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Abstract1

The inverse of the genomic relationship matrix (G−1) is used in the single-step genomic BLUP,2

which incorporates genomic, pedigree, and phenotype information for simultaneous genetic evalua-3

tion of genotyped and non-genotyped individuals. The rapidly growing number of genotypes is a4

constraint for inverting a huge G. The APY algorithm is an efficient method of solving this issue.5

Matrix G has a limited dimensionality. Dividing individuals into core and non-core, G−1 is approxi-6

mated via the inverse partition of G for core individuals. The quality of the approximation depends7

on the core size and composition. The APY algorithm conditions genomic breeding values of the8

non-core individuals to those of the core individuals, leading to a diagonal block of G−1 for non-core9

individuals (M−1
nn). Dividing observations into two groups (e.g., core and non-core, or genotyped10

and non-genotyped), any symmetric matrix can be expressed in APY and APY inverse expressions,11

equal to the matrix itself and its inverse, respectively. The change of Gnn to M−1
nn makes APY an12

approximate. The application of APY is extendable to the inversion of any large symmetric matrix13

with a limited dimensionality at a lower computational cost. Possible applications are: computing14

the pedigree relationship matrix (A) from the APY inverse of A−1, a diagonal block of A (same15

as the previous one, but avoiding unnecessary calculations), and the block of the block-diagonal16

preconditioner matrix corresponding to marker effects for iterative solving of marker effect model17

equations. Furthermore, APY may improve the matrix’s numerical condition.18

Keywords: APY, diagonal, dimensionality, GBLUP, single-step, relationship matrix19

1 Introduction20

Genomic evaluations are mainly performed using the genomic relationship matrix G in the so-called21

method genomic BLUP (GBLUP, VanRaden, 2008) or random regression SNP marker models called22

SNP-BLUP (Koivula et al., 2012). The first predicts genomic breeding values of genotyped individuals,23

and the latter predicts marker effects (i.e., allele substitution effects). Simultaneous genetic evaluation24

of genotyped and non-genotyped individuals for obtaining optimal and unbiased evaluations not limited25

to genotyped individuals, both methods were elevated to single-step GBLUP (ssGBLUP, Aguilar et al.,26

2010; Christensen and Lund, 2010), and single-step SNP-BLUP (ss-SNP-BLUP, Fernando et al., 2014),27

also called the single-step marker effect model.28

The number of genotyped individuals is rapidly growing, and the most expensive operation in GBLUP29

and ssGBLUP is inverting matrix G. As the number of genotyped individuals reaches the number of30

markers, the numerical condition of G deteriorates. By the number of genotypes exceeding the number of31

markers, G becomes singular and non-invertible. Furthermore, the cost of inverting G andA22 (the block32

of A corresponding to genotyped individuals, where A is the pedigree-based additive genetic relationship33

matrix) required for ssGBLUP is cubic, and there is a bottleneck of direct inversion of a matrix of size34

about 150,000 (Fragomeni et al., 2015). Three solutions were proposed for this problem (Misztal et al.,35

2014; Fernando et al., 2016; Mäntysaari et al., 2017), one being the algorithm for proven and young (APY,36

Misztal et al., 2014). This algorithm belongs to a group of methods called approximate kernel methods or37

Gaussian process approximations (Snelson and Ghahramani, 2007). APY forms a sparse representation38

of G−1 (G−1
APY), dividing genotyped individuals to core (c) and non-core (n) subsets. Direct inversion is39

only required for the block of G corresponding to core individuals (Gcc). Consequently, the O((c+ n)3)40

computational cost is reduced to O(c3) + O(n). In the APY algorithm, genomic breeding values of41

non-core individuals are conditioned on the genomic breeding values of core individuals. This algorithm42

is based on the assumption that the dimensionality of G is limited and that independent chromosome43

segments explain the rank of G (Misztal, 2016). As long as the number of core individuals is greater than44
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the number of independent chromosome segments (Misztal et al., 2014), and the core subset covers the45

G spectrum (Bermann et al., 2022) it may not take all the genotyped individuals to explain the variation46

in G. Therefore, the variation in G can be explained by the core subset, and genomic breeding values of47

the non-core individuals are expressed as a linear function of those from the core individuals (Bermann48

et al., 2022). As such, the accuracy of the APY algorithm depends on the core size and composition.49

The G−1
APY matrix is calculated as (Bermann et al., 2022):50

G−1
APY =

[
I −Pcn

0 I

] [
G−1

cc 0
0 M−1

nn

] [
I −Pcn

0 I

]′
=

[
G−1

cc 0
0 0

]
+

[
PcnM

−1
nnPnc −PcnM

−1
nn

−M−1
nnPnc M−1

nn

]
=

[
G−1

cc 0
0 0

]
+

[
−Pcn

I

]
M−1

nn

[
−Pcn

I

]′
,

(1)

where, Mnn = Gnn −PncGcn, and Pcn = G−1
cc Gcn. In practice, diag(Mnn) is used instead of Mnn.51

Strandén et al. (2017) and Bermann et al. (2022) showed that:52

GAPY =

[
I 0

Pnc I

] [
Gcc 0
0 Mnn

] [
I 0

Pnc I

]′
=

[
Gcc Gcn

Gnc Mnn +PncGcn

]
= G+

[
0 0
0 Mnn +PncGcn −Gnn

]
.

(2)

The aim of this study is to provide new insights and possible applications for the APY algorithm.53

2 Theory and discussion54

2.1 The APY and APY inverse expressions55

In this subsection, it is shown that any covariance or inverse covariance (generally any symmetric)56

matrix has expressions, here called APY and APY inverse expressions. A new way of understanding57

the properties of the APY inverse expression of G (i.e., G−1
APY) is through understanding the hybrid58

pedigree-genomic relationship matrix (H) used in ssGBLUP. Legarra et al. (2009) derived various forms59

of the same relationship matrix, including full pedigree and genomic information. Denoting genotyped60

and non-genotyped individuals as 2 and 1: H =61

[
A11 +A12A

−1
22 (G−A22)A

−1
22 A21 A12A

−1
22 G

GA−1
22 A21 G

]
, (3)[

(A11)−1 + (A11)−1A12GA21(A11)−1 −(A11)−1A12G
−GA21(A11)−1 G

]
, (4)

A+

[
A12A

−1
22 (G−A22)A

−1
22 A21 A12A

−1
22 (G−A22)

(G−A22)A
−1
22 A21 G−A22

]
. (5)

It worth mentioning that replacing G with A22 in any of these equations turns H to A. Similarly,62

replacing G with Gnn and A with G turns H to G. The above equations can be simplified to:63

H =

[
(A11)−1 0

0 0

]
+

[
−P12

0

]
G

[
−P12

0

]′
, (6)

H = A+

[
−P12

0

]
(G−A22)

[
−P12

0

]′
, (7)

where, the projection matrix P12 = (A11)−1A12 = −A12A
−1
22 . A nice property of H is that its64

inverse can be derived directly with no need to form and invert H (Aguilar et al., 2010; Christensen and65

Lund, 2010):66
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H−1 = A−1 +

[
0 0
0 G−A−1

22

]
. (8)

MatrixH−1 replacesA−1 in BLUP for ssGBLUP. ReplacingG withM−1
nn , A

−1 withG, and notations67

1 and 2 with c and n, respectively, turns Eq. 6 to Eq. 1. This shows that Eq. 6 is the APY inverse68

expression of H−1. Following Eq. 2, the APY expression of H−1 is:69

H−1
APY = H−1 +

[
0 0
0 M22 +P21A21 −H22

]
, (9)

where M22 = H22 − P21A12, P12 = (A11)−1A12, and H22 = A22 +G −A−1
22 . Similarly, there are70

APY and APY inverse expressions for H.71

2.2 Understanding the differences between G−1 and G−1
APY72

Considering Eq. 1 and 2, as long as no change is made toMnn, the APY and the APY inverse expressions73

of G are equal to G and G−1, respectively. Matrix G−1
APY becomes an approximate G−1 when Mnn is74

changed to a diagonal matrix with diagonal elements:75

mii = gii − gicG
−1
cc gci, (10)

representing genomic Mendelian sampling (Misztal et al., 2014). Using Eq. 10, calculations can be76

paralleled across all genotyped individuals. Compared with Gnn:77

Gnn
APY = (diag(Mnn))

−1

=
(
diag(Gnn −GncG

−1
cc Gcn)

)−1

=
(
diag

(
(Gnn)−1

))−1
.

(11)

The change ofMnn to diag(Mnn) is propagated to the other blocks ofG−1
APY via the projection matrix78

Pcn (Eq. 1). No change is made to GAPY other than to the off-diagonal elements of Gnn (Strandén79

et al., 2017). Following Eq. 2, Mnn+PncGcn−Gnn = 0. Thus, replacing Mnn with diag(Mnn) replaces80

offdiag(Gnn) with offdiag(PncGcn). Therefore, it can be articulated that genomic relationships among81

non-core individuals become a function of Gcc and Gcn. The efficiency of the APY algorithm depends82

on how well offdiag(PncGcn) replaces offdiag(Gnn).83

2.3 Other applications84

The application of the APY algorithm is not limited to G−1, nor to ssGBLUP and GBLUP. This85

algorithm can be applied to approximate the inverse of any large symmetric matrix, where the rank of86

the matrix is smaller than its dimension. Representing any such matrix with G, only Gcc needs to be87

inverted. Besides reduced matrix inversion cost, there are sparsity-related reduced computational costs.88

The first and the only time the APY algorithm was suggested for inverting a matrix other than G89

was by Misztal et al. (2014). They suggested the APY algorithm for the A22 inversion, which is required90

in ssGBLUP (Eq. 8). They derived an equivalent formula for the APY approximation of A−1
22 :91

A−1
22 ≈

(
A−1

22

)
APY

=

[
A−1

cc 0
0 0

]
+

[
−A−1

cc Acn

I

]
M−1

nn

[
−A−1

cc Acn

I

]′
. (12)

Here, the diagonal elements of Mnn equal mii = aii − aicA
−1
cc aci, where i is a non-core genotyped92

individual. The aci vectors (rows of Acn) can be efficiently computed using the Colleau algorithm (Col-93

leau, 2002), which can be done in parallel for many vectors at a time. The aii elements (diag(Ann)) are94

easy to compute applying the fast and efficient algorithms available for computing inbreeding coefficients95

(Tier, 1990; Meuwissen and Luo, 1992; Sargolzaei and Iwaisaki, 2005; Sargolzaei et al., 2005). However,96

computing A−1
22 via the APY algorithm is a problem in a loop, which means to obtain the inverse of a97

block of A (i.e., A−1
22 ), the inverse of its sub-block (A−1

cc ) is required. There are two other well established98

methods for the calculation of A−1
22 (Colleau, 2002; Faux and Gengler, 2013).99

Contrarily, one may apply the APY algorithm for inverting A−1 to A. Though calculating A is100

computationally expensive, calculation of A−1 is computationally fast and efficient (Henderson, 1975),101
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even for large populations. The computational cost of inverting A−1 to A can be reduced by obtaining102

an APY inversion of A−1:103

AAPY =

[
(Acc)−1 0

0 0

]
+

[
−(Acc)−1Acn

I

]
(Mnn)−1

[
−(Acc)−1Acn

I

]′
, (13)

where Mnn is a diagonal matrix with diagonal elements mii = aii − aic(Acc)−1aic. Matrix Ann is104

sparse. Thus, compared to Gnn, there are considerably fewer non-zero off-diagonal elements set to 0.105

On the other hand, the choices of core size and core composition are likely to be more important. In106

the APY algorithm, relationships among non-core individuals are conditioned on the information from107

core individuals. In A, the number of relatives that can explain the relationships between a non-core108

individual with other non-core individuals is limited. Thus, the choice of core individuals becomes more109

difficult. Contrarily, in G all individuals share information via many markers, regardless of whether they110

are relatives.111

If rather than A, a diagonal block of it (Acc) is needed, some of the calculations in Eq. 13 become112

redundant, and Acc can be calculated as:113

(Acc)APY = (Acc)−1 + (Acc)−1Acn(Mnn)−1Anc(Acc)−1

= (Acc)−1(Acc +Acn(Mnn)−1Anc)(Acc)−1. (14)

Calculating (Acc)APY, there is no choice of the core size and composition, as the choice of individuals114

for which the relationship coefficients to be approximated is already made. The APY approximation115

of Acc might be influenced by Ann changed to the diagonal (Mnn)−1. Should APY approximations116

need improvement, the researcher might consider adding a chosen group of non-core individuals to the117

core subset. An application for Acc is to calculate A22 for blending with G to improve the numerical118

condition of G, and to introduce residual polygenic variance not captured by the markers.119

The APY algorithm helped overcome the limitations of inverting G. On the contrary, this constraint120

does not exist for marker effect models (i.e., SNP-BLUP and ss-SNP-BLUP) because a marker × marker121

matrix is used instead of G−1, which does not need to be inverted. This advantage comes at the price122

of dense matrix multiplications, and convergence complexities (Vandenplas et al., 2018; Bermann et al.,123

2022). Unlike G, the size of that matrix remains constant over time unless the genotyping platform124

changes, and the old genotypes are imputed to a genotyping platform with a higher marker density.125

In fact, GBLUP and SNP-BLUP are equivalent models (Bermann et al., 2022). Conversion formulas126

between these two models are presented in the Appendix.127

The mixed model equations (MME) of the marker effect models do not require direct matrix inversion128

(Fernando et al., 2014). Indirect inversion of A is needed, which is easy to obtain. However, due to con-129

vergence difficulties, a specialised preconditioned conjugate gradient (PCG) solver with a block-diagonal130

Jacobi preconditioner matrix is applied, which is extended from single-trait to multi-trait analyses (Har-131

ris et al., 2022). As such, a marker × marker diagonal block of the MME (here called Q) is inverted,132

which is expanded by the number of traits in the model. The APY algorithm is a good candidate for133

this scenario, where the markers are divided into core and non-core. Only the block corresponding to134

core markers (Qcc) is inverted. Similar rules applied to G−1
APY are applied to this scenario, with the135

difference that the role of markers and genotyped individuals are switched. Due to collinearity in the136

marker × individual genotype matrix, this matrix is not of full rank. The main source of collinearity137

is the markers with low minor allele frequency. Also, it would probably not take all the genotyped138

individuals to explain marker effects. Therefore, Q has a limited dimensionality, and the off-diagonal139

elements of Qnn (in the preconditioner matrix, not in the MME) are conditioned on Qcc and Qcn. The140

Q−1
APY is a preconditioner matrix with the preconditioning properties similar to those of Q−1. Though141

the number of PCG iterations might differ, the cost of storing Q−1
APY in the memory is cheaper, and each142

PCG iteration is expected to be faster.143

The core size and composition define the APY accuracy. Core size, which its optimum is a function144

of the effective population size (Pocrnic et al., 2016), is the most important. As long as there is room to145

increase the core size to span over 98% of the eigenvalue spectra of G, a random set of core individuals146

is shown to perform well because it gives good coverage over generations and breeds in the population147

(Nilforooshan and Lee, 2019). The problem of nonidentical results for random cores and the same data148

can be addressed by saving the identification of the core individuals. There is ongoing research on finding149

the optimal core subset, and it is an important topic for admix populations and when the core size is150

constrained. When the core size is limited, an optimum core composition can harvest a larger variation151
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of G. Though with a sufficiently large core size, the gain from an optimal core subset would be marginal152

(Nilforooshan and Lee, 2019), if screening for the optimal core subset is computationally affordable, it153

would be proffered over a random core subset.154

The APY accuracy is usually measured by the correlation between genomic breeding values obtained155

via G−1 and G−1
APY. However, it might be okay to have a correlation coefficient slightly less than 1. A156

small variation of G might be due to collinearity and noise-related and good to get discharged. The157

APY algorithm may help reduce the collinearity and noise in G. Nilforooshan and Lee (2019) showed158

that APY reduced the very large max(diag(G−1)), which is a sign of reduced collinearity and improved159

condition of G. Validation of genomic breeding values is a good complementary.160

It is unknown what proportion of random markers would cover over 98% of the eigenvalue spectra of161

Q. Similar to the concept of effective population size defining the optimum number of core individuals162

for G−1
APY might be the concept of effective marker size defining the optimum number of core markers163

for Q−1
APY. Such markers are likely segregating in the coding regions, with effects as independent and164

orthogonal as possible to other markers; a concept similar to independent chromosome segments equal165

to 2NeL/log(4NeL) (Goddard, 2009), where Ne is the effective population size, and L is the length166

of chromosome in Morgans. Therefore, G and Q might have similar dimensionality, and the required167

core size might be the same for both. Possibly, choosing markers corresponding to the highest diagonal168

elements of Q is better than a random set of core markers. This is because those markers cover a larger169

variation in Q (i.e., trace(Q) =
∑

eigenvalue(Q)). This would favour choosing markers with lower170

minor allele frequency. An optimised core subset may reduce the need for a larger core size (i.e., the171

same variation in Q captured by a smaller set of markers). Future research is needed on this topic.172

Conclusions173

This study aimed to open new insights and understanding about the APY algorithm and to introduce174

new possible applications to this algorithm. Starting from the H matrix formula, it was shown that175

every covariance or inverse covariance matrix could be shown as a combination of its two diagonal blocks176

(diagonal blocks for genotyped and non-genotyped individuals in H). The projection matrix makes the177

combination (information flow) between the two diagonal blocks. Furthermore, it was shown that any178

covariance or inverse covariance matrix has APY and APY inverse expressions equal to the matrix179

itself and its inverse, respectively. The difference arises when a diagonal block of the APY inverse180

(corresponding to non-core individuals) changes to a specific diagonal matrix. That change is projected181

to the rest of the inverse matrix via the projection matrix. That diagonal matrix sets non-core individuals182

independent from each other conditional to the coefficients provided by the core individuals. The APY183

algorithm can also be understood as an (approximate) absorption of the off-diagonal elements of a184

diagonal block into the rest of the matrix.185

The APY algorithm is based on the concept of the limited dimensionality. A genomic relationship186

matrix has a limited dimensionality equivalent to the number of independent chromosome segments,187

which allows a reduction in the dimensionality of G. Therefore, it would take the inverse of a diagonal188

block of G to invert G. An APY inverse of G with a sufficient core size and proper core composition189

produces genomic breeding values analogous to those using the exact G−1. Possible new applications for190

APY are: computing A, a diagonal block of A, and the block of the block-diagonal preconditioner matrix191

corresponding to marker effects for iterative solving of marker effect model equations. The application of192

APY is not limited to obtaining the best sparse approximates of G−1, and new applications may emerge193

in the future.194
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Appendix266

Considering the MME for GBLUP:267 [
X′X X′Z
Z′X Z′Z+G−1α

] [
b̂
û

]
=

[
X′y
Z′y

]
,

and G = WW′, conversion of GBLUP to SNP-BLUP MME follows:268

[
I 0
0 W

]′ [
X′X X′Z
Z′X Z′Z+G−1α

] [
I 0
0 W

] [
b̂
â

]
=

[
I 0
0 W

]′ [
X′y
Z′y

]
⇒

[
X′X X′ZW

W′Z′X W′Z′ZW +W′G−1Wα

] [
b̂
â

]
=

[
X′y

W′Z′y

]
⇒

[
X′X X′V
V′X V′V + Iα

] [
b̂
â

]
=

[
X′y
V′y

]
.

On the other hand, the conversion of SNP-BLUP to GBLUP is as follows:269 [
I 0
0 W−1

] [
X′X X′V
V′X V′V + Iα

] [
I 0
0 W−1

]′ [
b̂
û

]
=

[
I 0
0 W−1

] [
X′y
V′y

]
,

where b̂, û and â are the vectors of solutions for fixed effects, individuals’ additive genetic merit and270

marker effects, α = σ2
e/σ

2
m, σ2

e is the residual variance, and σ2
m is the additive genetic variance captured271

by markers.272
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