate species with very large genomes and of known additional 

rounds of genome duplications. For the first group, we included the axolotl (Ambystoma 

mexicanum) with a genome of 28 Gbp and the african lungfish (Protopterus annectens) 

with a genome of bigger than 40 Gbp into our analysis. For the second group we included 

the African clawed frosh (Xenopus laevis) with known allotetraploid genome (Session et 

al., 2016) and the zebrafish (Danio rerio) from MirGeneDB, the sterlet (Acipenser 

ruthenus) with proposed sturgeon specific genome duplication and occurrence of 

segmental rediploidization (Du et al., 2020), as well as the american paddlefish (Polyodon 

spathula) with a recently shown genome duplication which was, however, interpreted as 

sturgeon independent (Cheng et al., 2021). We combined these species with the gray 

bichir (Polypterus senegalus) that has a moderately sized (e.g., human-sized) genome 

and no unique known genome duplication events, along with 13 other MirGeneDB 

species representing a range of Olfactores, vertebrates, gnathostomes, Osteichthyes, 

Sarcopterygii and Tetrapoda representatives (Figure 6B). We find that MirMachine ran 

very well on all genomes using 32 cores and under 2 hours per species, whereas the 

lungfish ran the longest (around 3 hours 45 mins). As expected, we find that the size of 

the genomes do not affect the microRNA complements (Figure 6B, pink arrows), but that 

organisms with additional whole genome duplications (Figure 6B, green arrows) clear 

trace of duplications (also see (Peterson et al., 2021)). A curious observation was that 

sterlet and paddlefish showed very consistent microRNA copy-number patterns, in 

particular in the retention of additional MIR-138, MIR-146, MIR-148, MIR-192 and MIR-

208 copies (Figure 6B, orange arrows) indicating a likely common origin of genome 

duplication at the last common ancestor (Acipenseriformes), or very similar retention 

pressure in the more unlikely case of independent duplication. Altogether MirMachine is 

a suitable tool for the annotation of microRNA complements from extinct and very large 

genomes alike. 

MirMachine models outperform existing Rfam models 

In the most recent Rfam update (v. 14) an expanded assembly of microRNA models 

based on miRBase was released (Kalvari et al., 2021). As mentioned here before, and 

stated elsewhere, a major concern in microRNA research has been the quality of this 

online repository of published microRNA candidates (Axtell and Meyers, 2018; Castellano 

and Stebbing, 2013; Chiang et al., 2010; Fromm et al., 2015, 2020b; Guo et al., 2020; 

Jones-Rhoades, 2012; Langenberger et al., 2011; Ludwig et al., 2017; Meng et al., 2012; 
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Tarver et al., 2012; Taylor et al., 2014; Wang and Liu, 2011) with estimates of two out of 

three false-positive entries. Thus, the database contains more false positives than 

microRNAs. These are for instance numerous tRNA, rRNA or other fragments, but also 

incorrectly annotated bona fide microRNAs that strongly influence interpretations of data. 

In addition to the false positives, numerous miRBase annotations are imprecise and have 

varying precursor annotation forms (with or without flanking regions of varying lengths) 

and not both arms are annotated, 3’ ends are incorrect, and in a few cases even 5’ are 

not correctly annotated which substantially affects target predictions (for details see 

(Fromm et al., 2015)). Further, it uses an outdated nomenclature which is inconsistent in 

that members of the same microRNA family are not named the same way making the 

identification of family members cumbersome. This problem has to a large extent been 

transferred to Rfam and their microRNA family models in particular (e.g. MIR-95 family 

member Hsa-Mir-95-P4 (https://mirgenedb.org/show/hsa/Mir-95-P4) with own model 

https://rnacentral.org/rna/URS0002313758/9606, or MIR-15 member Hsa-Mir-15-P1d 

https://mirgenedb.org/show/hsa/Mir-15-P1d) with own model 

(https://rnacentral.org/rna/URS000062BB4A/9606 (see Supplementary File 2). This all 

has been addressed in the manually curated microRNA gene database MirGeneDB.org 

(Fromm et al., 2015, 2022c) and MirMachine, respectively. 

Regardless, we tested the performance of 523 Rfam microRNA models, that we curated 

to be of animal origin, on the 75 MirGeneDB species and found that 36,931 microRNAs 

were predicted (compared to 16,913 MirMachine and the 15,846 microRNA annotations 

in MGDB 2.1). Given that the number of conserved microRNA families is a focus of 

MirGeneDB and very unlikely to be expanded in the future (Fromm et al., 2022a), this 

much higher number of predictions suggests that Rfam predictions contain thousands of 

FPs. We further looked for performance of highly conserved families (see materials and 

methods). Rfam models had MCCs of 0.96, 0.94, 0.96 and 0.89 for microRNA families 

LET-7, MIR-1, MIR-196 and MIR-71 respectively. The same family performances for 

MirMachine were 0.97, 0.98, 0.97, 0.97. Thus, as expected, Rfam model had comparable 

performance for these correctly assigned, and deeply conserved families, but performed 

poorly for incorrectly assigned microRNAs.  

MirMachine functions & options 

All models (total, protostome and deuterostome) were implemented into the standalone 

MirMachine workflow which is available under  https://github.com/sinanugur/MirMachine, 

and the web app www.mirmachine.org. MirMachine also contains the curated “node of 

origin” information from MirGeneDB that can be used to limit the microRNA gene search 

to phylogenetically expected microRNA families, substantially reducing the search space 

and shortening the necessary run-time. Several other options, such as the search for 

single families (e.g. “LET-7”) or families of a particular node (e.g. “Bilateria”) are available, 
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too. In the web app, genome accession numbers can be provided avoiding the need for 

down- and upload circles.   
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Discussion 

The existence of thousands of animal genome assemblies is massively mismatched by 

the availability of annotations of important gene-regulatory elements such as microRNAs. 

Here, we have presented MirMachine as an important first step to overcome this 

discrepancy, the need for small RNA sequencing data or extensive expert manual 

curation. The unique combination of well-established covariance model approaches 

trained on manually curated and phylogenetically informed microRNA family models built 

from more than 16,000 microRNAs of 75 metazoan species makes MirMachine very 

sensitive to detect paralogues of a family in a given organism (low false-negative rate) 

and very robust against wrong predictions (low false-positive rates). MirMachine’s ability 

to accurately predict full conserved microRNA complements from genome assemblies, 

as exemplified by our analysis of nearly 90 eutherian genomes from Ensembl, will not 

only enable large comparative microRNA studies and automated genome annotation for 

microRNAs, but also showed the potential of microRNAs for the assessment of genome 

assembly completeness (Figure 5). Because of the near-hierarchical evolution of 

microRNAs, they have a very strong potential not only as taxonomic markers as used in 

e.g. miRTrace (Kang et al., 2018) or sRNAbench (Aparicio-Puerta et al., 2022), but to 

also outperform approaches that are based on protein-coding genes such as BUSCO. 

Those heavily rely on the correct identification of orthologues and paralogues of protein-

coding genes, which are much more variable than microRNAs and are therefore often 

incomplete, and, hence, cannot be used to accurately assess or measure rates of loss. 

By comparing N50 values and a herein established microRNA score, we have shown that 

microRNA complements predicted by MirMachine are suited to assess genome 

completeness and contiguity. This might have wide-reaching consequences for future 

applications as a microRNA score could be a standard measure for genome annotation 

pipelines.  

We have also shown that it is possible to use MirMachine’s ‘below cutoff’ predictions for 

the study of pseudogenes, which could enable better understanding of dosage-level 

regulation or gene- and genome duplication events, in general (Peterson et al., 2021). 

Using several so far uncharted vertebrate genomes of either extreme size (axolotl, 

lungfish) and comparing them to smaller, but secondarily duplicated genomes, we could 

show that MirMachine works on such large genomes and confirm that the size of 

assemblies does not matter for the number of microRNAs, but that genome duplication 

events do. By directly comparing the outputs of MirMachine counts for microRNA 

paralogues in sterlet and paddlefish, we found patterns of microRNA duplicates that 

support a common genome duplication of the two species.  

Finally, we employed MirMachine on extinct species genomes’ and could show that 

besides similarity to extant representatives, several absences / losses of microRNAs were 
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observed within the elephantids that suggest a phylogenetic signal. These findings are 

exciting as they might give clues on the genome regulation differences in organisms, 

where actual RNA will be hard or impossible to get by. Importantly, at this stage, we have 

not yet made sequence-based comparisons of the microRNAs between any of the 

species. This is an untapped area for future development. 

MirMachine currently provides predictions as community standard file formats GFF or 

FASTA that are named by family and coordinates, but not according to their possible 

paralogue or orthologue nomenclature (Fromm et al., 2015). This is due to the fact that 

the required syntenic information is often not available and not currently analyzed by our 

pipeline. Furthermore, MirMachine does not predict species specific microRNAs which 

can play crucial roles in evolution (Zolotarov et al., 2022). MirMachine predictions are a 

solid foundation for future smallRNAseq driven annotation efforts of novel microRNAs and 

synteny-supported annotation of paralogues and orthologues. 

There are a number of tools to predict novel microRNAs from genomes that are all not 

based on curated references and, hence, might be of limited value (see  (Saçar Demirci 

et al., 2017; Stegmayer et al., 2019). We are striving to address those issues in the future 

and would like to stress, in the meantime and in general, that manual curation is a crucial 

step that should never be disregarded, even though MirMachine heavily reduces the need 

for extensive and week-long efforts. 

The decision to create protostome and deuterostome specific microRNA family models 

can be seen as a first step toward group-specific microRNA gene-family models that 

might increase the accuracy of MirMachine further in the future. Variability of model 

performance based on evolutionary age of families has not been studied here, but the 

addition of more taxa to MirGeneDB will be an invaluable improvement for group-specific 

microRNA family prediction and paralogue-specific modeling of microRNAs. Another 

important area of possible expansion clearly are plant microRNAs, that currently suffer 

from multiple non-overlapping available databases and potentially stronger curation 

problems than observed in animals (see (Fromm et al., 2020b; Taylor et al., 2017) ).  

MirMachine is freely available as a standalone tool or web application.  It enables even 

non-microRNA experts to annotate conserved microRNA complements regardless of the 

availability of small RNA sequencing data. Thus, it has a strong potential to close the 

ever-increasing gap between existing high-quality genomes (Formenti et al., 2022; Lewin 

et al., 2018) and their microRNA annotations. A possible addition of MirMachine into the 

standard genome annotation pipelines of Refseq and Ensembl is currently discussed. 

The availability of thousands of metazoan genomes and their microRNA annotations will 

pave the way toward the promise of microRNAs and a true postgenomic era.  
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STAR★Methods 

 

Creation of high-quality CMs 

MicroRNA precursor sequences were downloaded from MirGeneDB as FASTA files. We 

then aligned each microRNA family using the mafft v7.475 aligner (mafft-xinsi) (Katoh et 

al., 2019) and created multiple sequence alignments (MSAa) of microRNA families. We 

filtered out identical or highly similar sequences using the esl-weight v0.48 tool (-f --idf 

0.90 --rna) from HMMER package (Wheeler and Eddy, 2013). The secondary structures 

of the MSAs were predicted by RNAalifold v2.4.17 (-r --noPS) (Lorenz et al., 2011). Lastly, 

CMs for each microRNA family were generated and calibrated using Infernal (Nawrocki 

and Eddy, 2013). We used the same workflow to create deuterostome and protostome 

specific CMs.  

 

Determining accuracy of MirMachine predictions 

First, we used the cmsearch function of Infernal to predict microRNA regions. In this study, 

true positives (TPs) are correctly predicted microRNA families and false positives (FPs) 

are false predictions. False negatives (FNs) refer to microRNA annotations available in 

MirGeneDB but not predicted by MirMachine. Using MirGeneDB and MirMachine, we 

extracted all true positives, false positives, and false negative predictions. We can 

calculate an approximation to the Matthews correlation coefficient (MCC) by using the 

geometric mean of sensitivity and precision. 

A standard cmsearch run reports bit score value of each prediction, which is a statistical 

indicator measuring the quality of an alignment score. We determined an optimal bit score 

value for each microRNA family to maximize MCC scores. We then filtered any 

MirMachine hits lower than the optimal cut-off points. We reported MCC values (and other 

metrics) before and after filtering. 

 

Benchmarking MirMachine models 

We retrained MirMachine CM models by excluding two species: Homo sapiens and 

Capitella teleta and compared MirMachine performance on these species. Another 

benchmarking was done using Rfam models. We downloaded all microRNA models (523 

in total) from the Rfam database (v 14). We predicted microRNA families using Rfam 

models and compared their model performance with MirMachine on selected families 

(e.g. LET-7, MIR-1, MIR-71, MIR-196). These families were selected because they are 

highly conserved and contain low false-positives or false negatives in Rfam. We also 

reported the total number of microRNA predictions done by both methods. 
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WebApplication implementation 

We implemented the web application using a software stack primarily composed of 

Django, React and Nginx. The application wraps the MirMachine CLI tool to provide a 

simpler, interactive interface for users. It is hosted at the Norwegian Research and 

Education Cloud (NREC), utilizing their sHPC (shared High Performance Computing) 

resources (Trondsen, 2022). MirMachine is available at https://mirmachine.org.  

 

Available Genome Assemblies 

Lists of reference genomes of invertebrates, vertebrate mammalians and other 
vertebrates were downloaded from NCBI GenBank on 1/24/2022 (Clark et al., 2016). 
Analysis of yearly submitted reference genomes was conducted using Python and 
customized scripts.  
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