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ABSTRACT

The brain is a complex system with dynamic network changes. Prior studies in theoretical neuroscience have demonstrated that
state-dependent neural correlations can be understood from a neural coding framework. These so-called noise correlations –
the trial-to-trial or moment-to-moment co-variability – can be interpreted only if the underlying signal correlation – the similarity of
task selectivity between pairs of neural units – is known. While the impact of these correlations on task coding have been widely
investigated in local spiking circuits, it remains unclear how this coding framework applies to large-scale brain networks. Here
we investigate the relationship between large-scale noise correlations and their underlying signal correlations in a multi-task
human fMRI dataset. We found that state-dependent noise correlation changes do not typically align in the same direction as
their underlying signal correlation, suggesting that 1) trial-by-trial noise is typically reduced between similarly tuned regions,
and 2) stimulus-driven activity does not linearly superimpose atop the network’s underlying background activity. Crucially, we
discovered that noise correlations that changed in the opposite direction as their signal correlation (i.e., anti-aligned correlations)
improved the information coding of these brain regions. In contrast, noise correlation changes that were aligned with their
signal correlation did not. These aligned noise correlations were primarily correlation increases, which have been commonly
(yet incorrectly) assumed to increase information communication between brain regions in human neuroimaging studies. These
findings illustrate that state-dependent noise correlations contribute to the information coding of functional brain networks, but
interpretation of these correlation changes requires knowledge of the underlying signal correlations.

Introduction1

Advances in functional brain imaging have enabled the investigation of the large-scale network organization of the human brain.2

In resting-state functional magnetic resonance imaging (fMRI), studies have found highly reliable and modular functional3

connectivity (FC) organization, which is measured through correlating the spontaneous fMRI activity of different brain regions4

(Power et al., 2011; Yeo et al., 2011). Related work has shown that this overall network organization persists across task states5

(Cole et al., 2014; Gonzalez-Castillo and Bandettini, 2017; Krienen et al., 2014), disease states (Spronk et al., 2021), and6

individuals (Gratton et al., 2018). Despite the appearance of a state- and trait-invariant network organization, there are reliable7

changes that occur to the network organization for specific networks or regions (Cole et al., 2014; Krienen et al., 2014; Shine8

et al., 2016). While some recent methodological efforts in human brain imaging have worked to disambiguate the sources of9

state-specific network correlation changes (Cole et al., 2016; Duff et al., 2018), the significance and interpretation of these10

correlation changes remain unclear.11

In parallel, empirical and theoretical neurophysiological studies have established a rigorous statistical framework to study12

the properties of neural correlations and how they impact neural coding (Moreno-Bote et al., 2014; Panzeri et al., 2022;13

da Silveira and Berry, 2014). Critically, there are two forms of correlated activity that contain distinct sources of variance within14

neural data, yet provide complementary information about task coding: the signal correlation (SC) and the noise correlation15

(NC) (Cohen and Kohn, 2011). Intuitively, SC measures the similarity of the task selectivity or tuning curves of a pair of16

neural units. NC measures the correlation of trial-to-trial variability of the same task/stimulus (Fig. 1c), capturing the dynamic17

interaction of two units in response to a task. (Note that the terms SC and NC were originally defined through the lens of18

information theory, where “signal” corresponds to the mean across responses, and “noise” corresponds to the variance across19

responses; (MacKay, 2003). In the context of prior fMRI literature, these SCs and NCs are statistically equivalent to across-task20

co-activations and FC, respectively (Cole et al., 2019).) Under the theoretical neural coding framework, studies have suggested21

that the effect a NC has on task coding depends on how well it aligns with the underlying SC of those two units (Moreno-Bote22

et al., 2014; Panzeri et al., 2022; da Silveira and Berry, 2014). In particular, the signal-noise angle – the difference in the23

directions of the SC and NC – determines the information coding properties of a neural population (Panzeri et al., 2022).24
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This is because if an NC aligns with its SC, this would interfere with the coding direction of these two units. While the25

theoretical account of SC/NC was developed to account for empirical phenomena observed at the level of neuron pairs during26

the presentation of fine-grained sensory stimuli (Cohen and Kohn, 2011; Moreno-Bote et al., 2014; da Silveira and Berry, 2014),27

the statistical principles are generic to account for neural data across a wide range of spatial and cognitive scales, including28

fMRI data. Thus, we sought to investigate whether the SC/NC coding principles apply to the level of large-scale brain regions.29

A successful demonstration of SC/NC coding principles at the level of human functional brain networks would bridge the vast30

literature of FC analyses prevalent in the human functional connectomics literature with the rich neural coding framework31

developed in theoretical neuroscience.32

SCs capture the similarity of task selectivity between two neural units (neurons or brain regions). At the level of single33

neurons, this typically captures the similarity of tuning curves between fine-grained sensory stimuli, such as the orientation34

of visual gratings (Cohen and Maunsell, 2009). While the impact of these correlations on task coding have been widely35

investigated in local spiking circuits, it remains unclear how this coding framework applies to large-scale brain networks. This36

is largely due to the fact that the types of fine-grained tuning curves (i.e., orientation gratings) captured in prior neurophysiology37

studies are generally inaccessible at the level of large-scale fMRI brain networks. Instead, large-scale fMRI brain networks38

have been previously shown to be selective to broader cognitive tuning curves, such as different cognitive tasks (Yeo et al.,39

2015; Smith et al., 2009). Here we leverage a multi-task dataset that spans diverse cognitive domains to characterize the SC and40

NC organization across distributed functional brain networks. This approach plays to the strengths of fMRI, while allowing us41

to extend the prior theoretical neural coding framework to large-scale functional brain networks.42

Here we characterize the organization of SC and NC in large-scale human brain networks, and assess their coding properties43

across a wide range of cognitive tasks. While prior human neuroimaging studies primarily viewed correlations (i.e., FC) through44

the lens of dynamic communication (for a review, see Gonzalez-Castillo and Bandettini (2017)), we test whether FC can be45

interpreted through the lens of information coding. (Since FC and NC are statistically equivalent, we use them interchangeably46

in this study; see Table 1.) First, we extend the notion of SC from the correlation of visual tuning curves to a wide variety of47

cognitive tasks (i.e., cognitive tuning curves). We compared the organization of SC to the well-established resting-state NC48

(rNC) organization of human cortex, finding that SC reflected a more modular and segregated network organization than rNC.49

Next, we built a statistical model of NC which demonstrated that, under the assumption that observed NC is driven by a linear50

combination of internal neural and external task sources, NCs should exclusively change in the direction of their underlying51

SC (i.e., positive increases in NC should be observed when the SC is positive). In contrast to this assumption, we found52

that NC changes do not typically align with the underlying SC in empirical fMRI data. Instead, a majority of NCs changed53

in the direction that was opposite to the SC. To understand the functional relevance of these NC changes, we leveraged the54

hypothesis from theoretical neuroscience that the alignment of the signal and noise correlations impacts the fidelity of task55

information coding. Indeed, we found that the signal-noise relationship is predictive of the fidelity of task coding in large-scale56

brain networks. These results shed light on the relationship between neural correlations and information coding, placing fMRI57

functional connectomics within the broader neural coding framework.58

Name Abbreviation Interpretation
Signal correlation SC Similarity of task selectivity

Cross-task co-activations n/a Across-task correlation of mean activations
Noise correlation NC Neural/dynamic interactions

Functional connectivity FC Correlation of ongoing activity
Resting-state noise correlations rNC Spontaneous interactions/correlations

Resting-state functional connectivity rFC Correlation of ongoing spontaneous variance
Task-state noise correlations tNC Task-state interactions/correlations

Task-state functional connectivity tFC Correlation of ongoing task-driven variance
Noise correlation change ∆NC Task versus rest/baseline correlation change
Task vs rest FC change ∆FC Difference between task and rest correlations

Table 1. Table of definitions and abbreviations. Distinct terms used in different subfields within neuroscience are often
computed identically and have converging interpretations. For example, noise correlations and functional connectivity are
computed in a statistically identical manner, and aim to capture a similar empirical phenomenon: interaction of neural units.
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Results59

Estimating multi-task SCs and NCs in human functional brain networks60

We first characterized multi-task SC and NC across all pairs of parcels (see Table 1 for definitions). We used the publicly61

available multi-domain task battery dataset collected by King and colleagues (King et al., 2019). Briefly, the multi-domain task62

battery dataset contains 26 cognitive tasks per participant (Fig. 1a). Tasks were interleaved across blocks, where each block63

was preceded by a 5s instruction screen, followed by a 30s block. For our analyses, we modeled the mean activity of each block64

separately for every brain region (parcel) in the Glasser atlas (Glasser et al., 2016) using a beta series regression (Rissman et al.,65

2004) (Fig. 1c).66

To compute the SC between all pairs of parcels, we first computed the mean activation across blocks for each task separately67

(Fig. 1d). This yielded a 360 parcel by 26 task matrix, from which we computed the SC matrix (Fig. 1e). NC was calculated68

using the cross-block variability for every parcel, which is a distinct statistical property to the cross-block mean. (Note every69

task had the same number of blocks.) We calculated the NC between all pairs of brain regions, and across all tasks (Fig. 1f). To70

get a task-state NC (tNC) matrix, we averaged the NC across all tasks (excluding the resting-state condition). Resting-state71

blocks were also interleaved throughout the experimental design. To maintain consistency with how resting-state and task-state72

NC were computed, resting-state NC (rNC) was computed in an identical manner to tNC (i.e., using a beta series regression)73

(Fig. 1g). Note that the across-block rNC matrix estimated here is quantitatively similar to the more common rNC that is74

computed across timepoints in the human neuroimaging literature (Supplementary Fig. 1). Conceptually, the approaches are75

equivalent in that NCs capture the variability across task responses, and SCs capture the mean across task responses. Here we76

opt for cross-block analysis, since it enables the characterization of task coding for each block, rather than across timepoints.77

SCs reveal a highly modular and segregated network organization78

We characterized the SC matrix in the context of the well-known rNC matrix. Prior work in rNC studies revealed a modular79

organization of functional brain networks (Fig. 2a,c) (Ji et al., 2019; Power et al., 2011; Yeo et al., 2011). These functional80

network divisions were identified using clustering and community detection algorithms on resting-state NC matrices. To81

evaluate how SC was related to this modular network organization, we computed the modularity and segregation of SC with82

respect to the previously-defined resting-state network partitions (Fig. 2a). Modularity and segregation are related statistics that83

measure the strength of nodes within a network relative to the between-network connection strength (see Methods). Surprisingly,84

while the network partitions were optimized to maximize modularity from resting-state NC data, we found that SC had both85

higher modularity and segregation than resting-state NC (Fig. 2c). This suggests that SC can recapitulate the well-known86

functional subdivisions of cortex that are extracted from resting-state NC.87

Cortical SCs are organized along a gradient of functional specialization88

Complementing network analyses of SC and NC, gradient analysis offers a way to capture the greatest axes of variation89

of the entire SC and NC matrices (Margulies et al., 2016; Huntenburg et al., 2018). Gradient organization is computed by90

performing dimensionality reduction on the SC (or NC) matrices (e.g., a principal component analysis), and is complementary91

to network partitions as they exhibit smooth loadings/partitions, rather than “hard” or non-overlapping networks (Huntenburg92

et al., 2018). The first gradient of the rNC matrix, which is equivalent to its first principal component, is the well-documented93

sensorimotor-association (or unimodal-transmodal) hierarchy that was first described by Mesulam (Mesulam, 1998), and94

subsequently identified in fMRI data (Margulies et al., 2016) (Fig. 2f). This unimodal-transmodal gradient is related to95

both transcriptomic variation (Burt et al., 2018) and myelination content, which is captured in the T1w/T2w contrast map96

(Glasser and Van Essen, 2011) (26.1% variance explained; Supplementary Fig. 2h). However, gradient analysis of the SC97

matrix revealed a gradient of functional specialization, from sensory-association-motor areas (23.0% variance explained;98

Fig. 2e; see Supplementary Fig. 2 for additional details.). Critically, when grouping together cortical systems into sensory,99

association, and motor systems (Fig. 2i) – systems that are functionally distinct/specialized from each other – we found a100

monotonic relationship between these systems and their gradient loading. This is consistent with a gradient of functional101

specialization, where sensory and motor regions are defined by distinct functions, while association regions integrate the two102

(Ito and Murray, 2021). Moreover, this sensory-to-motor SC gradient was significantly associated with the 2nd principal103

gradient of rNC (rank r=0.72, non-parametric p<0.001) (Fig. 2h). By comparison, the SC gradient was not correlated with104

the typical unimodal-transmodal gradient (i.e., the 1st rNC principal gradient; rank r=0.29, p=0.16). Together, these results105

illustrate that while SC preserves the overall functional brain network organization, it reveals a more cognitively specialized106

organization that more clearly delineates functionally specialized regions. This is consistent with the notion that SCs capture107

task selectivity similarities between brain regions.108
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Figure 1. We used a multi-task dataset to capture the large-scale SC and NC organization in human functional brain networks.
a) The MDTB dataset with 26 unique tasks (King et al., 2019). b) Cortical activation maps for eight example tasks. c)
Block-wise activation estimates were obtained using a beta series regression approach, where each task block was modeled
independently in a linear regression model (Rissman et al., 2004). d) SCs and NCs in large-scale fMRI data are estimated from
orthogonal timeseries sources. We estimate the trial-to-trial task activation amplitude in fMRI data for each region, and for all
tasks. e) To estimate the SC matrix, we compute the correlation between all pairs of brain parcels using the cross-trial mean
activation of many tasks. f) In contrast, NC matrices for a given task is computed as the correlation of trial-to-trial variability
between pairs of parcels within a single task. g) The NC for a task can be compared to the well-studied baseline rNC using
resting-state fMRI activity. SCs and NCs are computed for each participant separately, and then averaged to produce a
group-level matrix estimate.
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Figure 2. Comparing the SC matrix to the well-studied rNC matrix. a) We used the Glasser parcellation with 360 cortical
parcels. Parcels were partitioned into 12 functional networks (Ji et al., 2019). b) The SC matrix, which captures the task tuning
similarity between pairs of brain regions. c) The rNC matrix. d) Modularity and segregation (using the Ji et al. partition) of the
SC and rNC matrices. e) Top: The first principal component of the SC matrix aligns along a sensory-association-motor
gradient. Bottom: Average loading projected onto three cortical systems. f) The first principal component of the rNC is
organized along the unimodal-transmodal (i.e., sensorimotor-association) hierarchy. g) The second principal component of the
rNC matrix also aligns along a sensory-to-motor gradient, and is h) highly correlated with the SC principal gradient. i) Sensory,
association, and motor systems projected onto the cortex. A full comparison of the first three gradients of the SC and rNC can
be found in Supplementary Fig. 2.

A linear model of state-specific SC and NC changes109

A brain region’s functional specificity emerges from its pattern of connectivity, i.e., its connectivity fingerprint (Passingham110

et al., 2002; Mars et al., 2018). Thus, two regions with similar functions or tuning curves (i.e., high positive SC) are likely to111

have high amounts of shared spontaneous activity (due to strong functional connections; i.e., high positive rNC). We verified112

this in our empirical data, finding that the SC matrix had overall strong correspondence with rNC (rank r=0.67, p<0.0001; Fig.113

2b,c). However, how should stimulus-driven activity interact with spontaneous activity? To gain intuition on the interaction114

between stimulus-driven and spontaneous activity, we constructed a statistical model to simulate how state-specific NC emerges115

from an anatomically-constrained network model with linear dynamics.116

We constructed a linear statistical model with 360 units and 10 networks (36 units per network). A unit’s activity was117

determined by the algebraic sum between shared baseline activity (shared between units in the same network), stimulus-driven118

noise, private noise (for each unit separately), and a globally shared signal (inducing positive correlations between all units)119

(Fig. 3a-c). We found that this model produced positively correlated activity amongst all pairs of units (mimicking our empirical120

data), with greater correlation between units within the same network (i.e., shared connections; Fig. 3c). Critically, when121

including an additional stimulus-driven component, this primarily increased the magnitude of correlation primarily between122

strongly connected units (Fig. 3f). This model indicates that under the assumption of linearity, neural units that receive shared123

input drive should increase the magnitude of their correlated activity. In other words, with the addition of a new stimulus-drive,124

the state-dependent ∆NC should align with the strength of the underlying SC.125
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Figure 3. A linear model predicts that state-related NC can be decomposed into separable components. We constructed a
simple network model with 360 units and 10 connected networks. To obtain a) task-state correlated activity, linear dynamics
were superimposed atop anatomical connectivity with b) baseline shared variance and c) stimulus-driven noise. Under these
assumptions the difference between the d) observed task-state NC and the e) baseline (or resting-state) NC yields the f)
stimulus-driven component of correlated activity in empirical (or simulated data).

NC changes do not typically align with the underlying SC in empirical data126

The statistical model provided an intuition of what should be expected if spontaneous and task-driven variance linearly interact.127

We next sought to characterize the relationship between SC and state-related NCs in empirical data. We characterized the128

rNC, task-state NC, and the ∆NC between the two (Fig. 4a-c). Consistent with prior work (Ito et al., 2020), we found that129

the overall change in correlation was dominated by correlation decreases. We computed the signal-noise differential matrix,130

which we defined as the Hadamard (element-wise) matrix multiplication of the SC matrix (Fig. 4d) with the ∆NC matrix131

(Fig. 4c). Note that we calculated the signal-noise differential matrix using the ∆NC matrix since we wanted to understand132

the impact of state-dependent changes in NC relative to ongoing spontaneous activity. Contrary to the statistical model and133

other studies arguing that NC dynamics are linear (Nozari et al., 2020), we found that most state-related ∆NC did not align134

with its underlying SC (aligned ∆NC pairs=42.99%; anti-aligned ∆NC pairs=56.74%; Fig. 4f). This suggests that the majority135

state-related ∆NC changes cannot be explained by the linear superposition of stimulus-driven and spontaneous activity.136

We next characterized the network organization of aligned and anti-aligned ∆NCs. While the majority of networks were137

dominated by anti-aligned ∆NCs, the Default Mode Network (DMN) was instead dominated by aligned ∆NC pairs (Fig. 4g-i).138

The DMN, which primarily consists of the medial prefrontal cortex and posterior cingulate, has previously been shown to139

suppress its activity during task performance (Dosenbach et al., 2007; Raichle et al., 2001). Prior work characterizing the impact140

of NCs on neural coding suggest that an aligned signal-noise differential inhibits information coding due to the interference of141

the correlated noise along the coding (signal) axis (Panzeri et al., 2022). This predicts that the ∆NC increases associated with142

the DMN (Fig. 4c) may inhibit the coding of task-related information. In what follows, we provide a theoretical intuition of143

why an aligned signal-noise angle inhibits information coding, and directly test out this theory in fMRI data.144

Interpreting ∆NC through a neural coding framework145

There is a rich history in neuroscience of investigating correlated neural activity through the lens of information coding (Johnson,146

1980; Abbott and Dayan, 1999; Averbeck et al., 2006; Cohen and Kohn, 2011; Kohn et al., 2016; Moreno-Bote et al., 2014;147

Panzeri et al., 2022; da Silveira and Berry, 2014). Recent theoretical work suggested that the impact of the NC on information148

coding critically depends on the signs of the SC and NC (Moreno-Bote et al., 2014; da Silveira and Berry, 2014). This intuition149

can be geometrically described in terms of the signal-noise angle (Panzeri et al., 2022). The signal axis describes the direction150
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Figure 4. Disambiguating SC and state-dependent ∆NCs in functional brain networks using the signal-noise differential
matrix. a) The rNC and b) task NC matrix. c) The task vs rest NC matrix exhibits widespread correlation reductions. d) SC
matrix, which reflects the task encoding similarity between pairs of regions. e) The signal-noise differential matrix can be
obtained by computing the Hadamard product (element-wise multiplication) of the SC and the ∆NC matrix. The signal-noise
differential matrix therefore reflects whether the ∆NC between a pair of regions reflects a change that is aligned (positive) or
anti-aligned (negative) with its underlying SC. f) Percentage of aligned and anti-aligned signal-noise angle pairs across all
cortical pairs. g) The signal-noise differential matrix averaged by network. h) Percent of aligned vs. anti-aligned NCs by each
functional network. DMN is the only network that contains more aligned than anti-aligned NC changes. i) The average of the
signal-noise differential matrix for each region (i.e., averaging across columns for each row in panel e.

of maximal covariance of the mean activity across many tasks/stimuli between a pair of neural units (Fig. 5a). The noise axis151

describes the direction of maximum noise covariance. That is, covariance across repeated instances (e.g., trials or blocks) of the152

same task/stimuli (5b-d). Thus, the signal-noise angle describes the angle between these two directions, and reflects whether153

the NC is information-enhancing (orthogonal to SC) or information-limiting (aligned to SC). However, this initially proposed154

framework only considers the overall magnitude of the NC, neglecting the impact of spontaneous rNC, which can be used155

as a baseline. However, prior work in human neuroimaging has shown that the spontaneous correlations estimated during156

resting-state fMRI are stable and informative (non-zero), reflecting an intrinsic network organization (Gratton et al., 2018).157

Thus, investigating the impact of NCs on information coding relative to baseline would shed light on how the brain dynamically158

reconfigures to support information-enhanced or information-limiting coding between pairs of brain regions.159

To assess the reconfiguration of NCs from a baseline state (i.e., rNC) to a task state (i.e., tNC), we made several modifications160

to prior theories. First, we measured the rNC to establish a baseline (Fig. 5e). Next, we measured the tNC, and computed161

the ∆NC (tNC − rNC) (Fig. 5f,g). If the ∆NC was of the same sign as the underlying SC (i.e., an aligned ∆NC; Fig. 5g),162

this would suggest that the brain dynamically reconfigured such the tNC would interfere the coding axis. In contrast, if the163

∆NC was the opposite sign as the the underlying SC (i.e., an anti-aligned ∆NC; Fig. 5f), then we would infer that the brain164

dynamically reconfigures the NC such that the tNC minimizes interference along the SC axis (relative to baseline). Therefore,165

the product of the SC and ∆NC – which we define as the signal-noise differential – serves as a useful estimate to capture how166

∆NC impacts information coding.167

Though prior work in human neuroimaging has reported more prevalent negative correlations in the rNC matrix, these168

negative correlations are introduced through a preprocessing technique known as global signal regression (Murphy et al., 2009).169

Global signal regression artefactually reduces the mean (across the entire brain) NC to 0, making it difficult to directly compare170

the impact of magnitude differences across rest and task states. However, here we derive rNC and tNC from the same imaging171

sessions (where rest is interleaved with task), therefore ensuring that differences in NC values cannot be due to different172

baselines across different imaging runs. This ensures that the comparison of tNC and rNC magnitudes are interpretable. We173

next test the hypothesis that the relationship between SCs and ∆NCs impact task information coding in empirical fMRI brain174

networks.175
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Figure 5. Interpreting ∆NC from an information coding framework. a) For a pair of brain regions, the SC captures the
direction of maximal covariance of the mean activity across many tasks. tNCs, on the other hand, capture within-task
covariability (across events). b) An example of weak (or no) tNC for two tasks. c) Prior theories in the neural coding effects of
tNC posit that correlations in the same direction as the underlying SC are information limiting. This is because the activity
becomes more difficult for a linear decoder to distinguish between the two task conditions. d) In contrast, tNCs that are in the
orthogonal direction as the underlying SC are information enhancing, since the trial-to-trial activity becomes more easily
decodable by a linear classifier. e-g) We modify prior theories to assess how the task-state reconfiguration of tNC impacts
information coding relative to the e) baseline rNC estimate. This modification involves estimating the ∆NC (tNC − rNC). f) An
anti-aligned ∆NC, whereby the ∆NC is the opposite sign of the SC, thereby reducing noise interference along the SC axis. g)
An aligned ∆NC, whereby the ∆NC is the same sign of the SC, thereby increasing noise interference along the SC axis. h)
∆NCs are putatively information-limiting or information-enhancing based on how the ∆NCs are aligned or anti-aligned with
the underlying SC.

The signal-noise differential determines the impact of NCs on task information decoding176

Theoretical work suggests that the signal-noise differential determines how easily task information can be decoded from a set of177

neural units. To test this empirically, we began by identifying sets of brain regions with entirely aligned or anti-aligned signal-178

noise differentials (i.e., Fig. 4e). We leveraged a technique from network science – clique identification – to identify groups179

of brain regions with exclusively aligned or anti-aligned signal-noise differentials (Palla et al., 2005) (Fig. 6a). Identifying180

cliques of either aligned or anti-aligned ∆NCs ensured that all brain regions would either have putatively information-limiting181

or information-enhancing correlations with each other.182

We implemented this by thresholding the signal-noise differential matrix to include either exclusively aligned or anti-aligned183

NCs, and then searching for cliques within these thresholded matrices (see Methods). To control for the possibility that184

identifying cliques would identify brain regions from functionally different networks, we first performed an analysis that185

identified aligned and anti-aligned ∆NC 5-cliques (cliques with 5 brain regions) for every pair of networks. Identifying both186

aligned and anti-aligned cliques matched to every network-to-network configuration (e.g., Visual to Somatomotor network),187

guaranteed that differences in task decoding were not due to decoding cliques from different functional networks. (We also188

show corresponding results for 8- and 10-cliques; Supplementary Fig. 3).189

We directly compared the decoding performance of anti-aligned versus aligned cliques for every pair of networks (Fig. 6b).190

We found that, while not all pair of networks had a statistically significant difference in decoding performance, 24% of network191

pairs had a significantly higher decoding performance for anti-aligned versus aligned cliques (13/54 network-matched cliques;192

two-sided Wilcoxon signed-rank test, Bonferroni-corrected p<0.05). (Note that not all network-network pairs contained193

anti-aligned and aligned 5-cliques, and so those networks were excluded; see matrix elements colored in white, Fig 6b).)194

Importantly, and as hypothesized, no aligned clique had a greater decoding accuracy than anti-aligned clique. To obtain a global195

summary statistic, we computed the average decoding accuracy for all anti-aligned cliques (averaged across all networks) and196
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Figure 6. Brain regions with anti-aligned ∆NCs have improved information decoding over aligned ∆NCs. a) We identified
network-matched sets of aligned or anti-aligned ∆NCs by identifying cliques (sub-networks of entirely aligned or anti-aligned
∆NCs). b) For each pair of networks, we found that sets of brain regions with anti-aligned ∆NCs had significantly higher
multi-task decoding performance than brain regions with aligned ∆NCs for specific network pairs (FWE-corrected). Note that
matrix elements colored in gray had no significant difference. Elements in white were not testable (due to non-existence of
aligned and/or anti-aligned cliques). c) We computed the average difference for every matrix element in panel b) for
anti-aligned versus aligned cliques, finding that on average, anti-aligned cliques had greater task decodability than aligned
cliques. d) The strongest (highest and lowest) anti-aligned and and aligned 20-cliques across the entire cortex. e) The decoding
accuracy for the anti-aligned versus aligned ∆NC cliques. f) We evaluated the impact of NCs by destroying correlated
variability when training the linear decoder. This was achieved by randomly shuffling task block structure for each brain region
separately. g) We computed the difference in decoding performance between unshuffled and shuffled conditions. Shuffling task
blocks impacted the decoding performance for anti-aligned cliques significantly more than aligned cliques. This is consistent
with the hypothesis that the correlation structure of anti-aligned cliques are important for improved task information decoding
(since ∆NCs are reconfigured in the opposite direction of SCs). (*** indicates p<0.0001; ** indicates p<0.001; * indicates
p<0.05)

aligned cliques (Fig. 6c). We found that anti-aligned cliques had a significantly higher decoding performance than aligned197

cliques (accuracy difference=1.1%, p<10e-06). These findings verify that sets of anti-aligned ∆NCs have improved decodability198

relative to aligned ∆NCs. Moreover, anti-aligned ∆NCs were overwhelmingly NC reductions (96.4% of all anti-aligned ∆NCs199

were ∆NC<0). These results highlight three key insights: 1) The impact of tNC should be baselined to spontaneous rNC to200

infer the impact of NCs on task information decoding; 2) The impact of state-related ∆NCs on task information coding can only201

be interpreted after knowing the underlying SC; 3) Contrary to prior hypotheses in the neuroimaging literature, NC reductions202

tend to improve task information coding (rather than inhibit communication) (for review, see Gonzalez-Castillo and Bandettini203

(2017)).204

The above task decoding analysis constrained the comparison of anti-aligned and aligned ∆NCs to a specific network205

pair. However, it is possible that the signal-noise differentials provide useful information about which brain regions are206

involved in optimizing for task information coding. We therefore lifted the constraint of comparing decoding performance207

between regions within the same networks. Instead, we sought to identify which brain regions are most/least important for208

task information decoding, by identifying cliques with the strongest anti-aligned/aligned ∆NCs. We identified the 20-clique209

with the greatest anti-aligned and aligned ∆NCs, as determined by the magnitude of the signal-noise differential. We found210
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that regions with aligned ∆NCs were primarily located in medial prefrontal and posterior cingulate areas (Fig. 6d). See also211

Supplementary Fig. 3i,j for a map containing all possible aligned and anti-aligned 20-cliques.) This was consistent with earlier212

results, which found that the DMN had disproportionate number of regions with aligned ∆NCs (Fig. 4h). Importantly, when213

we computed the decoding performance of the aligned 20-clique, it exhibited a significantly lower decoding accuracy than214

the anti-aligned 20-clique (accuracy difference=18.24%, p<10e-06; Fig. 6e). (We replicated this finding using whole-cortex215

15-cliques and 25-cliques; Supplementary Fig. 3.) This again provides additional evidence that regions with aligned ∆NCs216

limit task information decoding, while anti-aligned ∆NCs enhance task information coding. Neuroscientifically, these findings217

also suggest that NCs with the DMN (which are primarily NC increases) inhibit the fidelity of task information coding.218

Destroying task-state correlations impacts the decodability of task information219

Supported by theory, our empirical results demonstrate that the alignment of ∆NCs with their underlying SCs impacts task220

information decoding. However, signal-noise differentials are determined by the relationship of how NCs emerge given the221

underlying SC. While SC patterns are an intrinsic property of a system (and likely reflect underlying anatomical connectivity;222

Passingham et al. (2002)), NC is reflected in ongoing, block-to-block (or trial-to-trial) activity. Thus we sought to assess if223

destroying the NCs between brain regions (by shuffling block structure) would impact task decoding.224

To destroy the correlated activity between brain regions, we shuffled the block ordering for each brain region separately225

(Fig. 6f; see Methods). This removed the effect of tNCs when training a decoder. (Note that in the context of a decoding226

analysis, shuffling happened on the training set within every cross-validation fold to ensure no leakage between train and test227

sets; see Methods). We computed the decoder accuracy after removing the NCs for both anti-aligned and aligned cliques.228

When comparing the difference between unshuffled and shuffled decoder performance (∆shu f f le), we found that destroying229

NC structure of anti-aligned cliques significantly reduced its decoding performance (unshuffled accuracy=33.6%; shuffled230

accuracy=25.3%; p<1e-6; Fig. 6g). While shuffling the tNC for aligned cliques also reduced its decoding performance231

(unshuffled accuracy=15.4%; shuffled accuracy=11.9%; p<1e-5; Fig. 6g)), removing the effect of NCs had a significantly232

greater impact on the anti-aligned ∆NCs (∆shu f f le anti-aligned=8.4%; ∆shu f f led aligned=3.4%; p<1e-5; Fig. 6g). These233

empirical findings are consistent with the hypothesis that tNC of anti-aligned cliques significantly enhance information coding234

relative to aligned cliques, and demonstrate the information-coding relevance of tNC changes.235

Discussion236

We leveraged insights from neural coding to interpret large-scale task-state correlation changes in human fMRI data. We first237

characterized the SCs and NCs of human fMRI data using a multi-task dataset with 26 cognitive tasks, finding that SCs had238

greater network modularity and segregation than the commonly-used rNC matrix. This suggested that SC may have greater239

utility than rNC in identifying functional specialization across cortical regions. Next, we sought to understand how NCs emerge240

from underlying network dynamics. We constructed a linear statistical model to gain an intuition of how state-dependent241

NCs interact with each other. This model revealed that – under the assumption of linear dynamics – tNC should emerge as242

the algebraic sum of spontaneous background activity and stimulus-specific activity. This implied that stimulus-specific NCs243

should always align with the underlying SC. In contrast to this model, we did not find this pattern in empirical NCs. Instead, a244

majority of ∆NCs were anti-aligned with the underlying SCs. This led us to interpret these anti-aligned ∆NCs through a neural245

coding perspective, which predicts that anti-aligned ∆NCs should improve task information coding. This is because the NCs246

are reconfigured to avoid interference along the SC axis. Indeed, when testing this prediction in empirical data, we found that247

anti-aligned ∆NCs had significantly higher task decoding accuracies than ∆NCs that were aligned with their underlying SCs.248

Together, these findings provide a task information coding perspective to interpret task-state correlation changes in human249

functional brain networks.250

In the human neuroimaging literature, studies of inter-region communication are viewed through the lens of “functional251

connectivity”. While FC is a broad umbrella term that incorporates a variety of techniques (Reid et al., 2019; Cliff et al.,252

2022; Frässle et al., 2018; Friston, 2011; Sanchez-Romero and Cole, 2021), the most commonly-used measure is the Pearson253

correlation – the same metric used in computing spike count NCs. Yet despite the use of identical statistical metrics across254

the human neuroimaging and neurophysiology, the frameworks for interpreting correlations diverge. On one hand, human255

neuroimaging studies often analogize the strength of correlation with the strength of “communication” (for review of the256

literature, see Gonzalez-Castillo and Bandettini (2017)). On the other hand, NCs are typically viewed through the lens of how257

they impact task information coding (Abbott and Dayan, 1999; Panzeri et al., 2022; Cohen and Kohn, 2011). Empirically, we258

found that the majority of NCs that enhance information coding – anti-aligned ∆NCs – tend to be tNC decreases (96.4% of259

anti-aligned ∆NCs are decreases). This finding places these two views at odds, since prior interpretations of tNC reductions260

have been interpreted as “reduced” or segregated communication among brain regions (Wig, 2017; Rubinov and Sporns, 2010).261

Here we suggest that the neural coding perspective provides a parsimonious explanation for why reduced tNCs are widespread262

and enhance task coding: The anti-alignment of the ∆NC with the SC minimizes the amount of signal interference between the263
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two brain regions. Given that the majority of brain regions have a positive SC (Fig. 2b), it follows that the majority of ∆NCs264

should be reductions to enhance task information coding among brain regions.265

Most studies in the fMRI literature typically estimate tNC using adjacent time points during task performance blocks (Cole266

et al., 2014; Krienen et al., 2014), rather than the across-trial correlations employed here (Rissman et al., 2004). However,267

computing the correlation across adjacent timepoints within a task block can make it difficult to disambiguate signal and noise268

sources, if proper removal of the mean task effect is not performed (Cole et al., 2019). The present approach disambiguates269

SC and NC measurements by isolating the cross-block mean and cross-block variance by obtaining block-to-block activation270

estimates separately. Importantly, this is the common approach to calculating SCs and NCs in the neurophysiology literature271

(Cohen and Kohn, 2011). Nevertheless, to demonstrate the generality of the statistical inferences made here, we found a high272

correspondence between the ∆NC matrices when computing tNC across timepoints during task blocks (Supplementary Fig.273

1). (This is the commonly-used approach to estimating tNC in fMRI neuroimaging.) Together, these findings suggest that274

differences in tNC calculation should not influence the present conclusions.275

Our findings are also widely consistent with prior studies across subfields in neuroscience that find widespread decorrelations276

during task states. These studies revealed that during task and attentional states, correlations are reduced among pairs of neurons277

(Cohen and Maunsell, 2009), cortical regions accessed with wide-field calcium imaging data (Pinto et al., 2019), mean-field278

multi-unit recording across cortical regions in non-human primates (Ito et al., 2020), and human fMRI correlations (Ito et al.,279

2020). While prior literature has demonstrated that spike count correlations impact information coding in non-human primates280

(Cohen and Maunsell, 2009; Ni et al., 2022), it was an open question as to whether these intuitions would scale to larger281

spatial organizations and broader cognitive tuning curves. Our findings affirm that the generic statistical principles developed to282

understand neural coding in spiking units are translatable to different data modalities, and naturally scale up to broader spatial283

and cognitive levels of organization. However, the current study only takes into account task-general changes to NCs, rather284

than task-specific NC changes. While prior work in non-human primate spike recordings suggest that NCs change to support285

task coding in general (rather than optimally for each task) (Ni et al., 2022), it will be important for future studies to investigate286

the contribution of task-general NC changes versus task-specific NCs to support task information coding.287

The present findings, as well as current limitations, open new questions that future studies can explore. First, while the288

finding that anti-aligned correlations improve the task decodability of those brain regions and networks, it is unclear how this289

optimized information is implemented and used by the brain. Which downstream brain regions read-out this information?290

What are the biophysical mechanisms that produce anti-aligned ∆NCs? Future work can build on this work to investigate291

how optimized task information is used and implemented by the brain (De-Wit et al., 2016). Second, the intuitions behind292

how the signal-noise differential impacts task coding were developed for two dimensions (i.e., two regions or neurons) (Fig.293

5) (Moreno-Bote et al., 2014; da Silveira and Berry, 2014). While we demonstrate that these intuitions generally apply for294

more than just two regions (e.g., improved decoding for anti-aligned n-cliques), it is not explicitly clear how these intuitions295

generalize to greater dimensions. Thus, it will be important for future work to develop theory and measures (beyond just296

the signal-noise differential/angle) beyond two dimensions. Finally, interpreting the impact of NCs on task coding requires297

knowledge of the underlying SC. However, in many cases and existing datasets, identifying the SC is infeasible, since it298

requires many tasks and conditions. It will be interesting for future work to develop techniques to approximate the SC without299

acquisition of task data, such as anatomical connectivity fingerprinting, which has been thought to define the functional tuning300

of local brain regions (Passingham et al., 2002).301

In conclusion, we disambiguate SC and NC in large-scale human functional brain networks using a multi-task fMRI dataset,302

and characterize the impact of NCs on task information coding. This work bridges the disparate fields of the spike count303

correlation analyses (typically carried out in non-human animals) with the emerging field of task-state functional connectomics304

in humans. Importantly, our findings place functional connectomics within a broader framework of neural coding, demonstrating305

the impact of task-state FC for task coding. We hope these findings spur future investigations into understanding the properties306

of task information coding in large-scale human brain networks.307

Methods308

Multi-domain task battery dataset309

Portions of this section are paraphrased from the dataset’s original publication’s Methods section (King et al., 2019), and a prior310

study we used to investigate multi-task cortical representations (Ito and Murray, 2021).311

We used the publicly available multi-domain task battery (MDTB) dataset, which was originally published to study the312

functional (task) boundaries of the human cerebellum (King et al., 2019). The dataset contains both resting-state and task-state313

fMRI data for 24 subjects collected at Western University (16 women, 8 men; mean age = 23.8 years, s.d. = 2.6; all right-handed;314

see King et al. (2019) for exclusion criteria). All participants gave informed consent under an experimental protocol approved315

by the institutional review board at Western University.316
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The MDTB dataset collected data during 26 cognitive tasks, and up to 45 different task conditions for each participant.317

Tasks were grouped together in two sets (set A and B; Fig. 1e). Each participant first performed all tasks in set A, and returned318

for a second session to perform tasks in set B. Each task set consisted of two imaging runs. Half of the subjects had sessions319

separated by 2-3 weeks, while the other half had sessions separated by roughly a year. A separate resting-state scan with two320

10 minute runs each was collected for 18/24 subjects. (This resting-state scan was independent of the ’rest’ block in the task321

imaging sessions.)322

The MDTB dataset was designed to target diverse cognitive processes. Set A and B contained eight overlapping tasks323

(e.g., theory of mind and motor sequence tasks), and nine tasks unique to each set (Fig. 1a). Both sets contained 17 tasks each.324

Further details about the experimental tasks and conditions have been previously reported in the original dataset publication325

(see Supplementary Table 1 of King et al. (2019); https://static-content.springer.com/esm/art%3A10.326

1038%2Fs41593-019-0436-x/MediaObjects/41593_2019_436_MOESM1_ESM.pdf).327

Tasks were performed once per imaging session. Tasks were presented in an interleaved block design. Task blocks began328

with a 5s instruction screen, followed by 30s of continuous task performance. 11 out of 26 tasks were passive and required no329

motor response (e.g., movie watching). Tasks that required motor responses were made with either left, right, or both hands330

using a four-button box using either index or middle fingers. All tasks (within each set) were performed within a single imaging331

run, ensuring a common baseline between tasks for all participants.332

fMRI preprocessing333

Portions of this section are paraphrased from a prior study using a similar preprocessing strategy (Ito and Murray, 2021).334

fMRI data were minimally preprocessed using the Human Connectome Project (HCP) preprocessing pipeline. The HCP335

pipelines were implemented within the Quantitative Neuroimaging Environment & Toolbox (QuNex, version 0.61.17; Ji et al.336

(2022)). The HCP preprocessing pipeline consisted of anatomical reconstruction and segmentation, EPI reconstruction and337

segmentation, spatial normalization to the MNI152 template, and motion correction. Further nuisance regression was performed338

on the minimally preprocessed time series. This included the removal of six motion parameters, their derivatives, and the339

quadratics of those parameters (24 motion regressors in total). We also removed the mean physiological time series extracted340

from the white matter and ventricle voxels, their derivatives, and the quadratics of those time series (8 physiological nuisance341

signals). In total, there were 32 nuisance regressors. For task fMRI data, nuisance regressors were included simultaneously342

with task regressors to extract the task activation estimates described below.343

fMRI task activation estimation344

Portions of this section are paraphrased from a prior study using a similar preprocessing strategy (Ito and Murray, 2021).345

We performed a single-subject beta series regression (Rissman et al., 2004) on fMRI task data to estimate parcel-wise346

activations using the Glasser atlas (Glasser et al., 2016). Each task block (30s) was modeled with a separate task regressor. The347

instruction period prior to the task block was not included. Thus, the number of task regressors was equivalent to the total348

number of task blocks per imaging session. Each task regressor was modeled as a boxcar function from the block onset to349

offset (0s indicate off, 1s indicate on), and then convolved with the SPM canonical hemodynamic response function to account350

for hemodynamic lags (Friston et al., 1994). We used the coefficients of each regressor as the activation for each task block.351

Task GLMs were implemented in python using the LinearRegression function within scikit-learn (version 0.23.2) in Python352

(version 3.8.5).353

SC and NC estimation354

The SC between two brain regions was computed through the following steps. The mean activation of each task was computed355

by averaging the block-wise GLM coefficients for that task. This resulted in 26 task activations for every brain region. The SC356

was then computed as the across-task correlation. Note that since 8 of the 26 tasks were performed in both task sets (i.e., set A357

and set B), we only included data from one of the task sets. This helped to control the data imbalance across different tasks,358

ensuring that every task had an equal number of blocks when calculating the mean task activation (16 blocks).359

The NC for two brain regions was estimated for each task separately. NC estimation that we performed is identical to360

task-state FC calculation using a beta series regression (Rissman et al., 2004).361

To estimate tNC using task blocks, block by block activation coefficients were obtained for each task separately. Each task362

had 16 blocks across all imaging sessions. The NC for a pair of regions was the across-block correlation within a task. Since363

there were 26 tasks, there were 26 NCs for every pair of brain regions. We averaged the NC across all tasks (excluding the364

rNC ) to obtain a task-general tNC matrix. rNC was computed using the resting-state blocks during the task imaging session.365

To verify that the beta series regression approach to calculating NC is similar to other NC calculation approaches (i.e., using366

timepoints within a task block), we also compared NC estimates using correlations across timepoints (Supplementary Fig.367

1). Importantly, rNCs, tNCs, and ∆NCs were highly similar to each other despite differences in how they were estimated368
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(block-to-block activity versus timepoint to timepoint activity). This indicated that task coding properties of NCs evaluated369

here generalize to both block-to-block and timepoint-to-timepoint NC estimates.370

Note that timepoint-to-timepoint NC estimation performed in Supplementary Fig. 1 is consistent with prior approaches to371

calculating NC (Cole et al., 2019; Ito et al., 2020). Specifically, for each task, we fit a finite impulse response model (across372

blocks of the same task) to remove the mean-evoked response (which includes the hemodynamic response). This approach373

flexibly removes the mean-evoked response, while taking into account each brain region’s idiosyncratic hemodynamic response374

shape. NCs were then calculated on the residual time series. This approach ensured that NCs were not conflated by the mean375

(i.e., signal) response.376

Network analysis377

We performed both network-style (Rubinov and Sporns, 2011) and gradient-style (Huntenburg et al., 2018) analysis on SC and378

NC matrices. Network-style analysis included computing the network modularity and network segregation of SC and rNC379

matrices with respect to a previously-published functional network partition (Ji et al., 2019).380

We used an undirected signed modularity metric that calculates modularity with respect to a provided network partition
(Rubinov and Sporns, 2011). We use the asymmetric variant that treats positive and negative values differently (i.e., positive
values link nodes within a module, and negative values dissociate nodes between modules). Modularity was calculated as

Q∗ = Q++
v−

v++ v−
Q−

where Q± is defined as

Q± =
1

v± ∑
i j
(w±

i j − e±i j)δMiM j

w±
i j is the connection weight (positive or negative values only), v± =∑w±

i j , e±i j is the chance-expected within module connections381

defined as e±i j =
s±i s±j

v± , where s±i = ∑w±
i j , δMiM j = 1 when i and j are in the same network module and δMiM j = 0 otherwise.382

Code was implemented using the brain connectivity toolbox (bctpy version 0.5.0).383

Network segregation was measured as the difference between within-module and between-module weights, divided by
within-module weights (Chan et al., 2014). Segregation was first calculated for each region separately, and then averaged across
all regions. Segregation of a region i was computed as

si =
xin − xout

xin

where xin is the within-module weights for region i, and xout is the between-module weights.384

Gradient-style analysis was computed by performing a Principal Components Analysis (PCA) on either the SC or NC385

matrices. SC and NC matrices were thresholded to retain only 20% of the strongest correlations prior to calculating gradients.386

PCA was implemented using scikit learn’s PCA function (sklearn.decomposition.PCA, version 1.0.2).387

Linear statistical network model388

We used a statistical model to predict how task-related variability influences baseline spontaneous activity. We partitioned 300
nodes into 10 networks (30 nodes each). Networks were fully connected with a weight of 1. Since resting-state NC typically
exhibits positive correlations among all pairs of regions, we introduced a globally shared signal. Specifically, a region’s activity
xi was determined as the linear sum of four Gaussian distributions (10,000 samples), X ∼ N(0,1):

xi = xshared + xprivate + sdrive ∗0.75+g∗0.75

where xshared is a shared time series amongst nodes within a network, xprivate is a unique time series for xi, sdrive is the389

stimulus-related variance (set to 0 in the baseline spontaneous case), and g is the global variance shared by all nodes.390

Task decoding analyses391

Clique identification392

We identified cliques of aligned and anti-aligned signal-noise differentials. This was to test the impact of signal-noise393

differentials on task information decoding. Cliques are a sub-network of a graph that are fully connected (Sizemore et al., 2018).394

This means that every node is connected to every other node in that sub-network. Using the signal-noise differential matrix (Fig.395

6a), we identified aligned and anti-aligned cliques by creating thresholded matrices of exclusively aligned and anti-aligned396

region pairs, respectively. This ensured that when performing decoding analyses on a set of regions, that every pair of region397
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was either aligned or anti-aligned. This was important given that, from a neural coding perspective, aligned signal-noise398

differentials would be information-limiting relative to baseline correlations, while anti-aligned signal-noise differentials would399

be information-enhancing (Fig. 5).400

We identified aligned and anti-aligned 5-cliques for every pair of functional network configuration (e.g., region sets between401

the Default Mode with the Frontoparietal network; Visual 1 network to the Somatomotornetwork). Matching aligned and402

anti-aligned 5-cliques to the specific network configuration controlled for the possibility of inherent differences in decoding403

performance when identifying cliques from different networks. (For example, there might be intrinsic differences when404

comparing the decoding performance of an aligned clique in the Default Mode network versus the Visual 1 network.) However,405

aligned and anti-aligned 5-cliques did not exist for all network pairs. These network pairs were therefore excluded from406

analysis, since aligned and anti-aligned decoding performances could not be directly compared. In supplementary analyses, we407

also show that our findings generalize to 8-cliques and 10-cliques (Supplementary Fig. 3).408

In addition, we identified the 20-clique with the strongest aligned and anti-aligned 20-clique (Fig. 6d). Strongest was defined409

as having the greatest negative or positive average values within an aligned or anti-aligned 20-clique (using the signal-noise410

differential matrix; Fig. 6a). Note that while the aligned and anti-aligned 20-cliques were in spatially disjoint regions, decoding411

performance was appropriately controlled for by removing the effect of correlated variability (e.g., Leavitt et al. (2017); Fig.412

6f,g), as discussed in the next subsection.413

Clique identification was carried out using the python package NetworkX (networkx.find_clique function; version 2.5).414

To make identifying cliques more tractable, the signal-noise differential matrix was thresholded to retain only the top 20%415

positive or negative values. Note that we also replicated these findings using 15- and 25- cliques (Supplementary Fig. 3). For416

the 25-clique analysis, we thresholded the signal-noise differential matrix to the top 40% of positive or negative values.417

Decoding analyses418

To assess the role of NCs on task information coding, we performed a multi-task (26-way) linear decoding analyses. Decoding419

analyses were performed within subjects, using the block-wise activations of every task. There were 26 tasks with 16 blocks420

per task (416 samples per subject). We performed a leave-one-out cross-validation, cross-validating across blocks. Samples421

in the training set were bootstrapped (20 samples per task type, with replacement). Prior to fitting the linear decoder on422

the training sets, samples in the training set were feature-normalized (z-normalized), and samples in the test set were also423

feature-normalized using the mean and standard deviation estimated from the training set (to avoid train-test leakage). A linear424

decoder was fit using logistic regression, and was implemented using scikit learn (version 1.0.2).425

To evaluate the effect of correlated variability on aligned and anti-aligned cliques, we performed a follow-up analysis that426

removed the impact of NCs on linear decoding. This was implemented by shuffling the ordering of task blocks for each brain427

region and each task type separately (see Fig. 6f). This was done on the training set within each cross-validation fold. Shuffling428

blocks for each brain region separately removed the contribution of NCs on training a linear decoder.429

Note that while prior studies suggest that the best practices for decoding analyses employ a 5- or 10-fold cross-validation430

(Varoquaux, 2018), we used a leave-one-out cross-validation approach to maximally assess the impact of correlated activity431

(within the training set) on decoding performance. (Note exactly one sample from each task was left out from the training set,432

such that the test set had 26 samples in total.) Moreover, we were not focused on making inferences on decoding performance433

relative to chance. Instead, we were interested in assessing how correlated activity (within the training set) impacted decoding434

performance for aligned and anti-aligned cliques, and how shuffling correlated activity would (within the training set) would435

impact overall decoding performance. If NCs had no impact on decoding performance, shuffling the block structure in the436

training set would have no impact on task decoding.437

Data visualization438

All graphical plots were visualized using seaborn (version 0.11.2; Waskom (2021)). All cortical surface plots were visualized439

using surfplot (version 0.1.0; Gale et al. (2021); Vos de Wael et al. (2020)).440

Code and data availability441

All data in this study has been made publicly available on OpenNeuro by King and colleagues (King et al., 2019). https:442

//openneuro.org/datasets/ds002105443

All code related to this study will be made publicly available on GitHub. Analyses and models were implemented using444

Python (version 3.8.5).445

References446

Abbott, L. F. and P. Dayan (1999, January). The Effect of Correlated Variability on the Accuracy of a Population Code. Neural447

Computation 11(1), 91–101.448

14/21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.23.517699doi: bioRxiv preprint 

https://openneuro.org/datasets/ds002105
https://openneuro.org/datasets/ds002105
https://openneuro.org/datasets/ds002105
https://doi.org/10.1101/2022.11.23.517699


Averbeck, B. B., P. E. Latham, and A. Pouget (2006, May). Neural correlations, population coding and computation. Nature449

Reviews Neuroscience 7, 358.450
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Supplementary Figures585

Supplementary Figure 1. NCs computed using block-to-block activity estimates versus timepoint-to-timepoint estimates
reveal quantitatively similar NC estimates. a) To estimate NCs using block-to-block estimates, we performed a beta series
regression. In a beta series regression, every block (or trial) has its own independent regressor. Every block/trial therefore has
its own activity estimate. (Image is a schematic.) b) To compare NCs using the more traditional approach, we estimated NCs
using correlations estimated across timepoints within task blocks. To ensure task-driven variance/noise was not conflated with
the mean-evoked (i.e., signal) response, we performed a finite impulse response model across all blocks for each task type
separately (Cole et al., 2019). This ensured that NCs were computed using the background task-driven variance. c) The rNC
matrix computed using rest blocks (as implemented in the main text). d) The tNC matrix computed using task blocks, averaged
across all tasks (as implemented in the main text). e) The ∆NC matrix using block-wise NC estimates (as implemented in the
main text). f) The rNC matrix computed as the correlation across timepoints. Resting-state blocks were first concatenated
across all imaging sessions for a participant. The rNC was then computed on the concatenated time series. g) The tNC matrix
computed as the correlation across timepoints. Blocks for each unique task were first concatenated for each participant. tNC
was computed for each task, and then averaged across all tasks to obtain a task-general NC matrix. h) The ∆NC matrix using
timepoint-to-timepoint NC estimates. Despite being computed using different approaches (with varying amounts of data per
NC), rNCs (r=0.89), tNCs (r=0.91), and ∆NCs (r=0.73) were highly similar across these approaches.
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Supplementary Figure 2. Detailed comparison of the first three SC and rNC gradients. a) The first, b) second, and c) third
SC gradient. d) The first rNC gradient, which has highest similarity to the second SC gradient. e) The second rNC gradient,
which has highest similarity to the first SC gradient. f) The third rNC gradient, which has greatest similarity to the third SC
gradient. Together, these findings suggest that the first three dimensions of SC and rNC are similar, but that the first two
components are flipped in SC and rNC. Note that correlation values reflect the absolute value, since the orientation of PCA
loadings are arbitrary. g) All pairwise correlations (absolute value) between the first three SC and rNC gradients. h) The
variance explained of each gradient (principal component) for each SC and rNC matrix.
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Supplementary Figure 3. Decoding analyses for different k-clique sizes – supplementary analyses for Fig. 6. a) Identifying
8-cliques within every pair of networks. b) Decoding accuracies for anti-aligned versus aligned 8-cliques for every pair of
networks. Note that gray matrix elements indicate non-significant differences, and white elements indicate non-testable
network configurations (due to non-existence of anti-aligned and/or aligned cliques of that size). c) Anti-aligned versus aligned
decoding accuracies, averaged across all available network pairs. d-f) Same as a-c, but using 10-cliques. g) Decoding
accuracies for 15, 20 (in the main text), and 25 anti-aligned and aligned cliques identified across the entire cortex. Anti-aligned
cliques consistently had greater decoding accuracies than aligned cliques. h) The difference between unshuffled and shuffled
decoding accuracies for anti-aligned and aligned cliques. Removing NCs impacted anti-aligned cliques significantly more than
aligned cliques. i) We identified all possible 20-cliques for anti-aligned and j) aligned NCs, and plotted the frequency with
which each region appeared in all cliques. Anti-aligned cliques tended to reside in sensory and motor areas, awhile aligned
cliques were most frequently observed in medial prefrontal and posterior cingulate areas. (*** indicates p<0.0001; **
indicates p<0.001; * indicates p<0.05)
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