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Abstract (3 sentences – 65/70 words) 21 

Although the thalamus is supposed to be involved in reinforcement-based decision-making, 22 
there is no direct evidence regarding the involvement of this subcortical structure in humans. 23 
To fill this gap, we leveraged rare intra-thalamic electrophysiological recordings in patients and 24 
found that temporally structured thalamic oscillations encode key learning signals. Our findings 25 
also provide neural insight into the computational mechanisms of action inhibition in 26 
punishment avoidance learning.  27 

Main Text (1490/1500 words) 28 

As the philosopher, John Locke would put it “reward and punishment are the only motives to a 29 
rational creature: these are the spur and the reins whereby all mankind is set on work and 30 
guided”. Research in reinforcement learning aims at characterizing the processes through which 31 
people learn, by trial and error, to select actions that respectively maximize or minimize the 32 
occurrence of rewards or punishments1. Converging evidence suggests that reward-based 33 
reinforcement learning engages a fronto-striatal circuit and the dopaminergic system2,3,4. 34 
However, there is no evidence in humans regarding how neural activity in the thalamus - a key 35 
node in this circuit - encodes variables related to reinforcement learning processes.  36 

Punishment avoidance learning is of equal ecological importance for organism survival and has 37 
been shown in many experimental settings to be at least as effective as reward seeking5,6. 38 
Critically, while the performance based on rewards or punishments exhibits comparable 39 
learning accuracies, subjects are constantly slower in punishment avoidance learning tasks7. 40 
This increase in reaction time is thought to reflect a manifestation of a Pavlovian bias according 41 
to which motor responses are inhibited by punishment expectations, irrespective of the 42 
appropriateness of the instrumental response8,9,10.  43 

Intriguingly, this behavioral asymmetry between reward-seeking and punishment avoidance is 44 
mirrored by a neural asymmetry: the ventral striatum and ventromedial prefrontal cortex 45 
represent reward learning signals, while the amygdala, anterior insula, or lateral orbitofrontal 46 
cortex rather represent punishment learning signals11,12,13,14. Despite early lesion studies in 47 
rabbits15 suggesting the involvement of the mediodorsal and the anterior parts of the thalamus 48 
during punishment-avoidance learning, most of the animal studies in mice16,17, rats18, rabbits19, 49 
or monkeys20,21 surprisingly focused on reward-based learning, leaving the role of theses 50 
thalamic regions in punishment-based learning largely unexplored. 51 

The high spatiotemporal resolution necessary to disentangle human thalamic neuronal activities 52 
during such cognitive processes is unattainable with ordinary imaging tools. Thus, we 53 
preferentially leveraged rare direct neural recordings in the human limbic thalamus. We 54 
investigated whether neuronal oscillations were associated with reinforcement-related signals 55 
at different time points during a well-validated reward-seeking and punishment avoidance 56 
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learning task5,11,12. This combination of intra-thalamic recordings with computational modeling 57 
of the learning behavior results in the first time-resolved investigation of choice and learning 58 
signals in the human thalamus. 59 

Local field potentials were recorded from eight drug-resistant epileptic patients (Table S1) 60 
implanted bilaterally in the thalamus with deep-brain stimulation electrodes as a surgical 61 
treatment to alleviate their seizures. Electrodes had two upper contact pairs inside the anterior 62 
thalamic nucleus, with the more ventral contact pairs localized in the dorsomedial thalamic 63 
nucleus (Fig. 1a). Intra-thalamic recordings were collected while patients were performing a 64 
previously validated instrumental learning task with the instruction to maximize the monetary 65 
gains and minimize the monetary losses (Fig. 1b)5,11,12. 66 

Behavioral results were consistent with what was previously observed in this task (Fig. 1c-d). 67 
Accuracy was higher than chance in both the reward (65±0.04, t(7) = 4.23, p = 0.0039) and 68 
punishment conditions (0.60±0.02, t(7) = 5.13, p = 0.0014) and was not different between the 69 
two conditions (t(7) = 1.68, p = 0.14). Reaction times were significantly shorter in the reward 70 
(1173±164 ms) than in the punishment (1726±291 ms) condition (t(7) = -3.10, p = 0.017). Thus, 71 
patients learned similarly from rewards and punishments but took longer to choose between 72 
cues for punishment avoidance, in line with previous behavioral data from healthy subjects7 or 73 
epileptic patients12. These results confirm that, although instrumental performances are similar, 74 
the decision process differs in reward-seeking and punishment-avoidance contexts in a way that 75 
is compatible with a motor inhibition induced by punishment expectation8,9,10. 76 

We next investigated the association between thalamic neural activity and reinforcement 77 
learning variables. We fitted a Q-learning model to the behavioral data of each patient to 78 
estimate trial-wise values of the expectation. The neural activity of each recording site (n=48 79 
sites) was then regressed in the time-frequency domain against both expectation and outcome 80 
signals at different time points during the task. Given the absence of significant differences 81 
between sites located within the anterior thalamic nucleus (n=16 sites), the dorsomedial 82 
thalamic nucleus (n=16 sites, Supplementary. Fig. S1) or sites localized in-between (n=16), in 83 
the following, all the analyses were conducted across all recording sites. 84 

We first investigated neural signals occurring after the cue (Fig. 2a) and before the choice onset 85 
(Fig. 2b). We found that low-frequency oscillations (LFOs, 4-12 Hz) were significantly 86 
correlated with punishment expectations (Qp) early after the cue onset (Fig. 2c; 0.36 to 1.14 s 87 
window, βQp = 0.33±0.02, sum(t(47)) = −36.38, pc<0.05) whereas there was no significant 88 
association between thalamic LFOs and reward expectation (Qr) at these latencies. 89 
Furthermore, we found that LFOs were associated more strongly with Qp than with Qr (Fig. 90 
2c; 0.52 to 0.98s window, βQp-βQr = 0.34±0.02, sum(t(47)) = 20.07, pc < 0.05). Conversely, 91 
when neural activity was time-locked to the choice onset (Fig. 2b), there was a significant 92 
association between thalamic LFOs and expectations signals during both learning conditions 93 
(Fig. 2d; -2.22 to -0.81 s window, βQr = 0.21±0.01, sum(t(47)) = 75.00, pc < 0.05; -1.44 to 0.03 s 94 
window, βQp = 0.35±0.02, sum(t(47)) = 75.24, pc < 0.05). Altogether, decision-related activities 95 
in the thalamus are consistent with a stronger encoding of punishment expectations (Qp), at 96 
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least during the first second after stimulus onset, although both reward and punishment 97 
expectations are encoded later on. 98 

At the time of outcome display, we found that LFOs were positively associated with 99 
expectations (Fig. 3a) and negatively associated with the magnitude of the outcome (Fig. 3b). 100 
This demonstrates that the two core components of the teaching signal - the prediction-error - 101 
are encoded by thalamic LFOs which relate to the difference between what subjects expect and 102 
the actual decision outcome – what we get. Interestingly, around outcome onset, the level of 103 
expectation was significantly related to LFOs only in the reward-based learning condition (Fig. 104 
3c; -0.66 to 1.06 s window, βRr = 0.17±0.01, sum(t(47)) = 75.92, pc < 0.05), while outcomes 105 
were significantly encoded by LFOs in both rewarding and punishing conditions (Fig. 3d; 0.28 106 
to 2.08 s window, βRr = -0.16±0.01, sum(t(47)) = -107.65, pc < 0.05; 0.13 to 2.78 s window, βRp 107 
= -0.16±0.01, sum(t(47)) = 153.31, pc < 0.05). Altogether, outcome-related activity is consistent 108 
with a similar encoding of rewards and punishments in the thalamus. Q-value encoding was 109 
detected only in the reward condition, but the absence of a significant difference between the 110 
two conditions prevent a conclusion in favor of a proper dissociation in the encoding of the 111 
prediction error (Supplementary Fig. S2). 112 

Combining intra-thalamic human recordings with a probabilistic reinforcement learning task 113 
and trial-wise estimates of prediction errors from a Q-learning model brings the first 114 
mechanistic understanding of the role of the human limbic thalamus during reward-based vs. 115 
punishment avoidance learning. We found that during the choice phase, LFOs were better 116 
associated with punishment expectation signals, extending the previously observed role of the 117 
limbic thalamus in memory encoding in humans22 to aversive contexts which were examined 118 
in rabbits in early studies15. These signals could originate from the anterior insular cortex which 119 
was previously shown to implement punishment avoidance signals during an identical task in 120 
previous neuroimaging11 and intracranial12 studies.   121 

Given the behavioral asymmetry in decision times between reward and punishment-based 122 
learning, we hypothesized that the neural activity could reflect the activation/inhibition balance 123 
of the thalamocortical learning circuitry during choice: the motor action threshold. This 124 
interpretation is also consistent with the fact that the Pavlovian bias on reaction times has been 125 
computationally interpreted as being largely due to an increase of non-decision time, which, 126 
within the decision diffusion modeling framework, is the parameter that better captures motor 127 
inhibition7,23.  128 

Conversely, at the time of outcome processing, thalamic LFOs clearly encoded reward 129 
prediction errors. This likely reflects a cortical input from the ventromedial prefrontal cortex / 130 
lateral orbitofrontal cortex which was previously demonstrated to exhibit the same signals12. 131 
This finding echoes recent studies in non-human primates suggesting that LFOs oscillations in 132 
the orbitofrontal cortex are crucial for reward-guided learning and are driven by LFOs in the 133 
hippocampus24. As the limbic thalamus shares extensive connections with the hippocampus, 134 
orbitofrontal, and prefrontal areas, they may form together a circuit in which reward-guided 135 
learning is encoded by LFOs. Evidence for punishment prediction errors encoding in the 136 
thalamus was somehow weaker, if not incomplete. If confirmed, these results could be easily 137 
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accommodated by the fact that several other brain areas and systems outside the fronto-striato-138 
thalamic circuits and devoted to punishment avoidance learning11,12,13,14. 139 

Our results also allowed us to address another open question in the field, which is to test the 140 
frequency bands involved during learning. In mice, beta (13-30 Hz) synchrony between the 141 
mediodorsal thalamus and the prefrontal cortex was associated with learning16, whereas in 142 
humans, intracranial recording revealed that broadband gamma activity (50-150 Hz) recorded 143 
in the cortex encoded reward and punishment-based learning signals12.  144 

To conclude, our study represents a step forward in elucidating the computational decision-145 
making processes underlain by the thalamus. Given the centrality of this brain structure within 146 
the fronto-striatal circuit, we believe that understanding its function will prove useful to 147 
computationally characterize cognitive deficits observed in many neuropsychiatric disorders25. 148 
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Figures 149 

 150 

Figure 1. Reinforcement-learning paradigm and behavior 151 
a. Schematic figure of the position of the deep brain stimulation electrodes used to record intra-thalamic signals 152 
(ATN: anterior thalamic nucleus; DMTN: dorsomedial thalamic nucleus; TH: Thalamus; HTH: Hypothalamus; 153 
GPi/GPe: Globus pallidus intern/extern; LV: Left ventricle). b. Successive screenshots of a typical trial in the 154 
reward (top) and punishment (bottom) conditions. Patients had to select one abstract visual cue among the two 155 
presented on each side of a central visual fixation cross and subsequently observed the outcome. Durations are 156 
given in seconds. c. Average±SEM learning curves across patients (n = 8) through trials shown separately for the 157 
reward (green) and punishment (red) conditions. d. Average±SEM choice performance across patients in the 158 
reward (Rew) and punishment (Pun) conditions. The average predicted performance from a fitted Q-learning 159 
model is indicated by a circle for each condition. Dots represent data from individual patients. Asterisk indicates 160 
the significance of the one-sample t-test used to compare for each condition the correct choice rate to the chance 161 
level (i.e., 50%). e. Average±SEM reaction times across patients (n = 8) through trials shown separately for the 162 
reward (green) and punishment (red) conditions f. Average±SEM reaction times across patients in the reward 163 
(Rew) and punishment (Pun) conditions. Dots represent data from individual patients. Asterisk indicates the 164 
significance of a paired t-test comparing reaction times between conditions.165 
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 166 

Figure 2. Thalamic low-frequency oscillations associated with choice expectations during choice 167 
a-b. Time-frequency regression with Q-values after the cue onset and before the response respectively. 168 
Yellow colors indicate positive significance (cluster-corrected, pc < 0.05). The horizontal dashed line 169 
represents the boundaries of the explored 4-12 Hz low-frequency oscillations range. c-d. Time-course 170 
of regression estimates with Q-values in the 4-12 Hz frequency range after the cue onset and before the 171 
response respectively. Average regression estimates±SEM (represented by a shaded gray area around 172 
the mean) across recording sites (n = 48 sites) plotted separately in the reward (Qr, green) and 173 
punishment (Qp, red) conditions. Colored horizontal bars indicate significant clusters (cluster-corrected, 174 
pc < 0.05) in the time domain for a one-sample t-test against 0 in the reward (green) and punishment 175 
conditions (red). Black horizontal bars indicate the significant cluster (cluster-corrected, pc < 0.05) in the 176 
time domain for the paired t-test comparing the regression estimates in the reward and punishment 177 
conditions. Reaction times (RT) in the reward and punishment conditions are represented as circles 178 
(reward: green; punishment: red) and horizontal lines (mean±SEM).179 
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 180 

Figure 3. Thalamic low-frequency oscillations associated with prediction error components 181 
a-b. Time-frequency decomposition of prediction error signals, with regression with Q-values and 182 
outcome values respectively. Blue and yellow colors indicate respectively negative and positive 183 
significance (cluster-corrected, pc < 0.05).  The horizontal dashed line represents the boundaries of the 184 
explored 4-12 Hz low-frequency oscillations range. c-d. Time-course decomposition of PE signals in 185 
the 4-12 Hz frequency range, with regression with Q-values and outcome values respectively. Average 186 
regression estimates±SEM (represented by a shaded gray area around the mean) across recording sites 187 
(n = 48) plotted separately in the reward (Qr/R, green) and punishment (Qp/P, red) conditions. Colored 188 
horizontal bars indicate significant clusters (cluster-corrected, pc < 0.05) in the time domain for a one-189 
sample t-test against 0 in the reward (green) and punishment conditions (red). No significant cluster 190 
(cluster-corrected, pc < 0.05) in the time domain was found for the paired t-test comparing the regression 191 
estimates in the reward and punishment conditions.192 
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Methods 193 

Patients and surgical approach 194 

Intracerebral recordings were obtained from 8 patients (38.1±3.7 years old, 3 females, see 195 
demographical details in Table S1) suffering from intractable epilepsy. They were implanted 196 
bilaterally in the limbic thalamic nuclei within the anterior thalamic nuclei (ATN) with deep-197 
brain stimulation electrodes (Medtronic DBS lead model 3389, 4 contacts, 1.5 mm wide with 198 
0.5 mm spacing edge to edge between contacts) as a surgical treatment to alleviate their 199 
seizures. The stereotaxic trajectory of the electrode was calculated pre-operatively based on the 200 
patient’s MRI images. Electrodes were implanted through the ATN to ensure its maximal 201 
recording, with at least the two most dorsal contacts inside the ATN. As a result, the more 202 
ventral-proximal contacts pointed towards the dorsomedial thalamic nuclei (DMTN) located 203 
below the ANT along the implantation trajectory. Electrode implantation was performed 204 
according to the clinical procedures of the clinical trial “France” (NCT02076698), with targeted 205 
structures preoperatively selected according strictly to clinical considerations with no reference 206 
to the current study. Patients were investigated either in the epilepsy departments of Grenoble, 207 
Paris, or Marseille. All participants gave written informed consent and the study received 208 
approval from the ethics committee (Comité de Protection des Personnes Sud-Est I, protocol 209 
number: 2011-A00083-38). 210 

Behavioral task 211 

Patients performed a probabilistic instrumental learning task. No seizures took place during the 212 
testing sessions. Patients were provided with written instructions (reformulated orally if 213 
necessary) stating that the goal was to maximize their financial payoff by considering reward-214 
seeking and punishment avoidance as equally important. Patients performed short training 215 
sessions to familiarize themselves with the timing of events and with response buttons. 216 
Participants performed up to 6 sessions (see supplementary table 1). Each session was an 217 
independent task containing four new pairs of cues to be learned, each pair of cues being 218 
presented 24 times for a total of 96 trials. Cues were abstract visual stimuli taken from the 219 
Agathodaimon alphabet. The four cue pairs were divided into two conditions (2 pairs of reward 220 
and 2 pairs of punishment cues), associated with different pairs of outcomes (winning 1€ versus 221 
nothing or losing 1€ versus nothing). To win money, patients had to learn by trial and error the 222 
cue-outcome associations and choose the most rewarding cue in the reward condition and the 223 
less punishing cue in the punishment condition. The reward and punishment conditions were 224 
intermingled in a learning session and the two cues of a pair were always presented together. 225 
Within each pair, the two cues were associated with the two possible outcomes with reciprocal 226 
probabilities (0.75/0.25 and 0.25/0.75). On each trial, one pair was randomly presented, and the 227 
two cues were displayed on the left and right of a central fixation cross, their relative position 228 
being counterbalanced across trials. The subject was required to choose the left or right cue by 229 
using their left or right index to press the corresponding button on a joystick (Logitech Dual 230 
Action). Since the position on the screen was counterbalanced, response (left versus right) and 231 
value (good versus bad cue) were orthogonal. The chosen cue was colored in red for 250 ms 232 
and then the outcome was displayed on the screen after 1000 ms. Visual stimuli were delivered 233 
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on a 19-inch TFT monitor with a refresh rate of 60 Hz, controlled by a PC with Presentation 234 
16.5 (Neurobehavioral Systems, Albany, CA). 235 

Local field potentials acquisition and processing 236 

Intracranial signals recordings were performed at the bedside of patients from externalized 237 
electrode leads in the two days following electrode implantation (i.e., before the electrodes were 238 
connected to the stimulator). Local field potentials were recorded from a bipolar montage 239 
between adjacent electrode contacts. Data were bandpass filtered online from 0.1 to 200 Hz and 240 
recorded either at 1024 Hz or 2048 Hz. Each electrode trace was subsequently re-referenced 241 
with respect to its direct neighbor (bipolar derivations with a spatial resolution of 2 mm) to 242 
achieve high local specificity by canceling out effects of distant sources that spread equally to 243 
both adjacent contacts through volume conduction. Overall, 48 sites were recorded (3 contact 244 
pairs/electrode × 2 hemispheres × 8 patients) using a commercial video-EEG monitoring system 245 
(System Plus, Micromed). 246 

Time-frequency analyses were performed with the FieldTrip toolbox for MATLAB. The 247 
electrophysiological data were resampled at 512 Hz and segmented into epochs from 4s before 248 
to 4s after the cue onset and outcome onset. A multi-tapered time-frequency transform allowed 249 
the estimation of spectral powers (Slepian tapers; lower-frequency range: 1–32 Hz, 6 cycles 250 
and 3 tapers per window; higher frequency range: 32–200 Hz, fixed time-windows of 200 ms, 251 
4–31 tapers per window). This approach uses a steady number of cycles across frequencies up 252 
to 32 Hz (time window durations, therefore, decrease as frequency increases) whereas, for 253 
frequencies above 32 Hz, the time window duration is fixed with an increasing number of tapers 254 
to increase the precision of power estimation by increasing smoothing at higher frequencies. 255 
Time-frequency power was converted into dB (decimal logarithm transformation) and z-scored 256 
to improve the Gaussian distribution of the data.  257 

Behavioral analysis and modeling 258 

The percentage of correct choice (i.e., selection of the most rewarding or the less punishing 259 
cue) and reaction time (between cue onset and choice) were used as dependent behavioral 260 
variables. Statistical comparisons between the correct choice rate and chance choice rate (i.e., 261 
0.5) were assessed using t-tests. Statistical comparisons of correct choice rate and reaction times 262 
between reward and punishment conditions were assessed using paired t-tests.  263 

A standard Q-learning algorithm (QL) was used to model choice behavior. For each pair of 264 
cues, A/B, the model estimates the expected value of choosing A (Qa) or B (Qb), according to 265 
previous choices and outcomes. The initially expected values of all cues were set at 0, which 266 
corresponded to the average of all possible outcome values. After each trial (t), the expected 267 
value of the chosen stimuli (say A) was updated according to the rule:  268 

Qat+1 = Qat + α*δt 269 

The outcome prediction error, δ(t), is the difference between obtained and expected outcome 270 
values:  271 
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δt = Rt + Qat 272 

with R(t) the reinforcement value among −1€, 0€, and +1€. Using the expected values 273 
associated with the two possible cues, the probability (or likelihood) of each choice was 274 
estimated using the SoftMax rule:  275 

Pat = eQa
t
/β / (eQa

t
/β + eQb

t
/β) 276 

The constant parameters α and β are the learning rate and choice temperature, respectively. 277 
Expected values, outcomes, and prediction errors for each patient were then z-scored across 278 
trials and used as statistical regressors for electrophysiological data analysis. 279 

Regression between electrophysiological signals with reward and punishment learning 280 
behaviors 281 

Power (Y) at each time-frequency point was regressed using a general linear model against both 282 
outcome value (R) and expected value (Q) to obtain a regression estimate for each time-283 
frequency point and each contact pair: 284 

Y = α + βR * R + βQ * Q 285 

with βR and βQ corresponding to the R and Q regression estimates, respectively. The 286 
significance of regression estimates was assessed at each time-frequency point using a using 287 
one-sample two-tailed t-test against 0 across all sites. Permutation tests were performed to 288 
control for multiple comparisons. The pairing between power and regressor values across trials 289 
was shuffled randomly 60,000 times. The maximal cluster-level statistics (the sum of t-values 290 
across contiguous time points passing a significance threshold of 0.05) were extracted for each 291 
shuffle to compute a ‘null’ distribution of effect size. For each significant cluster in the original 292 
(non-shuffled) data, we computed the proportion of clusters with higher statistics in the null 293 
distribution, which is reported as the ‘cluster-level corrected’ pc value. Low-frequency (4-12 294 
Hz) time series were computed, and the same general linear model approach was used for each 295 
time point of the time series separately in the reward and punishment conditions. The 296 
significance of regressors was assessed using a cluster correction approach comparable to the 297 
one described above. 298 
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