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ABSTRACT 26 

As an essential physiological process, gene expression determines the function of each cell. 27 

However, owing to the complex nondeterministic and nonlinear nature of gene expression, 28 

the steady-state intracellular protein abundance of a clonal population forms a distribution. 29 

The characteristics of this distribution, including expression strength and noise, are closely 30 

related to cellular behavior. Therefore, quantitative description of these characteristics is an 31 

important goal in biology. This task, however, has so far relied on arrayed methods, which 32 

are time-consuming and labor-intensive. To address this issue, we propose a deep-learning-33 

assisted Sort-Seq approach (dSort-Seq) in this work, enabling high-throughput profiling of 34 

expression properties with high precision. We demonstrated the validity of dSort-Seq for 35 

large-scale assaying of the dose‒response relationships of biosensors. In addition, we 36 

comprehensively investigated the contribution of transcription and translation to noise 37 

production in E. coli, from which we discovered that the expression noise is strongly coupled 38 

with the mean expression level instead of translation strength, even in the case of weak 39 
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transcription. We also discovered that the transcriptional interference caused by overlapping 1 

RpoD-binding sites contributes to noise production, which suggested the existence of a 2 

simple and feasible noise control strategy in E. coli. Overall, dSort-Seq is able to efficiently 3 

determine the strength-noise landscape, which has promising applications in studies related to 4 

gene expression. 5 

 6 

INTRODUCTION 7 

Cells are sophisticated instruments driven by the central dogma that build varieties of lives. 8 

For each cell, gene expression is a vital process by which information from genes flows to 9 

RNA and then to proteins, determining the traits of the cell. However, gene expression is 10 

often stochastic, as it involves many random events requiring the participation of various 11 

low-copy-number chemical components1–6. In addition, this process can be chaotic due to the 12 

high complexity of the regulatory network7,8. As a result, phenotypic heterogeneity exists 13 

among genetically identical cells even under the same environmental conditions1. Therefore, 14 

steady-state protein production in a clonal population exhibits a distribution, wherein the 15 

mean of the distribution (Mean) indicates the expression strength, and the squared coefficient 16 

of variation (CV!) exhibits the expression noise. These two characteristics are both important 17 

indicators that are closely related to the phenotypes of a population, such as the bioproduction 18 

efficiency9,10, drug resistance11,12 and antibiotic persistence13. To date, the quantitative 19 

description of expression strength and noise has been an important goal in biology to 20 

illustrate cellular behavior14. However, this task has relied on fluorescence microscopy1,15 and 21 

flow cytometry14,16 (FCM) assays of individual clonal populations, which are time-22 

consuming and labor-intensive when testing large amounts of genetic variants. Therefore, a 23 

general, precise and high-throughput method for the profiling of expression properties is 24 

urgently needed. 25 

To address the above issue, we focused on Sort-Seq17–19 (also named FlowSeq, FACS-seq), 26 

by which a library of cells with different expression intensities can be sorted into different 27 

bins and then quantified through next-generation sequencing (NGS) to derive the expression 28 

pattern of each genotype. This approach has been broadly used in profiling sequence-function 29 

relationships associated with transcriptional regulation17,20–22, translational regulation17,18,23, 30 

regulatory RNAs24,25, protein-sequence interactions26, etc. In addition, the validity of Sort-Seq 31 

has been demonstrated in a wide range of organisms, including bacteria, yeast and 32 
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mammalian cells19. However, it remains difficult to derive precise expression characteristics 1 

from Sort-Seq data. Existing methods have focused on fitting the binned distribution to a log-2 

normal18,19,24,27 or gamma distribution20,21,28, which are limited by the inexact representation 3 

capability of these probability densities6,29,30. On the other hand, the parameter learning 4 

process of these methods still needs to be improved. For instance, apart from the binned 5 

distribution, other data, such as the overall fluorescence intensity density, should be 6 

considered. Hence, to obtain expression properties with high throughput and high precision, a 7 

common, rigorous data processing method for Sort-Seq is needed. 8 

Therefore, we have developed dSort-Seq, a deep-learning-assisted Sort-Seq approach (Fig. 9 

1). In this method, instead of using log-normal or gamma distribution, we applied a two-10 

component log-Gaussian mixture model (LGMM) to match the steady-state gene expression 11 

density, which is more precise and robust in fitting the real data. To decode Sort-Seq data, for 12 

the first time, we adopted a Bayesian neural network to perform parameter learning. These 13 

innovations significantly improve the accuracy of Sort-Seq to derive expression 14 

characteristics for thousands of variants. We demonstrated the validity of this pipeline from 15 

two aspects. First, dSort-Seq enables large-scale assays of dose‒response relationships of 16 

biosensors with high precision, with which the optimal design can be efficiently identified. 17 

Second, it also supports the high-throughput exploration of noise production mechanisms. 18 

For instance, we applied dSort-Seq to determine the effects of transcription and translation on 19 

expression noise in E. coli and found them to have comparable contributions, contradicting 20 

the commonly accepted translational bursting mechanism3. In addition, we also revealed that 21 

overlapping RpoD-binding sites would lead to high expression noise, which suggested an 22 

effective noise regulation strategy. Overall, our method, which provides significant 23 

mathematical and biological insights, can serve as a promising high-throughput tool for use 24 

in various studies associated with gene expression. 25 

 26 

RESULTS 27 

Framework and superior performance of dSort-Seq 28 

Recent research on the stochastic nature of gene expression has shown that steady-state 29 

protein production in a clonal population follows a gamma (negative binomial)3,4 or log-30 

normal5,6 distribution. However, neither of them can precisely match the real expression data 31 
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(Fig. 2a-2c). To address this issue, dSort-Seq applied a two-component log-Gaussian mixture 1 

model (LGMM) to represent the steady-state protein production density. This distribution 2 

was selected for several reasons, the first and foremost of which is that the mixture of 3 

Gaussians can theoretically approximate any continuous density given enough components31, 4 

ensuring its ability to fit more complex densities compared with conventionally used models. 5 

In addition, the outliers (in more extreme cases, one peak of the bimodal expression 6 

densities30), which have a great impact on matching19,29, can be viewed as being generated by 7 

a Gaussian component32–34. To verify the model’s ability to match expression distributions, 8 

we compared it with gamma and log-normal distributions in fitting quantitative datasets from 9 

independent resources27,35 (Fig. 2a-2c). Our method exhibited higher precision in 10 

representation, and hence, we used the LGMM for subsequent analyses. 11 

Next, to derive gene expression characteristics from Sort-Seq data, we revisited the 12 

experimental procedure and considered incorporating more data into the parameter learning 13 

step (Fig. 1). To intuitively represent the dSort-Seq method, we defined the following terms: 14 

(1) the mixing coefficients, denoted by 𝛑 = (π", π!, … , π#), where π$ is the proportion of the 15 

ith variant in the library; (2) the log-scaled sorting boundaries, denoted by 𝒃 =16 

(𝑏% = −∞, 𝑏", … , 𝑏& = +∞); (3) the parameters involved in LGMM, denoted by 𝛌 =17 

(λ", λ!, … , λ'), 𝛍 = (𝛍", 𝛍!, … , 𝛍#) and 𝛔 = (𝛔", 𝛔!, … , 𝛔#), where 𝛍$ = (µ"$ , µ!$)(, 𝛔$ =18 

(σ"$ , σ!$)(; and (4) the probability of sorting the ith variant into the kth bin, denoted by 𝑃$). 19 

Based on these definitions, we built a Bayesian network to show the data generative process 20 

and dependencies among variables (see Methods, Fig. 2d). For parameter learning, instead 21 

of only matching the binned distribution via maximum likelihood estimation as in previous 22 

methods19,21,27, we constructed a Bayesian neural network to fit both the binned distribution 23 

and the overall fluorescence intensity density. Specifically, two objective functions were 24 

designed, where the first was defined as the cross-entropy of the observed binned distribution 25 

relative to the theoretical binned distribution derived from LGMM (see Methods, Fig. 2e), 26 

by minimizing which the parameters of each LGMM can be optimized for approximation to 27 

the observed sorting data. The second objective was aimed at matching the overall 28 

fluorescence intensity distribution of the whole library. For this purpose, we applied a 29 

generative adversarial network36 (Fig. 2f). To elaborate, a generator was designed based on 30 

the data generative process (see Methods). A fully connected neural network was applied as 31 

the discriminator. During training, data generated from the generator are sent to the 32 

discriminator along with the real fluorescence intensity values, and then the discriminator 33 
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determines whether each piece of data is real or not. Hence, a two-player game is played 1 

between the generator and the discriminator, and the overall fluorescence intensity 2 

distribution can be matched by the generator when they are in equilibrium. We included these 3 

two objectives in the Bayesian neural network, with which the parameters can be learned 4 

through backpropagation (Supplementary Fig. 1). 5 

Subsequently, we tested the validity of dSort-Seq with data from our previous Sort-Seq 6 

profiling of a comprehensive codon-level mutagenesis library of tnaC27. This experiment was 7 

performed under 3 different ligand concentrations (0, 100 and 500 µM Ala-Trp), each with 8 

two biological replicates (Supplementary Fig. 2a). However, by fitting each binned 9 

distribution to the nonrobust log-normal density, their results were obviously affected by 10 

outliers and could not precisely match the experimental observations (see Methods) in terms 11 

of both the binned distribution (Fig. 2g) and the overall fluorescence intensity distribution 12 

(Fig. 2h). In addition, the expression characteristics derived from the log-normal distribution 13 

were also subject to error (see Methods, Supplementary Fig. 5). Therefore, we applied 14 

dSort-Seq in this case to derive the expression properties (see Methods, Supplementary 15 

Data 1). As a result, the strong correlations of the mean (Supplementary Figs. 2b-2d, 16 

Pearson’s r = 0.989, 0.979, and 0.978 for 0, 100, and 500 µM Ala-Trp, respectively) and 17 

standard deviation (SD; Supplementary Figs. 2e-2g, Pearson’s r = 0.914, 0.903, and 0.891 18 

for 0, 100, and 500 µM Ala-Trp, respectively) of expression between biological replicates 19 

indicated the reliability of dSort-Seq profiling. In addition, the individual validation data 20 

(Supplementary Figs. 3 and 4), even if measured via another flow cytometer, were highly 21 

consistent with the calculation results (Fig. 2i, mean for 0 µM Ala-Trp, Pearson’s r = 0.991; 22 

Fig. 2j, SD for 0 µM Ala-Trp, Pearson’s r = 0.942; Fig. 2k, mean for 100 µM Ala-Trp, 23 

Pearson’s r = 0.994; Fig. 2l, SD for 100 µM Ala-Trp, Pearson’s r = 0.931), which proved the 24 

model’s ability to precisely capture the expression characteristics. 25 

 26 

DSort-Seq enables the screening of biosensors with desired response features 27 

Given the superior performance of dSort-Seq in characterizing expression properties, we 28 

applied it to practical scenarios to highlight its applicability. First, as an example of 29 

expression strength mining, we focused on the metabolite biosensor, through which the 30 

intracellular concentration could be converted to a change in gene expression. The key 31 
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performance indicators of a biosensor include sensitivity, specificity, dynamic range and 1 

operational range37, most of which can be determined from dose‒response relationships. 2 

However, to the best of the authors’ knowledge, a method for large-scale profiling of the 3 

dose‒response curves with high precision is lacking. Therefore, we applied dSort-Seq to 4 

address this problem. For instance, we tested it in our previously reported dataset by Zhou et 5 

al.38, which contained Sort-Seq results for 5,184 FapR-fapO-based biosensors, consisting of 6 

combinations of 6 transcription factor dosages (pGPD, pENO2, pHSP12, pEXG1, pCYC1, 7 

pULI1), 4 operator insertion schemes (TATA_OP, OP_TATA, OP_TATA_OP, N30_OP), 8 

and 216 arrangements of upstream enhancer sequences (UASs; 3 tandem UASs selected from 9 

UASA, UASB, UASC, UASD, UASE and UASF). Each combination was encoded by a specific 10 

DNA barcode to ensure its identification via NGS. The library was transformed into 11 

Saccharomyces cerevisiae BY4700 and assayed through Sort-Seq under 6 different cerulenin 12 

concentrations (0, 1, 2, 3, 5, 8 mg/L), each with two biological replicates (Fig. 3a). However, 13 

owing to the limited precision and robustness of log-normal-based analysis, the dose‒14 

response curves derived from Sort-Seq were imprecise (Supplementary Fig. 6) and were 15 

inconsistent with the individual characterization data38. Therefore, we applied dSort-Seq to 16 

this case to determine whether it could accurately evaluate the response performance. The 17 

resulting responses showed strong correlations between biological replicates at different 18 

concentrations (Supplementary Fig. 7, Pearson’s r > 0.950 for all experimental conditions), 19 

indicating the reliability of the calculation. 20 

As the library was nonuniform, we could obtain only 12,779 expression strengths of 2,616 21 

combinations through dSort-Seq. To obtain the rest of the data, we applied a machine 22 

learning approach to generate predictions. Specifically, each combination was encoded as a 23 

27-dimensional vector (see Methods), along with the cerulenin concentration as the input 24 

feature. Gradient boosting regression was applied to fit the log-scaled expression strength. 25 

Note that as combinations containing the promoter pGPD suffered from a heavy metabolic 26 

burden, leading to them being underrepresented in the library, we excluded them from the 27 

machine learning analysis. Therefore, the data used to train the model contained 11,375 28 

responses, covering 43.9% of the whole combinatorial space (Supplementary Data 2). To 29 

avoid overfitting, we randomly split the dataset into two subgroups, with 80% of the data 30 

used as the training dataset to optimize the hyperparameters through 5-fold validation as well 31 

as train the model parameters. The remaining 20% were used as the test dataset to check the 32 

generalization capacity of the model (Fig. 3b). The performances in the test dataset (r2 = 33 
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0.989, Fig. 3c) indicated that the model had reasonable generalization capacity and captured 1 

biological signals. Subsequently, we trained the model on the whole dataset and predicted the 2 

uncharacterized responses. The dSort-Seq data accompanied by the predicted results were 3 

then applied to generate the dose‒response curves for all combinations (Supplementary 4 

Data 2). We validated these dose‒response relationships using 92 individual characterization 5 

results38, and linear regression was applied to fit the data values within the same scale. The 6 

resulting high consistencies (Pearson’s r > 0.970 for all cases, Supplementary Figs. 8 and 9) 7 

demonstrated that with dSort-Seq and machine learning, the expression properties of the 8 

enormous combinatorial space could be effectively explored. 9 

We then analyzed the features that contributed most to model predictions via Gini importance 10 

(Fig. 3d). Overall, consistent with previous discoveries38, the responses of the biosensor were 11 

mostly affected by the operator insertion schemes. In addition, a strong determinant of the 12 

result was observed if the third UAS was UASC. Next, we focused on the dynamic range, 13 

which measures the signal-to-noise ratio of a biosensor, by increasing which the true signal is 14 

more likely to be discerned from noise. Hence, we fitted each dose‒response relationship to 15 

the Hill equation to derive the corresponding dynamic range (see Methods). The top 10 16 

combinations with the highest dynamic ranges were individually constructed and assayed 17 

through FCM (Fig. 3e). Their response performances were consistent with dSort-Seq and 18 

machine learning calculations, of which pHSP12-TATA_OP-UAS_FAC achieved the highest 19 

dynamic range of 3.5. Notably, the third UAS of most of the 10 combinations was UASC, 20 

indicating that UASC is important for the interactions of yeast synthetic promoters with FapR 21 

when it is located at the third position. In addition to dynamic range, other indicators, 22 

including operational range and sensitivity, can also be evaluated and optimized in a similar 23 

manner. Therefore, with dSort-Seq, the optimal design with desired response features can be 24 

effectively identified. 25 

 26 

DSort-Seq profiling of the mean noise landscape of E. coli endogenous promoters 27 

In addition to the expression strength, expression noise is also an important factor affecting 28 

gene expression that leads to phenotypic diversity among genetically identical individuals. 29 

Previous association studies have found that expression noise is a heritable trait39 and is 30 

determined by expression modules14–16,30. Hence, for a given organism, how different 31 

expression modules shape the patterns of noise is a fundamental question. On the other hand, 32 
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in terms of noise production mechanisms, the commonly accepted translational bursting 1 

model suggests that the protein within a cell is produced in bursts, where the burst size (noise 2 

strength, 𝜂 = SD!/Mean) is related to only translation and is independent of transcription3,4 3 

(Fig. 4b). However, relevant experimental evidence is still scarce. The problem with the 4 

translational bursting mechanism is not only that the gamma distribution cannot accurately 5 

represent the gene expression distribution6 but also that it cannot interpret the dependence 6 

between transcription and noise strength15. However, limited by the low throughput of classic 7 

quantitative methods, research on transcriptional and translational contributions to expression 8 

noise is always based on the analysis of a small amount of data15,40, which is susceptible to 9 

experimental error as well as outlier samples. To address these issues, our approach may 10 

serve as a promising method due to its ability to produce high-quality data in a massively 11 

parallel manner. Therefore, as a proof of concept, we performed systematic profiling of 12 

transcriptional effects on expression noise in E. coli based on dSort-Seq. 13 

For library construction, 3,804 endogenous promoters of E. coli K12 MG1655 were collected 14 

from the EcoCyc database41 (https://www.ecocyc.org/), for which the 60-nt sequence 15 

upstream of each transcription start site was regarded as the promoter region. The 16 

oligonucleotide library composed of collected promoters was high-throughput synthesized 17 

and assembled into a low-copy-number, dual-fluorescence plasmid, 18 

pMPTPV_dual_fluorescence, in which a superfolder green fluorescent protein (sfGFP) was 19 

used as the response reporter that was under the control of a particular promoter with a fixed 20 

ribosome-binding site (RBS; BBa_J61106). In addition, a constitutively expressed reporter, 21 

mCherry, served as an internal reference to eliminate cell-to-cell variations such as cell 22 

volume and plasmid copy number. After electroporation into MG1655 cells, a cell library 23 

with broad levels of sfGFP expression was obtained. The cultivated cell library was 24 

characterized by FCM with three biological replicates and then sorted into 12 bins based on 25 

the fluorescence intensity of sfGFP relative to mCherry, followed by NGS to quantify the 26 

proportion of each variant in each bin. The acquired datasets were then processed and 27 

analyzed by our method (Fig. 4a). The results showed that 2,920 (76.8% of the total library) 28 

promoters were highly consistent among all three replicates (Supplementary Fig. 15, 29 

Supplementary Data 3). Validation of this result was carried out through individual 30 

cytometry assays of 60 randomly picked single colonies (Supplementary Fig. 16). The 31 

strong consistency with the dSort-Seq results (Supplementary Fig. 17, Pearson’s r = 0.981 32 

and 0.921 for the mean and SD, respectively) indicated the reliability of the profiling. 33 
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Autofluorescence was quantified by assaying the pMPTPV strain with only mCherry 1 

expression and no sfGFP expression, and the result showed that autofluorescence could be 2 

neglected relative to the fluorescence intensity of each candidate of the library 3 

(Supplementary Fig. 12). 4 

The bulk data generated a comprehensive landscape of promoter strength and expression 5 

noise along the E. coli genome (Supplementary Data 3, we also visualized it through 6 

D3GB42 at http://www.thu-big.net/Escherichia_coli_K12_MG1655_promoters), which was 7 

beneficial for understanding the transcriptional strategies for different genes. For instance, we 8 

investigated whether essential and nonessential genes of E. coli possess different expression 9 

patterns (see Methods). As a result, the essential genes showed greater transcriptional 10 

intensities than the nonessential genes (Supplementary Fig. 18, P = 4.22e-16, one-tailed t 11 

test). Given that the high transcriptional strength is usually related to low expression noise15, 12 

these functionally important genes are more likely to confer lower levels of noise, which is 13 

consistent with the results of a previous genome-wide association study16. Subsequently, we 14 

investigated the relationship between noise strength and mean expression level. The results 15 

showed that the noise strength was linearly correlated with the expression strength when the 16 

transcription module varied (Fig. 4c, Pearson’s r = 0.745); hence, transcription contributed to 17 

expression noise. This discovery, however, is inconsistent with the inference of the 18 

translational bursting model (Fig. 4b), suggesting the limitation of the model in interpreting 19 

noise production mechanisms in E. coli. 20 

 21 

Transcription and translation make comparable contributions to noise production 22 

Although the translational bursting mechanism is unable to account for the contribution of 23 

transcription to noise production, the hierarchical Bayesian model, developed by introducing 24 

transcriptional and translational fluctuations into the translational bursting model, can 25 

successfully explain this phenomenon30 (Fig. 4c). However, the model showed that different 26 

translation modules would lead to varying intercepts15,30 in the relationship between noise 27 

strength and the mean expression level (Figure 4c, 𝜂 = 𝐶" ∙ Mean	 + 𝐶! ∙ 𝑏, where 𝑏 28 

represents the translation strength). Hence, at low levels of transcription, the expression noise 29 

is still dominated by translation. This conclusion, although confirmed by a fluorescence 30 

microscopy experiment that analyzed 40 B. subtilis strains expressing GFPmut3 with 31 

different combinations of transcription and translation modules15, still needs to be verified, as 32 
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it was based on regression analysis of a small sample. To date, the contribution of 1 

transcription and translation to noise production has not been comprehensively and directly 2 

observed. As our method has greatly expanded the test throughput of expression noise, we 3 

applied dSort-Seq here to examine these features. 4 

Therefore, we designed a combination library comprising different combinations of 300 5 

promoters and 13 RBSs. The promoters were randomly selected from the EcoCyc database, 6 

whereas the RBSs, which were chosen for their varying translational strengths, were from the 7 

apFAB# series43. The combination library was prepared in the same manner as the promoter 8 

library in the pMPTPV_dual_fluorescence plasmid. After electroporation, we performed a 9 

dSort-Seq assay of the cell library, with three independent biological replicates to ensure the 10 

reliability of the results. After data processing, 2,733 combinations (70.1% of the whole 11 

library) were highly consistent among the replicates and were retained for subsequent 12 

analysis (Supplementary Fig. 20, Supplementary Data 4). Subsequently, 60 single colonies 13 

with different genotypes were randomly picked and assayed individually with FCM 14 

(Supplementary Fig. 21). Their means and SDs of expression were strongly correlated with 15 

the dSort-seq results (Supplementary Fig. 22, Pearson’s r = 0.976 and 0.937 for the mean 16 

and SD, respectively), proving the validity of the profiling. 17 

We then performed regression analysis between noise strength and the expression mean for 18 

different translational modules (Fig. 4e, Supplementary Fig. 24) to test the hierarchical 19 

Bayesian model. However, their correlation barely changed when the translation module 20 

varied in terms of both slope and intercept (Fig. 4f, Supplementary Table 6). Instead, our 21 

results showed that the noise strength was highly coupled with the mean expression level, 22 

indicating the difficulty of adjusting expression noise independently of the mean protein 23 

abundance by tuning the strength of the transcription and translation modules. Furthermore, 24 

to determine whether translation bursting dominates noise production at low transcription 25 

levels, we constructed several weak expression combinations and performed cytometry 26 

assays. As a result, the combinations with comparable mean expression levels showed similar 27 

fluorescence intensity distributions (Supplementary Fig. 25), suggesting that the 28 

contributions of transcription and translation to noise are comparable, even in the case of 29 

weak expression strength. 30 

 31 

Overlapping RpoD-binding sites can lead to high expression noise 32 
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We then analyzed the relationship between expression noise (CV! = SD!/Mean!) and 1 

strength (Fig. 5a and 5b). The expression noise exhibited a strong negative correlation with 2 

the mean protein abundance at low levels of expression and then reached a plateau after a 3 

critical point, which is consistent with previous observations15,30. In addition to the general 4 

correlation, some unique expression features also piqued our interest, especially for those 5 

sequences exhibiting high expression noise at their corresponding mean expression levels. To 6 

ensure that these outliers were not the results of experimental error, we reconstructed and 7 

assayed 20 high-noise candidates from the promoter library and 25 from the combination 8 

library and then performed an individual cytometry assay (see Methods), proving the 9 

credibility of the discovery. Moreover, the expression noise of these variants was apparently 10 

higher than that of randomly selected colonies (Fig. 5c and 5d). Notably, among the 25 high-11 

noise combinations, several promoters appeared frequently (e.g., fliEp1, ileSp2, yihVp3, 12 

folEp, Fig. 5d), suggesting that the extra noise may be derived from transcription rather than 13 

translation. 14 

Next, to identify the factor that contributed to the additional expression noise, we divided the 15 

E. coli promoters into 3 groups based on the noise values (high-noise, medium-noise and 16 

low-noise groups; see Methods). Subsequently, we analyzed the sequence features of the 17 

three groups and found that the thymidine proportion was significantly higher in the high-18 

noise group (average 37.5%, n = 138) than in the low-noise group (Fig. 5e, average 28.0%, n 19 

= 138; P = 1.97e-21, one-tailed t test) as well as in the medium-noise group (average 29.9%, 20 

n = 2,481; P = 2.24e-29). Furthermore, there was no position preference for this phenomenon 21 

(Supplementary Fig. 30), and no common regulator was found to be associated with the 22 

sequences within the same group (Supplementary Data 5). Therefore, we focused on 23 

transcription initiation factors, especially RpoD (𝜎*% factor), which transcribes most genes in 24 

E. coli. Promoters recognized by RpoD generally contain two consensus hexamers centered 25 

at 10 and 35 nucleotides upstream of the transcription start site. These two regions are rich in 26 

adenosine and thymine, especially thymine (average of 4.73 per promoter compared to 3.75 27 

for adenosine, 1.80 for cytosine and 1.70 for guanine44). Based on this, we hypothesized that 28 

the high-noise group contains more RpoD-binding sites than other groups. To test this 29 

hypothesis, we searched the DPinteract database45 for potential RpoD-binding sites in three 30 

groups (see Methods). The sequences with no RpoD-binding hit were excluded from 31 

subsequent analysis. As a result, the high-noise group (average 2.10, n = 127) showed more 32 
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potential RpoD-binding sites than the low-noise group (Fig. 5f, average 1.65, n = 106; P = 1 

1.86e-5, one-tailed t test) and medium-noise group (average 1.82, n = 2,091; P = 5.34e-5). 2 

Subsequently, to determine whether overlapping RpoD-binding sites would result in high 3 

expression noise, we constructed 25 tandem promoters based on combinations of 5 Anderson 4 

promoters (J23101/103/107/109/115; Fig. 5g) to drive the expression of sfgfp. In addition, the 5 

5 constitutive promoters were also individually constructed as controls. To exclude the effect 6 

of promoter length and the -35 region-proximal sequence on the results, we also constructed 7 

5 promoters of the same length as the tandem promoter, while preserving only the 8 

downstream RpoD-binding site (Fig. 5h). Subsequently, we performed an individual 9 

cytometry assay of the 35 promoters (Supplementary Fig. 32). As a result, the gene 10 

expression driven by tandem promoters showed higher noise compared to a single promoter 11 

(Fig. 5i, P = 2.40e-4, one-tailed t test), especially when the stronger promoter was located 12 

upstream of the weaker promoter (Fig. 5i), suggesting that the transcriptional interference 13 

caused by the occlusion of promoters contributed to noise production. Hence, our results 14 

uncovered a feasible and simple noise modulation strategy in E. coli by tuning the number 15 

and relative positions of sigma factors upstream of the transcription start site. 16 

 17 

DISCUSSION 18 

Gene expression dosage is directly associated with a variety of phenotypes of a population46; 19 

hence, there is no doubt that high-throughput profiling will deepen our understanding of 20 

cellular behavior. In this paper, we focused on biosensors that can sense metabolite 21 

concentrations and regulate gene expression. According to the different output signals, 22 

biosensors have various applications, including in high-throughput screening47, medical 23 

diagnosis48, and cell imaging49. For each application, the dose‒response relationship is a key 24 

indicator that needs to be tuned to meet practical needs. Fortunately, dSort-Seq was shown to 25 

be a powerful tool for characterizing and optimizing the biosensor response performance in a 26 

high-throughput and high-precision manner, enabling the engineering of biosensors with 27 

desired properties. Compared to positive and negative screening50,51, by which only the 28 

dynamic range could be optimized, dSort-Seq can yield more comprehensive information to 29 

meet the needs of various situations. In addition, it is much more efficient than traditional 30 

trial-and-error approaches. Therefore, dSort-Seq provides a solution for profiling the 31 

expression landscape of the combinatorial sequence space. On the other hand, the high-32 
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quality dSort-Seq dataset also has the potential to serve as a basis for deciphering 1 

physiological mechanisms25,27. 2 

Noise in biological systems has been widely demonstrated to influence various intracellular 3 

processes52 and the physiological properties of a population13,53, although the effects of noise 4 

strength vary across different situations. For instance, low noise can ensure stable 5 

biosynthesis pathways and robust synthetic gene circuits54. In contrast, high phenotypic 6 

variability promotes evolvability55–57. Therefore, it is necessary to understand the origin of 7 

the noise, as well as control noise rationally for various applications. Regarding noise 8 

regulation, various strategies have been proposed to control gene expression noise 9 

independently, including engineering transcription and translation in synthetic gene 10 

circuits58,59, introducing pulsatile input to control the promoter activation frequency and 11 

transcription rate independently60 and expressing two copies of the target gene from separate 12 

circuits with different characteristics61, among others. Through dSort-Seq profiling of 13 

different combinations of promoters and RBSs in E. coli, the transcriptional effect on gene 14 

expression noise was revealed. Specifically, a higher thymidine proportion without position 15 

preference in the promoter sequence would lead to a higher level of noise. One hypothesis to 16 

explain this phenomenon is that RpoD-binding sites, which are rich in thymine, influence 17 

noise production. We have proven that promoters with overlapping RpoD-binding sites 18 

contribute to noise production due to occlusion of promoters. Moreover, in E. coli, 831 genes 19 

have been found to be under the control of tandem promoters62, suggesting the broadness of 20 

the regulatory scheme. Hence, in-depth research on modeling molecular events in the 21 

transcription process is needed to elucidate the effect of promoter architecture on expression 22 

noise. 23 

From the methodology point of view, the design-build-test-learn (DBTL) cycle is emerging 24 

as a key workflow in synthetic biology, where the test is the rate-limiting step due to its low 25 

throughput63. The development of Sort-Seq has undoubtedly greatly extended the test 26 

throughput, enabling more efficient characterization and optimization of biological parts. The 27 

dSort-Seq approach shows that the learn can be encapsulated into the test to improve its 28 

capability by modeling the data generative process for the high-throughput experiment. 29 

Moreover, it is worth mentioning that as the ability of the Gaussian mixture models in 30 

distribution matching can be improved by increasing the number of mixture components, 31 

dSort-Seq can be easily transferred to more complex situations in which multiple feedback 32 

circuits are involved64. Thus, this pipeline has great potential to determine the mean-noise 33 
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space for various gene expression modules, providing diverse synthetic parts that can be 1 

applied to different fields, such as biosynthesis65, laboratory-based adaptive evolution56, 2 

transcriptional regulation66, and protein‒protein interactions67,68. Overall, owing to the 3 

flexibility, high precision and high throughput of this method, we believe dSort-Seq can serve 4 

as a powerful tool that provides a wide range of novel research opportunities. 5 

 6 

METHODS 7 

 8 

Parameter-learning algorithm of dSort-Seq 9 

We represent the log-scaled expression density of each variant by a two-component Gaussian 10 

mixture model (where 𝑥$ denotes the log-scaled intensity value of the ith variant): 11 

𝑥$ 	~	𝑓(𝑥$|λ$ , 𝛍$ , 𝛔$) = λ$𝑁(µ"$ , σ"$! ) + (1 − λ$)𝑁(µ!$ , σ!$! )				(𝑖 = 1, 2, … , 𝑛).		(1) 12 

Hence, the overall logarithmic fluorescence intensity distribution can be modeled as a 13 

mixture of Gaussian mixture models: 14 

𝑥	~	𝑓(𝑥) =Mπ$𝑓(𝑥$)
#

$+"

.		(2) 15 

The generative process for each fluorescence intensity value should be as follows: (1) choose 16 

a variant 𝑧"~	𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝛑), (2) choose a Gaussian component 𝑧! from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧!|𝑧") 17 

and (3) choose a log-scaled intensity value 𝑥 from 𝑁(𝑥|𝑧", 𝑧!) (Fig. 3d). The distributions of 18 

variables involved in the model are listed as follows: 19 

𝑃(𝑧" = 𝑖) = π$ 				(𝑖 = 1,2, … , 𝑛);		(3) 20 

𝑃(𝑧! = 1|𝑧" = 𝑖) = λ$; 			(4) 21 

𝑃(𝑧! = 0|𝑧" = 𝑖) = 1 − λ$; 		(5) 22 

𝑓(𝑥$|𝑧" = 𝑖, 𝑧! = 1) = 𝑁(µ"$ , σ"$! );		(6) 23 

𝑓(𝑥$|𝑧" = 𝑖, 𝑧! = 0) = 𝑁(µ!$ , σ!$! );		(7) 24 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.23.517705doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517705
http://creativecommons.org/licenses/by-nc-nd/4.0/


𝑃$) = _ λ$𝑁(𝑥$|𝜇"$ , 𝜎"$! ) + (1 − λ$)𝑁(𝑥$|µ!$ , σ!$! )
,!

,!"#
𝑑𝑥$ 	(𝑖 = 1,2, … , 𝑛; 	𝑘 = 1,2, … , 𝐾).		(8) 1 

Among the parameters involved in the model, the sets 𝛌, 𝛍 and 𝛔 cannot be identified 2 

experimentally. To estimate them, we designed a probabilistic artificial neural network in 3 

which a double-objective optimization is performed. The first objective function is defined as 4 

the cross-entropy (H) of the observed binned distribution relative to the integral of the 5 

probability density over adjacent boundaries (Fig. 3e), which is shown as follows: 6 

minH = −MMh−𝑃$) log h_ 𝑓(𝑥$|λ$ , 𝛍$ , 𝛔$)
,!

,!"#
𝑑𝑥$ll

&

)+"

#

$+"

.		(9) 7 

By minimizing the above loss function, the binned distribution can be fitted. The other 8 

objective is to match the overall fluorescence intensity density. To this end, a generative 9 

adversarial network36 is applied. Specifically, a generator is constructed based on the 10 

abovementioned generative process. For the discriminator, a fully connected neural network 11 

is used to determine whether the data are real or fake (Fig. 3f). During training, a two-player 12 

game is played between the generator G and the discriminator D with value function 𝑉(𝐺, 𝐷): 13 

min
-
max
.

𝑉(𝐺, 𝐷) = 𝐸/$%&'slogs𝐷(𝑥0123)tt + 𝐸/()!'~5(/|𝛑,𝛌,𝛍,𝛔) ulog u1 − 𝐷s𝑥5>)3tvv.		(10) 14 

Combining the above two parts, we can obtain the whole algorithm for parameter learning, as 15 

shown in Supplementary Fig. 1. 16 

 17 

Obtaining expression characteristics from cytometry data 18 

For each individual cytometry assay, the log10-transformed fluorescence intensity distribution 19 

was fitted by a two-component Gaussian mixture model (Supplementary Figs. 3, 4, 12, 16, 20 

21, 25, 26, 28 and 32) via the expectation–maximization (EM) algorithm, which resulted in a 21 

representation of 𝑓(𝑥$) = λ$𝑁(µ"$ , σ"$! ) + (1 − λ$)𝑁(µ!$ , σ!$! ). The mean expression strength 22 

was calculated with Eq. 11. 23 

𝑀𝑒𝑎𝑛 = 𝑀𝑒𝑎𝑛" ×𝑀𝑒𝑎𝑛! = exp(𝑚" + 𝑉"/2) × exp(𝑚! + 𝑉!/2)			(11) 24 

where 𝑚" = 𝜆$𝜇"$ log(10), 𝑉" = (𝜆$𝜎"$ log(10))!, 𝑚! = (1 − 𝜆$)𝜇!$ log(10) and 𝑉! =25 

((1 − 𝜆$)𝜎!$ log(10))!. The 𝑆𝐷 of each expression density was calculated with Eq. 12. 26 
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𝑆𝐷 = }𝑉𝑎𝑟" × 𝑉𝑎𝑟! + 𝑉𝑎𝑟" ×𝑀𝑒𝑎𝑛!! + 𝑉𝑎𝑟! ×𝑀𝑒𝑎𝑛"!				(12) 1 

where 𝑉𝑎𝑟" = exp(2𝑚" + 𝑉") (exp(𝑉" − 1)), 𝑉𝑎𝑟! = exp(2𝑚! + 𝑉!) (exp(𝑉! − 1)). 2 

 3 

Comparison of dSort-Seq and the log-normal-based method 4 

The dSort-Seq results were calculated as mentioned above, and the log-normal results were 5 

obtained from previously reported data27 (note that since the actual slope of the sorting 6 

boundary lines on the log-log plot of eGFP-mCherry in the experiment was 0.8810 instead of 7 

1, each boundary value was shifted to the right by 0.3801 compared to the previous analysis, 8 

Supplementary Table 4). Next, as an example, we compared the performances of the two 9 

methods in matching the binned distribution of variant V8A_GCC under 0 µM Ala-Trp and 10 

calculated the Kullback‒Leibler divergences (Eq. 13) of the observation from the theoretical 11 

binned distributions derived from the log-normal-based method and dSort-Seq. The results 12 

showed that dSort-Seq is more precise and robust than log-normal (Fig. 2g). 13 

𝐷&?(𝑃||𝑄) = −M𝑃(𝑥) log h
𝑄(𝑥)
𝑃(𝑥)l		(13)

/

 14 

Subsequently, we compared these two methods in fitting the overall fluorescence intensity 15 

distribution. For instance, we calculated the theoretical log-scaled overall distribution (100 16 

µM Ala-Trp, replicate 1) derived from the log-normal-based method (Eq. 14) and dSort-Seq 17 

(Eq. 2). As a result, dSort-Seq also showed better performance (Fig. 2h). 18 

𝑓@ABC#A1D>@(𝑥) =Mπ$𝑁(𝑥$|𝜇$ , 𝜎$!)
#

$+"

		(14) 19 

Moreover, as mentioned above, the log-normal-based method is unable to fit the individual 20 

cytometry data, which usually serve as criteria for validating the Sort-Seq results 21 

(Supplementary Figs. 3 and 4). To measure the error, we calculated the expression strength 22 

and SD of individual validation data with both log-normal (Eq. 15 and Eq. 16) and the 23 

LGMM (Eq. 11 and Eq. 12), where the LGMM results were applied as ground truth to 24 

evaluate the precision of log-normal results. As a result, the response and SD inferred from 25 

log-normal showed significant deviations (Supplementary Fig. 5). Therefore, with log-26 

normal, it is difficult to infer accurate expression properties from Sort-Seq experiments. 27 

𝑀𝑒𝑎𝑛@ABC#A1D>@(E*,F*) = exp(log(10) ∙ 𝜇$ + (log(10) ∙ 𝜎$)!/2)		(15) 28 
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𝑆𝐷@ABC#A1D>@(E*,F*) = �[𝑒𝑥𝑝(𝜎$ log(10))! − 1]	exp(2𝜇$ log(10) + (𝜎$ log(10))!)		(16) 1 

 2 

DNA manipulation and reagents 3 

Plasmid extraction and DNA fragment purification were performed using kits from Omega 4 

Bio-Tek. PCRs were carried out using a KAPA HiFi PCR Kit from KAPA Biosystems. The 5 

restriction enzyme FastDigest Esp3I (namely, BsmBI) and T4 DNA ligase were purchased 6 

from Thermo Scientific. Cerulenin was ordered from Yuanye Bio-Technology. All strains 7 

and plasmids used in this work are summarized in Supplementary Table 1. All 8 

oligonucleotides (Supplementary Table 2) were ordered from Azenta. Molecular cloning 9 

was performed with E. coli DH5ɑ (BioMed) as the host. The concentrations of the antibiotics 10 

kanamycin and ampicillin were 50 mg/L and 100 mg/L, respectively. In all experiments, 11 

bacteria and yeast were grown at 37 and 30°C, respectively. 12 

 13 

Featurization and gradient boosting regression 14 

We applied one-hot encoding to transform each biosensor combination into a 27-dimensional 15 

vector. Among these dimensions, 5 of them represent the promoters of the transcription factor 16 

(pULI1, pHSP12, pEXG1, pENO2, pCYC1), 4 of them represent the operator insertion 17 

schemes (OP_TATA_OP, TATA_OP, N30_OP, OP_TATA), and 18 of them represent the 18 

sequences of the tandem UAS (UAS_1A/B/C/D/E/F, UAS_2A/B/C/D/E/F, 19 

UAS_3A/B/C/D/E/F). These vectors then served as input features along with the cerulenin 20 

concentration (0/1/2/3/5/8). Gradient boosting regression was applied to predict the log-21 

scaled expression strength. During training, the hyperparameters were optimized following 22 

the given order (min_samples_split, max_depth, min_samples_leaf, max_features, 23 

subsample, learning_rate and n_estimators) through the grid search method. 24 

 25 

Fitting the dose‒response relationship to the Hill equation 26 

Each dose‒response relationship was fitted by Eq. 17 via nonlinear least squares. 27 
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𝑆 = 𝑆% +
𝑆D − 𝑆%

1 + s𝐶/𝐶"/!t
H
	
		(17) 1 

where 𝑆% and 𝑆D are the values of the sensor response at zero and saturating ligand 2 

concentrations, 𝐶"/! is the concentration at half saturation, and ℎ is the Hill coefficient. The 3 

lower bounds and upper bounds of (𝑆%, 𝑆D, 𝐶"/!, ℎ) were set to (0, 0, 0, 1) and (1, 2, 8, 3), 4 

respectively. The dynamic range was calculated with Eq. 18. 5 

𝑑 =
𝑆D − 𝑆%
𝑆%

		(18) 6 

 7 

Individual characterization of the dose‒response relationships for malonyl-CoA 8 

biosensors 9 

One variant (pHSP12-TATA_OP-UAS_FAC) was obtained from library stock, and the other 10 

9 biosensor variants (pCYC1-OP_TATA-UAS_FAC, pCYC1-OP_TATA-UAS_DDC, 11 

pCYC1-OP_TATA-UAS_EBC, pHSP12-TATA_OP-UAS_BDC, pCYC1-OP_TATA-12 

UAS_BEC, pEXG1-N30_OP-UAS_FDA, pCYC1-TATA_OP-UAS_EAC, pCYC1-13 

OP_TATA-UAS_FDC, pCYC1-OP_TATA-UAS_BDC) were constructed via Golden Gate 14 

Assembly (Supplementary Table 3). After transformation of these plasmids into BY4700, 15 

the strains were inoculated into 48-well deep-well plates with 1 mL of SC-Ura medium 16 

(synthetic complete medium lacking uracil) in each well. After culturing for 12 h at 30°C and 17 

250 rpm, 2 μL of cerulenin solutions of six distinct concentrations (0.5, 1.0, 1.5, 2.5, 4 18 

mg/mL) was added to the corresponding well. The strains were then cultured for another 12 19 

h. For sample preparation, cells were collected by centrifugation (4°C; 8,000 × g for 10 min) 20 

and resuspended in prechilled phosphate-buffered saline (PBS) to an OD600 of 2. BY4700 21 

was used as a negative control. BY4700/POT1-pTEF2-mCherry-tADH1 and BY4700/POT1-22 

pCYC1-YPet-tPGK1 were used as positive controls for mCherry and YPet, respectively. 23 

These control samples were prepared the same way as above. The fluorescence intensities of 24 

the cells were characterized on an LSRFortessa (BD Biosciences). The double-positive area, 25 

named Q2, was determined by the control samples, as described in a previous work38. For 26 

each sample, 100,000 events in the Q2 area were analyzed. 27 

 28 
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Construction of the two-reporter plasmid 1 

The two-reporter plasmid pMPTPV_dual_fluorescence was derived from the common vector 2 

pACYCDuet-1 by replacing the chloramphenicol resistance gene with the kanamycin 3 

resistance gene, replacing the lacI expression cassette with mcherry, and inserting the sfgfp 4 

cassette into the opposite strand of mcherry. The mcherry gene is controlled by a constitutive 5 

promoter, pL_M1-3769. To facilitate library construction, sfgfp is controlled by a variable 6 

region containing two BsmBI restriction sites. 7 

 8 

Feasibility verification of the plasmid 9 

Ten promoters were randomly selected from the EcoCyc database. The sequence of each 10 

promoter was defined as the 60 nt preceding the transcriptional start site. In addition, a 11 

medium-strength RBS, BBa_J61106 (TCTAGAGAAAGATAGGAGACACTAGT), was 12 

chosen for all strains to ensure the survival of strains (note that the combination of a strong 13 

promoter and a strong RBS is lethal to E. coli17). After transformation of the plasmids 14 

containing different promoters into E. coli K12 MG1655, the resulting strains were 15 

individually cultured in LB medium containing kanamycin (initial OD600 = 0.02), with three 16 

biological replicates for each promoter. During cultivation, the growth rate and the 17 

expression of fluorescent protein were monitored by sampling and testing every hour. The 18 

OD600 was measured by a microplate reader (Tecan Infinite 200Pro), and the fluorescence 19 

intensity was assayed via flow cytometry (BD LSRFortessa). The 10 strains showed no 20 

apparent differences in growth (Supplementary Fig. 10a), and the median value of 21 

sfGFP/mCherry remained stable after culturing for 16 h (Supplementary Fig. 10b). Hence, 22 

we chose 16 h for cultivation in subsequent experiments. 23 

 24 

Preparation of library cells 25 

The two plasmid libraries (the promoter library and combination library) were both ordered 26 

from Genewiz. We transformed each library into E. coli K12 MG1655 via a BTX Harvard 27 

ECM 630 High Throughput Electroporation System using optimized parameter settings (2.1 28 

kV, 1 kΩ, 25 μF, 100 ng plasmids/100 μL competent cells). The transformed cells were 29 

incubated in LB medium (four times the volume of the competent cells) for 1 h at 37°C for 30 
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recovery and then plated onto 37 Φ150 LB agar plates containing kanamycin with an 1 

EasySpiral Pro (Interscience). Generally, ~104 single colonies per plate can be harvested with 2 

this protocol (data not shown), enabling ~100 times coverage of the designated library. All 3 

colonies on the plates were rinsed off using sterile LB medium supplemented with 4 

kanamycin, collected by centrifugation (4°C; 8,000 × g for 10 min) and then resuspended and 5 

thoroughly mixed to an OD600 of 10 using fresh sterile LB medium containing kanamycin. 6 

The cell suspension was stored at –80°C in glycerol (final OD600 = 5). 7 

 8 

Characterization of transcriptional impact on growth 9 

We further tested whether different promoters have varying influences on growth. To this 10 

end, the stored promoter library cells were cultured in LB medium containing kanamycin 11 

(initial OD600 = 0.02) at 37°C for 16 h. Cell samples were collected before and after 12 

cultivation, followed by plasmid extraction. The promoter regions were amplified by PCR 13 

(KAPA HiFi PCR Kit; 95°C for 3 min, 25 cycles [98°C for 20 s, 63°C for 15 s, 72°C for 5 s], 14 

72°C for 30 s) using the Lib_F and Lib-R primers (Supplementary Table 2). 15 

In a 50-μL reaction, 5 ng of the plasmid library was added as the PCR template. The 16 

sequencing library was prepared according to the NEBNext Ultra II DNA Library Prep Kit 17 

for Illumina (NEB). Specifically, 30 ng of each purified PCR product was used to prepare the 18 

sequencing library. The DNA fragments were treated with NEBNext End Prep for end repair, 19 

5’ phosphorylation and dA-tailing. Then, the fragments were ligated to NEBNext Adaptors, 20 

followed by USER Enzyme excision. Subsequently, the products were purified using 21 

NEBNext Sample Purification Beads and amplified by PCR for six cycles using the P5 and 22 

P7 primers. The products were again purified using NEBNext Sample Purification Beads, 23 

validated with an Agilent 2100 Bioanalyzer (Agilent Technologies) and quantified with a 24 

Qubit 4 Fluorometer (Invitrogen). Subsequently, the libraries were delivered to Novogene for 25 

sequencing. 26 

Two biological replicates were analyzed in parallel in this experiment, which generated three 27 

NGS raw datasets. After the production of clean data by demultiplexing and removing 28 

adaptor regions, pairs of paired-end data were merged by FLASH script70, and those reads 29 

without detected pairs were removed. Python scripts generated in house were then used to 30 

search for the ‘GGATN86ATGC’ 94-mer in the sequencing reads (and the reverse 31 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.23.517705doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517705
http://creativecommons.org/licenses/by-nc-nd/4.0/


complementary sequence), and those carrying mutations within the upstream (GGAT) or 1 

downstream (ATGC) flanking regions (4 nt each) were removed. The read counts were then 2 

adjusted using Eq. 19, where n is the number of sequencing libraries, to normalize the 3 

different sequencing depths of each library. 4 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟$ =
∑ 𝑅𝑒𝑎𝑑	𝑐𝑜𝑢𝑛𝑡$#
$+"

𝑛 × 𝑅𝑒𝑎𝑑	𝑐𝑜𝑢𝑛𝑡$
				(19) 5 

The library showed negligible variation in growth (Supplementary Fig. 11), which ensured 6 

the feasibility of using the library in subsequent Sort-Seq experiments. 7 

 8 

Sort-Seq experiments 9 

For both the promoter library and the combination library, a frozen glycerol stock of library 10 

cells (E. coli MG1655) was inoculated into 100-mL flasks containing 20 mL of LB medium 11 

with kanamycin to an initial OD600 of 0.02. Library cells were grown for 16 h at 37°C and 12 

220 rpm. The grown cells were transferred to fresh LB medium to an initial OD600 of 0.02 13 

and grown again under the same conditions as above. A third round of dilution and growth 14 

was carried out to improve the expression stability of the fluorescent proteins. After growth, 15 

500 μL of culture medium was chilled on ice immediately, and the cells were collected by 16 

centrifugation (4°C; 8,000 × g for 10 min). The cells were resuspended in 500 μL of 17 

prechilled PBS. Each cell suspension was diluted 150-fold in PBS to prepare samples 18 

appropriate for sorting. Three biological replicates were prepared for Sort-Seq experiments. 19 

Sorting was performed on a FACSAria SORP (BD Biosciences). Gating based on FSC-Area 20 

and SSC-Area was carried out to exclude noncell particles. The population in this gated area 21 

is referred to as P1. The fluorescence background noise for the two relevant wavelengths was 22 

calibrated using the blank untransfected MG1655 strain. Note that the blank strain was 23 

completely negative for both sfGFP and mCherry expression. The resulting double-positive 24 

area in the region corresponding to the FITC-Area (sfGFP) and the PE-Texas Red-Area 25 

(mCherry) is referred to as Q2 after P1. The prepared library cells were analyzed by 26 

cytometry to determine the density distribution contour of the fluorescence in Q2. 27 

Subsequently, in the histogram of sfGFP/mCherry, 12 bins were set to evenly split the overall 28 

distribution of the population in Q2 (Supplementary Figs. 13 and 19, Supplementary 29 

Tables 4 and 5), referred to as P2 to P13 after Q2, to ensure that the number of cells in each 30 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.23.517705doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517705
http://creativecommons.org/licenses/by-nc-nd/4.0/


bin was equal and improve the sorting efficiency. For calibration, ~2 × 106 unsorted cells in 1 

gate Q2 were first collected for each sample. In the main sorting process, the three replicates 2 

were individually sorted into the 12 bins as described above. Each sample was successively 3 

sorted three times using four-way sorting. In each of these sorting runs, cells falling in 4 

nonadjacent bins were collected to eliminate the conflicting events between them. Thus, P2, 5 

P5, P8 and P11 were simultaneously sorted in one run, as were P3, P6, P9 and P12. During 6 

sorting, the cell flow rate was kept at ~8000 events/s, and ~5 × 105 cells were collected in 7 

each bin. 8 

The sorted cells were collected in 36 (3 samples × 12 bins) 5-mL polystyrene round-bottom 9 

centrifuge tubes (BD Falcon), each of which contained 500 μL of PBS. The entire contents of 10 

each tube were then each transferred to 100-mL flasks containing 20 mL of LB medium with 11 

kanamycin and cultured at 37°C for 7 h. These cells were then subjected to plasmid library 12 

extraction. Together with the cells from gate Q2 of each of the three samples mentioned 13 

above, we obtained 39 plasmid libraries in total. 14 

The promoter and RBS regions of sfgfp in each library were amplified through PCR (KAPA 15 

HiFi PCR Kit; 95°C for 3 min, 25 cycles [98°C for 20 s, 63°C for 15 s, 72°C for 5 s], 72°C 16 

for 30 s), using 12 8-nt barcoded primers to identify different sorting bins (primers 17 

sorting_P2 to _P13, Supplementary Table 2). The barcodes were designed according to the 18 

following principles. (1) The Levenshtein distance between every two barcodes was ≥ 4; (2) 19 

the GC content was 20% to 80%; and (3) there were no more than four consecutive identical 20 

bases. In a 25-μL PCR, 5 ng of plasmid library was added as a template. PCR products from 21 

the 12 bins for each sample were mixed, thus obtaining three sorted PCR products (from 22 

sorted library cells in different sorting bins for three samples) and three unsorted PCR 23 

products (from unsorted library cells in the Q2 gate for three samples). The resulting PCR 24 

products were analyzed and purified by electrophoresis. The sequencing libraries were 25 

prepared as described above and were then delivered to Novogene for sequencing. 26 

 27 

Sort-Seq data processing 28 

According to NGS data, the read count 𝑅$,) for 𝑉𝑎𝑟𝑖𝑎𝑛𝑡$ in 𝑏𝑖𝑛) can be observed. 29 

Additionally, by analyzing the cytometry data, we can obtain the ratio of cells sorted into 30 

𝑏𝑖𝑛) against all cells, which is denoted by 𝐶). Hence, assuming an unbiased NGS 31 
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quantification process, the proportion of 𝑉𝑎𝑟𝑖𝑎𝑛𝑡$ in 𝑏𝑖𝑛) is 𝑄$) = 𝑅$,)/𝑅). Here, 𝑅) is the 1 

total read count for the NGS library derived from 𝑏𝑖𝑛). Therefore, the probability of sorting 2 

𝑉𝑎𝑟𝑖𝑎𝑛𝑡$ into 𝑏𝑖𝑛) should be 𝑃$) = 𝑄$)𝐶)/∑ 𝑄$)𝐶)&
)+" . 3 

For the library of tnaC variants and the malonyl-CoA biosensors, data processing was 4 

performed as described above. However, for the promoter library, a sorting error did exist 5 

(Supplementary Figs. 14a, 14b, 14d and 14f). We ascribed this error to random screening 6 

with an error rate, 𝜖, and hence, we modified 𝑃$) as shown in Eq. 20. 7 

𝑷$I = [𝑃$"I , 𝑃$!I , … , 𝑃$&I ]J = 𝑅𝑒𝐿𝑈(𝑬C"𝑷$).		(20) 8 

where 9 

𝑬 = (1 − 𝐾𝜖)𝑰& + 𝜖𝑱& .		(21) 10 

Here, 𝑰& is an identity matrix of size 𝐾, and 𝑱& is a matrix of ones of size 𝐾. Finally, the 11 

binned distribution was obtained by 𝑃$)II = 𝑃$)I /∑ 𝑃$)I&
)+" . For both the promoter and 12 

combination libraries, 𝜖 was set to 0.05, which made the binned distribution more precise 13 

(Supplementary Figs. 14c, 14e and 14g). The strains with 𝑃$"II > 0.5 or 𝑃$&II > 0.5 were ruled 14 

out, as they were not effectively sorted. Moreover, to ensure the quality of the results, we 15 

eliminated the data with low consistency among replicates. Specifically, if the CV of the 16 

calculated mean or SD among biological replicates was greater than 0.5, the related data were 17 

removed from the dataset. 18 

 19 

Evaluation of the expression patterns of essential and nonessential genes 20 

The essential genes were identified based on a comprehensive pooled CRISPRi screening 21 

dataset71 (threshold: fitness ≤ -6), whereas other genes were regarded as nonessential. We 22 

calculated the transcriptional strength of each gene. Specifically, the genes belonging to the 23 

operons closest to the downstream side of a promoter were considered to be driven by this 24 

promoter, and the transcription strength of a gene was calculated as the summation of its 25 

promoter strengths. 26 

 27 

Identification of RBS strengths 28 
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To identify the translational strengths of the 13 RBSs, we defined each promoter strength as 1 

the expression strength in the promoter library, and then we divided each expression strength 2 

from the combination library by the corresponding promoter strength. The median of the 3 

calculated results for combinations with the same RBS is defined as the translational strength 4 

of that RBS. The resulting order of the RBS strengths was as follows: apFAB872(0.15) < 5 

apFAB914(0.23) < apFAB864(0.36) < apFAB865(0.67) < apFAB927(0.75) < 6 

apFAB827(0.95) < apFAB894(1.02) < apFAB909(1.04) < apFAB839(1.36) < 7 

apFAB833(1.38) < apFAB834(1.41) < apFAB820(1.57) < apFAB916(2.13) (Supplementary 8 

Fig. 23). 9 

 10 

Grouping promoters according to expression noise 11 

Each noise-mean relationship was fitted by the empirical formula 𝐶𝑉! = 𝐶" 	+ 𝐶!/𝑀𝑒𝑎𝑛 12 

(Fig. 5a and 5b), and the residual of each expression pattern was calculated and sorted. In 13 

addition, to ensure the reliability of the analysis, we only considered the sequences with 14 

appropriate mean expression levels (> 0.15 for the promoter library; > 0.1 for the 15 

combination library). The 20 candidates from the promoter library and 25 from the 16 

combination library with the largest residues were reconstructed. For the promoter library, 17 

the 10% with the largest residuals was classified as the high-noise group, the 10% with the 18 

smallest residuals was classified as the low-noise group, and the remaining sequences were 19 

grouped as medium-noise. 20 

 21 

Identification of potential RpoD-binding sites 22 

The DPinteract database contains computational predictions of possible RpoD-binding sites 23 

with 15-19 nucleotide spacing in the E. coli genome45. We searched these sequences in the 24 

promoter library and counted the number of potential RpoD-binding sites of each promoter. 25 

To avoid redundant results, we only accounted for independent hexamer pairs. Specifically, if 26 

the -35 or -10 region of two RpoD-binding sites overlapped, we only considered the RpoD-27 

binding site with a higher z score; otherwise, both of them were retained (Supplementary 28 

Fig. 31). 29 

 30 
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DATA AVAILABILITY 1 

Raw NGS data of Sort-Seq have been deposited into the NCBI Short Read Archive with 2 

BioProject accession number PRJNA800535. The plasmid maps related to this work can be 3 

accessed via Github (https://github.com/fenghuibao/dSort-Seq). The dSort-Seq calculation 4 

tool can be accessed through our laboratory website (http://www.thu-big.net/dsort-seq/). 5 
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Figure 1 Schematic overview of the dSort-Seq data workflow. (a) During Sort-Seq, a library 4 

with different expression patterns is sorted into customized bins based on the fluorescence 5 

intensity value. (b) The mixing coefficients are quantified via next-generation sequencing 6 

(NGS). (c) The overall fluorescence density is measured by flow cytometry (FCM), and the 7 

sorting boundaries are specified based on the overall fluorescence intensity density. (d) The 8 

read count number across all bins as quantified by NGS reveals the binned distribution of 9 

each variant in the library. (e) Through parameter learning, the mean, expression noise and 10 

their relationships can be precisely identified. 11 
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Figure 2 Framework and performance of dSort-Seq. (a-c) Two-component log-mixture of 4 

Gaussians can better represent the gene expression distribution compared with conventionally 5 

used model-driven methods. (a) Gene expression controlled by the LmrA repressor35; the 6 

histogram denotes the cytometry data of the unrepressed state. (b) Density of gene expression 7 

under the control of the tnaC variant K11R_CGC27. The data were measured under 100 µM 8 

Ala-Trp. (c) Gene expression driven by the promoter yebVp2 (this study). In a-c, the red, 9 

cyan and brown lines represent the fitting result of the two-component log-mixture of 10 

Gaussian, log-normal and gamma distributions, respectively. (d) Graphical representation of 11 
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the model. (e) Theoretical fraction of the probability density within the corresponding 1 

boundaries. (f) Matching the mixture of two-component Gaussian mixture models to the 2 

overall fluorescence intensity distribution. The real data are sampled from experimental 3 

cytometry data; the fake data are generated from the LGMM. A fully connected neural 4 

network is used as a discriminator to determine whether the data are real or fake. (g) An 5 

example (V8A_GCC, 0 µM Ala-Trp, replicate 1) to illustrate the superior performance of 6 

dSort-Seq in matching the binned distribution compared to the log-normal-based method. 7 

The Kullback‒Leibler divergence shows the performance of each fit. (h) An example (100 8 

µM Ala-Trp, replicate 1) to illustrate the superior performance of dSort-Seq in matching the 9 

overall fluorescence distribution compared to the log-normal-based method. In (g) and (h), 10 

the red and cyan distributions refer to the results derived from dSort-Seq and the log-normal-11 

based method, respectively. The gray distribution refers to the real data. (i-l) Individually 12 

analyzed expression characteristics of reconstructed tnaC variants by cytometry were highly 13 

correlated with those estimated via dSort-Seq in terms of both their means (i, 0 µM Ala-Trp, 14 

n = 26; k, 100 µM Ala-Trp, n =30) and SDs (j, 0 µM Ala-Trp; l, 100 µM Ala-Trp). 15 
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Figure 3 The dSort-Seq profiling of FapR-fapO-based malonyl-CoA-dependent gene 3 

expression. (a) Sort-Seq characterization of the malonyl-CoA biosensor library under 6 4 

different cerulenin concentrations (0, 1, 2, 3, 5, 8 mg/L). Cells were sorted into 8 bins 5 

according to their responses to ligand. Two biological replicates were examined for each 6 

Sort-Seq experiment. (b) Schematic diagram of the machine learning process. Gradient 7 

boosting regression was used here to interpret the relationship between features and 8 

expression strengths. The hyperparameters were optimized through 5-fold cross-validation; 9 

then, the whole training dataset was used to train the model parameters, and the test dataset 10 

was used to evaluate the generalization capacity of the model. Finally, the model was trained 11 

on the entire observed dataset to obtain predictions for unobserved data. (c) The model 12 

performance in the test dataset showed a good generalization capacity (n = 2,275). (d) Gini 13 

importance that contributes to the gradient boosting regression tree. (e) Dose‒response curves 14 
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of the top 10 combinations with the highest dynamic ranges. Data points represent the mean 1 

values of YPet/mCherry under different cerulenin concentrations, where red dots represent 2 

individual characterization data, cyan stars represent data from dSort-Seq characterizations, 3 

and blue stars denote data from machine learning predictions. The dashed lines represent 4 

response curves fitted by the Hill equation (see Methods). 5 

  6 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.23.517705doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517705
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

 2 
 3 

Figure 4 The dSort-Seq profiling of transcriptional and translational effects on noise 4 

production in E. coli K12 MG1655. (a) The design schemes of the promoter and the 5 

combination library. (b) According to the translational bursting mechanism, steady-state 6 

protein production follows a gamma distribution3; as a corollary, the burst size, denoted by 7 

the Fano factor, is linearly correlated with the translation rate and independent of the 8 

transcription rate. (c) According to the hierarchical Bayesian model, the intercept in the 9 

relationship between noise strength and the mean expression level is proportional to 10 

translational strength, indicating that translational bursting still dominates noise production at 11 

low expression levels30. (d) The noise strength is linearly correlated with the mean expression 12 

level when only transcriptional strength varies. The gray line exhibits the linear regression 13 

result, which is shaded to show the 95% confidence interval. (e) The relationships between 14 

noise strength and mean expression level are similar when the translation module varies. The 15 

gray, orange, and green lines represent the regressions of all combinations and combinations 16 

with RBS apFAB864 and apFAB820, respectively. (RBS strength: apFAB820 (1.57) > 17 

apFAB864 (0.36), see Methods). (f) The linear regression slopes and intercepts of noise 18 
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strength and mean expression level are not significantly correlated with translational strength. 1 

The error bars indicate the 95% confidence intervals. 2 
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Figure 5 Overlapping RpoD-binding sites result in high expression noise. (a and b) 1 

Correlation of the expression noise with expression strength in the (a) promoter library and 2 

(b) combination library. At low mean expression levels, the noise decreases as the expression 3 

strength increases; at high mean expression levels, the noise converges to a constant value. 4 

The blue lines show the regression results (see Methods). Twenty promoters and 25 5 

combinations exhibiting high expression noise are marked as red dots. (c) Twenty sequences 6 

from the promoter library and (d) 25 sequences from the combination library showing high 7 

expression noise were constructed and assayed through FCM. As a result, their expression 8 

noise (indicated by red dots) is higher than that of randomly selected variants (indicated by 9 

black dots) at their corresponding mean expression levels. (e) The high-noise group had a 10 

significantly higher thymine content than the low-noise group (P = 1.97e-21, one-tailed t test) 11 

and the medium-noise group (P = 2.24e-29). (f) The number of potential RpoD-binding sites 12 

in the high-noise group was significantly higher than that in the low-noise group (P = 1.86e-13 

5, one-tailed t test) as well as in the medium-noise group (P =5.34e-5). (g) Design scheme of 14 

25 tandem promoters, each containing two overlapping RpoD-binding sites. (h) Design 15 

scheme of 5 constitutive promoters with the same length as the tandem promoter, each with 16 

only one RpoD-binding site. (i) Compared to promoters with a single RpoD-binding site, the 17 

tandem promoters exhibited significantly higher expression noise (P = 2.40e-4, one-tailed t 18 

test), especially when the stronger promoter was located upstream of the weaker promoter 19 

(indicated by red dots). 20 
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