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Abstract 

In droplet-based single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq 

(snRNA-seq) assays, systematic contamination of ambient RNA molecules biases the 

estimation of genuine transcriptional levels. To correct the contamination, several 

computational methods have been developed. However, these methods do not 

distinguish the contamination-causing genes and thus either under- or over-corrected 

the contamination in our in-house snRNA-seq data of virgin and lactating mammary 

glands. Hence, we developed scCDC as the first method that specifically detects the 

contamination-causing genes and only corrects the expression counts of these genes. 

Benchmarked against existing methods on synthetic and real scRNA-seq and snRNA-

seq datasets, scCDC achieved the best contamination correction accuracy with minimal 

data alteration. Moreover, scCDC applies to processed scRNA-seq and snRNA-seq 

data with empty droplets removed. In conclusion, scCDC is a flexible, accurate 

decontamination method that detects the contamination-causing genes, corrects the 

contamination, and avoids the over-correction of other genes. 

Background 

Single-cell RNA-seq (scRNA-seq) is a widely-used technique for studying cell 

heterogeneity in organs. Various studies and large databases, such as the human cell 

atlas, have taken advantage of scRNA-seq, especially droplet-based platforms such as 

Chromium X, BD Rhapsody, and inDrop [1-3]. Droplet-based scRNA-seq requires every 

cell to be sealed with a barcoded bead in a droplet so that the cell’s mRNAs can be 

labeled by the specific barcode. However, ambient RNA contamination is ubiquitous [4-

7]: ambient RNA molecules in the solution would cause systematic contamination by 

inflating the estimation of endogenous genes’ expression levels in cells, thus impeding 

the identification of cell-type marker genes. In parallel to scRNA-seq, single-nucleus 

RNA-seq (snRNA-seq) has been developed to investigate the cells that are too fragile 

or difficult to dissociate into single cells [8, 9]. Yet, ambient RNA contamination is likely 

more common in snRNA-seq than in scRNA-seq because the nuclei extraction 

procedure would cause many RNAs in the cytoplasm to be released into the solution. 
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Various experimental and computational strategies have been developed to correct the 

contamination in scRNA-seq and snRNA-seq data. Sanchez et al. developed an 

experimental approach that uses spike-in cells as a reference to correct the 

contamination [6]. However, this approach complicates the experimental procedure and 

has not been integrated into common commercial platforms. Several computational 

methods have been developed, including SoupX [5], CellBender [10, 11], and scAR [10, 

11], whose common idea is first estimating the distribution of ambient RNA levels from 

empty droplets and then using the estimated distribution to correct the gene expression 

levels in cells. Since SoupX, CellBender, and scAR require empty-droplet data, they are 

inapplicable to processed data in which empty droplets have been removed. Although 

another computational method, DecontX [4], does not require empty-droplet data, it and 

the three other methods do not distinguish the contamination-causing genes but alter all 

genes’ expression levels, possibly leading to over-correction. 

In this study, we performed snRNA-seq assays in mouse mammary glands at the virgin 

and lactation stages. In our snRNA-seq datasets, we observed sample-specific 

contamination by ambient RNAs. To correct the contamination, we applied the existing 

computational methods mentioned above but found that DecontX and CellBender had 

under-correction, while SoupX and scAR over-corrected many genes, including 

housekeeping genes (Figure 1D&E).  

Motivated by the limitations of existing computational methods, we developed scCDC 

(single-cell Contamination Detection and Correction), which first detects the 

“contamination-causing genes,” which encode the most abundant ambient RNAs, and 

then only corrects these genes’ measured expression levels. Benchmarked against 

DecontX, SoupX, CellBender, and scAR, scCDC achieved the best contamination 

correction accuracy with minimal data alteration. Not requiring empty-droplet data, 

scCDC applies to all processed scRNA-seq and snRNA-seq datasets in public 

repositories. We further showed that scCDC improved the accuracy of identifying cell-

type marker genes and constructing gene co-expression networks. 

Results 

Ambient RNAs contaminated snRNA-seq data of mouse mammary glands 
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The mammary gland is a unique mammalian organ whose sole function is to feed the 

young. Hence, the mammary gland undergoes dramatic developmental changes during 

pregnancy and lactation. To investigate mammary gland development, several studies 

have performed scRNA-seq on epithelial cells of mammary glands [12-15]. However, 

the development of mammary glands also requires the interplay between epithelial cells 

and the cells in the niche, including adipocytes, fibroblasts, and immune cells [16-18].  

Instead of scRNA-seq, we employed snRNA-seq to profile a complete cellular map in 

virgin and lactating (lactation day 5, denoted by L5) mouse mammary glands. In 

addition to epithelial cells and subsets of luminal and basal cells, we successfully 

identified adipocytes, fibroblasts, and immune cells, which had not been efficiently 

captured by previous scRNA-seq studies (Figure 1A). However, we found several well-

known cell-type marker genes unexpectedly detected in nearly all cell types. For 

example, the genes Wap and Csn2, which encode whey acidic protein and casein 

protein respectively, should be expressed exclusively in the differentiated alveolar 

epithelial cells (AlveoDiff) during lactation; the gene Acaca, which encodes the acetyl-

CoA carboxylase for fatty acid synthesis, is expected to be expressed exclusively in 

adipocytes (Adipo). Surprisingly, however, these genes’ mRNAs were also detected in 

nearly all the other cell types. Similarly, AlveoDiff marker Glycam1 and Adipo marker 

Ghr were detected globally in lactating and virgin datasets, respectively (Figure 1 B&C). 

These data suggested the presence of systematic contamination by ambient RNAs. 
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Figure 1. Performance evaluation of existing tools on correcting contaminative mammary gland 

snRNA-Seq data. (A) The cell clusters identified in L5 and virgin mammary gland datasets are 

shown in UMAP plots. (B) Heatmap of the expression of selected marker genes in L5 and virgin 

mammary gland datasets. Notably, highlighted genes supposed to express exclusively in a 

cluster are widely detected in all the cells. (C) The expression of Wap and Acaca in the nucleus 

are shown in UMAP plots. (D-E) The violin plots show the normalized expression levels of the 

selected marker genes (D) and housekeeping genes (E) before and after correction using the 

indicated methods by the default Seurat (V3). Adipo, adipocytes; AlveoProg, alveolar 

progenitors; AlveoDiff, differentiated alveolar cells; Bas/Myo, basal cells/myoepithelial cells; 

Endo, endothelial cells; Fibro, fibroblasts; HormSens, hormone sensing cells; HormSensDiff, 

differentiated hormone sensing cells; HormSensProg, hormone sensing progenitors; Immune, 

immune cells; LumProg, luminal progenitors; SkelMusc, skeleton muscle cells. 

 

Performance evaluation of existing correction methods on mouse mammary 

gland snRNA-seq datasets 

The four aforementioned computational methods—DecontX, SoupX, CellBender, and 

scAR—were developed to correct contaminated scRNA-seq and snRNA-seq data [4-6, 

10, 11]. Here, we benchmarked the performance of these methods in correcting our in-

house snRNA-seq data of mouse mammary glands.  

Applied to the lactating dataset, DecontX barely removed any contamination of 

AlveoDiff markers Wap, Csn2, and Glycam1 in both the “default” mode (DecontX-

default) and the “pre-clustered” mode that takes user-specified cell clusters (DecontX-

pre-clustered). Similarly, SoupX failed to correct the three genes’ contamination in the 

“automated” mode (SoupX-automated), and SoupX “manual” mode (SoupX-manual, 

which takes user-defined contamination-causing genes) only achieved a reasonable 

correction performance. Moreover, CellBender and scAR under-corrected the three 

genes’ contamination (Figure 1D, upper panel).  

Applied to the virgin dataset, only scAR successfully corrected the contamination of 

Adipo markers Ghr and Acaca. Specifically, SoupX-automated failed to correct these 

two genes’ contamination; DecontX-default, DecontX-pre-clustered, and CellBender all 
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under-corrected these two genes’ contamination; SoupX-manual under-corrected Ghr’s 

contamination (Figure 1D, lower panel).  

Since DecontX, SoupX, CellBender, and scAR alter all genes’ counts, we also checked 

how they altered the counts of the genes other than the above cell-type marker genes. 

Although SoupX-manual and scAR had less of an under-correction issue for cell-type 

marker genes, they undesirably removed the counts of housekeeping genes, such as 

Rps14, Rps8, Rpl37, and Rplp1, in multiple cell types (Figure 1E). Examining the counts 

of 66 housekeeping genes before and after each method’s correction, we found that 

SoupX-manual and scAR undesirably removed the counts of many housekeeping 

genes in more than 95% of cells (Supplementary Figure 1). These results revealed the 

over-correction issue of SoupX-manual and scAR. 

Taken together, our benchmark results show that DecontX, SoupX-automated, and 

CellBender under-corrected the contamination-causing genes (usually cell-type marker 

genes), while SoupX-manual and scAR over-corrected the uncontaminated genes, 

including house-keeping genes. 

Overview of scCDC 

The existing correction methods’ limitations, in particular, SoupX-manual and scAR’s 

over-correction, motivated us to devise a strategy to identify contamination-causing 

genes and correct only these genes’ contamination. In contrast to the global strategy 

used by the existing correction methods, this gene-specific strategy can better avoid the 

under-correction of contamination-causing genes and the over-correction of other genes. 

Following this strategy, we developed a new method, scCDC, which has two 

functionalities: contamination detection and correction.  

A contamination-causing gene has abundant ambient RNAs, so its observed count in a 

droplet is the sum of the counts from its endogenous and ambient RNAs (Figure 2A). 

scCDC is designed to identify such a gene first and then correct the gene’s observed 

counts. Because the gene’s ambient RNAs are abundant but less variable in droplets, 

the ambient RNA counts would deflate the entropy of the gene’s observed counts. 

Following this rationale, scCDC’s contamination detection functionality consists of three 
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steps (Figure 2B). (Note that scCDC requires cells to be pre-clustered, an issue we 

discussed in the Method Appendix.) First, under the assumption that most genes 

produce little or no ambient RNAs (defined as “endogenous genes”), scCDC estimates 

the expected entropy-expression curve of endogenous genes within each cell cluster 

(see Methods). Second, in each cell cluster, scCDC calculates the “entropy divergence,” 

defined as a gene’s expected entropy (which is calculated based on the gene’s 

expression and the expected entropy-expression curve) minus its observed entropy, to 

represent the gene’s contamination level. Third, scCDC identifies the “global 

contamination-causing genes” (GCGs, details in Methods) as the genes with statistically 

significant entropy divergences in more than 80% of the cell clusters. (Note that 80% is 

the default value of the “restriction factor,” a tuning parameter that can be user-specified: 

the larger the restriction factor, the fewer GCGs scCDC identifies; we set the default 

restriction factor to 80% based on empirical results—details in Methods and the Method 

Appendix.) 

After detecting the GCGs, scCDC’s contamination correction functionality corrects these 

GCGs’ observed counts. For each GCG, scCDC corrects the observed counts in two 

steps. First, scCDC finds the cell clusters in which the GCG is unlikely expressed and 

labels these clusters as eGCG- and the remaining clusters as eGCG+ (Figure 2B). 

Technically, scCDC locates the cell cluster in which the GCG has the lowest mean 

expression; then, scCDC groups the cell cluster with similar clusters in terms of the 

Wasserstein distance (based on the GCG’s count distribution in each cluster; details in 

Methods). The justification is that the GCG should have similar count distributions in the 

clusters where it is unexpressed because its ambient RNAs determine its count 

distributions in these clusters. Second, scCDC corrects the GCG’s counts using the 

GCG’s count distributions in the eGCG- and eGCG+ cell clusters by the Otsu’s method 

or by a cumulative distribution function (CDF)-based correction approach (Figure 2B 

and Methods; the Otsu’s method is only applicable when the GCG has only one eGCG+ 

cluster; Supplementary Figure 2 shows that empirically the Otsu’s method has better 

correction accuracy when it is applicable). 
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Figure 2. An overview of scCDC workflow. (A) The diagram of contamination shows ambient 

RNAs cause contaminated profiles for scRNA-Seq (or snRNA-Seq). (B) Workflow of scCDC. 

The theoretical entropy-expression curves of endogenous RNAs are simulated and the 

divergence of observed and expected entropy are calculated. Genes with significant entropy 

divergence were selected in each cluster and the common genes were defined as GCGs. For 

contamination correction, the clusters of cells do or do not express endogenous GCGs were first 

defined (eGCG+ and eGCG- cells). Otsu’s method and Cumulative distribution function (CDF)-

based approach were used to correct the contaminated counts depending on the number of 

eGCG+ cell clusters (details in Methods).  

 

Table 1 compares scCDC with DecontX, SoupX, CellBender, and scAR using five 

criteria: (1) whether a method can work without empty-droplet data, (2) whether a 

method can run with CPU only, (3) whether a method corrects all genes, (4) whether a 

method evaluates a gene’s contamination within each cell cluster, and (5) whether a 

method requires preclustering. For scCDC, the answers are yes, yes, no, yes, and yes. 

Table 1 summarizes the characteristics of scCDC in contrast to those of DecontX, 

SoupX, CellBender, and scAR. 

  Only a filtered 
gene-by-cell 
matrix needed (no 
empty droplets) 

Only CPU 
needed 

Data correction Contamination 
evaluation in 
individual cluster 

Preclustering 
required 

scCDC √ √ GCGs only √ √ 

DecontX-default √ √ Globally × √ 

DecontX-
preclustered 

√ √ Globally × √ 

SoupX-automated × √ Globally × × 

SoupX-manual × √ Globally × × 

CellBender × × Globally × × 

scAR × √ Globally × × 

 

Simulation validated scCDC’s contamination detection and correction 

functionalities 
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To validate the performance of scCDC in a scenario with ground truths, we first 

simulated an uncontaminated PBMC single-cell dataset by a realistic simulator 

scDesign2 [19] and then artificially contaminated the data with “ambient” counts of three 

CD14+ monocyte marker genes LYZ, S100A8, and S100A9. As expected, the three 

genes’ entropy divergences increased strikingly in all cell clusters after the artificial 

contamination (Figure 3A). More importantly, the three genes’ entropy divergences 

correlated positively with the artificial contamination levels (i.e., the proportions of 

“ambient” counts), suggesting that the entropy divergence is a reasonable measure of 

the contamination level (Figure 3B). As expected, scCDC successfully identified all 

three genes as GCGs. These results supported scCDC’s contamination detection 

functionality. 

We further validated scCDC’s contamination correction functionality on this simulated 

dataset and found that scCDC successfully corrected the contamination of all three 

GCGs (Figure 3C). We also benchmarked scCDC against DecontX (note that the other 

existing methods are inapplicable because they require the counts of empty droplets, 

which are unavailable in the simulated dataset). In contrast to scCDC, DecontX-default 

and DecontX-pre-clustered barely removed any contamination (Figure 3C), consistent 

with their performance on our in-house mouse mammary gland snRNA-seq data (Figure 

1D). 
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Figure 3. Simulation confirms the functionalities of scCDC. (A) The bar plots show the entropy 

divergence from the simulated curves for the three artificially contaminated genes in simulated 

PBMC data. (B) The scatter plots show the positive correlation between the entropy divergence 

and the artificial contamination level. Different contamination level was obtained by adding 

simulated contaminative counts with indicated mean values (0.5, 1.0, 1.5, 2.0, 2.5, 3.0). For 

each mean, various distribution size (1, 10, 50, 100) were employed, and the average entropy 

divergence were calculated and shown. (C) Benchmarking scCDC and DecontX in simulated 

dataset. The violin plots show the normalized expression levels of the three artificial GCGs 

before and after correction using the indicated methods by the default Seurat (V3). 

 

Benchmarking scCDC against existing methods on real snRNA-seq and scRNA-

seq datasets 

Applied to our in-house snRNA-seq datasets of mouse mammary glands, scCDC 

detected 32 and 38 GCGs in lactating and virgin mammary glands, respectively (Table 

2). Consistent with our knowledge, AlveoDiff marker genes, including Wap, Csn, and 

Glycam1, were identified as GCGs in the lactating mammary glands; Adipo marker 

genes, such as Acaca, Cidec, and Ghr, were found as GCGs in the virgin mammary 

glands (Figure 4A). Examining the corresponding bulk RNA-seq data of the mammary 

glands, we confirmed that these identified GCGs were highly expressed in the 

corresponding tissues (Figure 4B), consistent with the fact they likely caused global 

contamination. Furthermore, scCDC successfully removed the GCGs’ contamination 

(Figure 4C), on a par with SoupX-manual and better than all other existing methods 

(Supplementary Figure 3). 
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Figure 4. Contamination detection in snRNA-Seq datasets of mammary gland. (A) The entropy-

expression curves of indicated cells. Identified GCGs were labeled on the plot. (B) Scatter plot 

of the relationship between the mean entropy divergence and the TPM (x-axis, log scale) of all 

the genes. GCGs are highlighted in red. (C) The expression of Wap and Acaca in the nucleus 

after correction are shown in UMAP plots. 

 

Sanchez et al. also reported the contamination by ambient RNAs in pancreas scRNA-

seq data [6]. For instance, insulin encoding genes, Ins1 and Ins2, should be expressed 

exclusively and abundantly in beta cells, but they were unexpectedly detected in almost 

all cells (Supplementary Figure 4). Applying scCDC to the scRNA-seq data, we 

identified nine GCGs, including Ins1 and Ins2, consistent with Sanchez et al.’s original 

finding (Table 2). Again, eight GCGs identified by scCDC were confirmed as highly 

expressed by bulk RNA-seq (Figure 5A; the only GCG not found in the bulk RNA-seq 

data was a pseudogene). Moreover, we found the GCGs’ count distributions deviated 

significantly from the negative-binominal (NB) distribution, i.e., the expected count 

distribution without contamination [19, 20]; in contrast, the housekeeping genes’ count 

distributions follow the NB distribution well. This contrastive result confirms the 

existence of contamination by the GCGs’ ambient RNAs (Figure 5B). 

Previously, Sanchez et al. estimated the contamination fractions by including spike-in 

cells in the experiment and corrected the data based on the estimated contamination 

fractions [6]. We leveraged Sanchez et al.’s spike-in data to benchmark the correction 

performance of scCDC against that of DecontX, SoupX, CellBender, and scAR. Similar 

to their results on our in-house mammary gland snRNA-seq datasets, DecontX, SoupX-

automated, and CellBender failed to correct the contamination. In contrast, scCDC, 

SoupX-manual, and scAR removed the contaminative counts of GCGs, resulting in 

even cleaner decontamination results than the spike-in-based correction, which did not 

remove all contaminative counts in the endothelial and B cell clusters (Figure 5C and 

Supplementary Figure 5). Notably, among all these computational methods, scCDC 

achieved the overall best correlations between its corrected counts and the spike-in-

based corrected counts (Figure 5D).  
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Moreover, we checked if SoupX-manual and scAR over-corrected non-GCGs in the 

pancreas scRNA-seq dataset. Similar to our observations in our in-house mammary 

gland snRNA-seq data, SoupX-manual and scAR undesirably removed the counts of 

many housekeeping genes in more than 95% of cells (Supplementary Figure 6). In 

addition, we found that the reads of Irx1 and Irx2, the marker genes of Alpha cells, were 

removed by scAR (Figure 5E), consistent with a previous report about potential gene 

loss caused by scAR [10]. 

Next, we applied scCDC to nine scRNA-seq and snRNA-seq datasets from various 

organs (Table 2) [6, 21-29]. Consistent with the results from the pancreas and 

mammary gland data, the identified GCGs are generally abundant in the organs and 

have pervasive contamination across cell types. Of note, the GCGs are mostly cell-type 

marker genes instead of housekeeping genes. We also noticed that hemoglobin genes, 

like Hbas and Hbbs, caused global contaminations in the adipose and heart tissues 

(Table 2), probably due to the lysis of erythroid cells, a common experimental step 

before preparing single-cell droplets. Our results suggest careful handling is needed 

when including this lysis step in scRNA-seq assays. Unlike a single-cell assay, a single-

nuclei assay involves the procedure of cell nuclei extraction, which causes cellular 

RNAs to release and possibly leads to global contamination. Therefore, we speculated 

that contamination is more severe in snRNA-seq data than in scRNA-seq data. To test 

this hypothesis, we calculated the Wasserstein distance of each GCG’s count 

distributions in two groups of cells: eGCG- cells (where the GCG is expected to be 

unexpressed) and eGCG+ cells (where the GCG is expected to be expressed). 

Consistent with our hypothesis, the Wasserstein distances were overall smaller in the 

snRNA-seq datasets than in the scRNA-seq datasets (Figure 5F), confirming the more 

pervasive contamination in snRNA-seq data. 
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Figure 5. Contamination detection in a single-cell RNA-Seq dataset of mouse islet. (A) Scatter 

plot shows the relationship between the mean entropy divergence and the TPM (x-axis, log 

scale) of all the genes. GCGs are highlighted in red. (B) Box plot of the p-values of NB 

distribution goodness-of-fit test of GCGs and housekeeping genes. (C) Benchmarking scCDC, 

DecontX, SoupX, CellBender, and scAR in the single-cell RNA-Seq data in mouse pancreas 

islet with spike-in strategies. The violin plots show the normalized expression levels of the 

indicated GCGs before and after correction using the indicated methods by the default Seurat 

(V3). (D) The heatmap shows Spearman’s correlation between the mean expression levels of 

GCGs in the cell clusters in pancreas data after correction by different computational methods 

and by spike-in approach. (E) Feature loss in scAR. The violin plots show the normalized 

expression levels of two markers of alpha cells in pancreas, Irx1 and Irx2, before and after 

correction using SoupX-manual, scAR, and spike-in approach by the default Seurat (V3). (F) 

Boxplot of the Wasserstein distances between the distribution of GCGs in the cell clusters that 

expressed the highest level and the estimated contamination distribution of GCGs in the 

indicated datasets. Mitochondria genes and erythroid cell-associated genes were removed in 

this analysis. 

 

Table 2 GCGs identified by scCDC in 12 snRNA-seq and scRNA-seq datasets. 

Species Organ Global Contamination-
causing Genes 

Contamination 
Source (Cell Type) Data Source  Type 

Mus 
musculus 

Skeletal 
muscle 

Dmd Myotendinous junction 

syn21694522 snRNA-seq 

Trdn,Myh4,Rbfox1 Type IIb myonuclei  

 

Myh1,Neb,Prune2 Type IIx myonuclei 

 

 

 

Mus 
musculus 

Epididymal 
white 
adipose 
tissue 

Gsn,Dcn Fibroadipogenic 
progenitors 

GSM4878207 snRNA-seq 

 

 

Retnla Immune cells  

Hba-a2,Hbb-bs,Hba-a1,Hbb-
bt,Cfd T cells/Erythroid cells 
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Mus 
musculus 

Mammary 
gland(L5) 

Atp2b2,Xdh,Slc28a3,B4galt1,F
am20a,Gm20629,St6galnac3,
Cytip,Plcl1,Rapgef5,Gm26917
,Olah,Ano4,Neat1,Auts2,Tbc1
d8,Gldc,Map7,Gphn,Snd1,Fch
sd2,Slc34a2 

Alveolar Progenitors 
(AlveoProg) 

Generated in 
this study 
(GSA: 
CRA007450) 

snRNA-seq 

 

 

 

 

 

Esrrg,Erbb4 
Hormone sensing cells 
(HormSens) 

 

 

Wap,Csn2,Csn1s1,Csn1s2a,G
lycam1,Csn1s2b,Csn3,Gm424
18 

Differentiated alveolar 
cells (AlveoDiff) 

 

 

 

 

Mus 
musculus 

Mammary 
gland(Virgin) 

Ghr, Tenm4, Slc1a3, Malat1, 
Fgf14, Acsl1, Pparg, Fam13a, 
Car3, Rgs7, Pde3b, Prkar2b, 
Acaca, St6galnac5, Nrg4, 
Sik2, Negr1, Art3, Acacb, 
Smoc1, Slc1a5, Spon1, Nnat, 
Prr16, A530053G22Rik, 
Cidec, Eepd1, Gm16168, 
Acvr1c, Npr3, Ntrk3, 
4933406I18Rik, Ankef1, 
Pnpla3 

Adipocytes (Adipo) 

Generated in 
this study 

snRNA-seq 

 

Gm42418, Camk1d 
Differentiated 
hormone sensing cells 
(HormSensDiff) 

 

Dlg2, Erbb4 
Luminal 
progenitors(LumProg)  

Mus 
musculus Liver 

Cd74 Dendritic cells 
GSM5073381 scRNA-seq 

 

Mup20, Fabp1, Apoa2, Ttr, 
Apoa1 Hepatocytes  

Mus 
musculus 

Heart 

Myl2, Mb Cardiomyocytes 

GSE151048 scRNA-seq 

 

Hbb-bs, Hba-a1, Hba-a2, 
Fabp4 

Endothelial 
cells/Erythroid cells  

Dcn Fibroblasts  

Apoe Macrophages  

Mus 
musculus 

Skin 

Krt14, Krt5, Dnajb1 Basal cells 

GSM4230078 scRNA-seq 

 

Cd74 Dendritic 
cells/Langerhans 

 

Lgals7, Krt10 Spinous cells  

Mus 
musculus 

Pancreatic 
islets 

Gcg, Ttr Alpha cells 

SRR10751504 scRNA-seq 

 

Ins2, Ins1, Gm42418 Beta cells  

Sst, Malat1 Delta cells  

Ppy, Pyy Gamma cells  

Mus 
musculus Retina 

Mgarp, Ckb 
Bipolar 
cells_subcluster1 

GSM2177570 scRNA-seq 

 

Slc25a4, Oaz1 
Bipolar 
cells_subcluster2  

Cox4i1, Vdac1 
Bipolar 
cells_subcluster4  

Gnas 
Bipolar 
cells_subcluster6  

Malat1 Muller glia  

mt-Rnr2, mt-Cytb, Calm1, mt-
Nd1, Ndufa4 

Rod bipolar 
cells/Mitochondria  
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Homo 
sapiens Lung 

SFTPC, SFTPA2, SFTPA1, 
SFTPB, SLPI Alveolar type II Cells 

GSM3489185 scRNA-seq 

 

AREG Dendritic Cells  

MALAT1 Fibroblasts  

Homo 
sapiens 

Ileum 

FABP6, MT-CO1, APOC3, 
MT-CO2, APOA4, MT-CO3, 
REG1B, MT-ND4, MT-ND5 

Enterocyte 
cells/Mitochondria 

GSM3587009 scRNA-seq 

 

TFF3, MALAT1, ZG16, 
SPINK4, FCGBP 

Goblet cells  

GUCA2A Paneth cells  

DEFA6, DEFA5, REG3A Progenitor cells  

REG1A Transient-amplifying 
cells 

 

Homo 
sapiens Colon 

MT-CO3, MT-ATP6, MT-CYB 
CA1+ 
colonocytes/Mitochon
dria 

GSM5024089 scRNA-seq 

 

MT-CO1, MT-CO2, GUCA2A, 
MALAT1 

CEACAM7+ 
colonocytes/Mitochon
dria 

 

PFDN5 Erythrocyte  

TFF3, ZG16, FCGBP, MT-
ND4 Goblet cells  

 

scCDC’s contamination correction improves the accuracy of downstream 

analysis 

Next, we examined the improvement of data analysis results after scCDC’s 

contamination correction. First, scCDC unmasked the expression patterns of cell-type 

marker genes, thus facilitating the identification of cell types. In the pancreas scRNA-

seq dataset, scCDC revealed the exclusive expression of Ins1 and Ins2 in beta cells 

and Gcg in alpha cells (Figure 6A & Supplementary Figure 7A). In the lactating 

mammary gland (L5) snRNA-seq dataset, scCDC revealed the unique expression of 

milk protein genes, like Wap and Csn2, in AlveoDiff (differentiated alveolar) cells (Figure 

6B and Supplementary Figure 7B). In the virgin mammary gland snRNA-seq dataset, 

scCDC showed the exclusive expression of adipocyte markers Ghr, Acaca, and Pparg 

and that of luminal progenitor marker Erbb4 (Figure 6B and Supplementary Figure 7C).  

Second, scCDC improved the construction of gene co-expression networks. We applied 

single-cell weighted gene co-expression network analysis (scWGCNA) [30] to the 

pancreas scRNA-seq dataset and the lactating mammary gland snRNA-seq dataset 

before and after scCDC’s correction (Supplementary Table 1). In the pancreas scRNA-

seq dataset, many cell-type marker genes found as GCGs (such as delta-cell marker 
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Sst and alpha-cell marker Gcg) were not identified in network modules before scCDC’s 

correction, suggesting that their contamination hindered the co-expression analysis. 

Only after scCDC’s correction, Sst and Gcg were identified as central genes of delta 

cells’ and alpha cells’ network modules, respectively (Figure 6C, Supplementary Figure 

8A, and Table 1). In the snRNA-seq dataset of lactating mammary glands, the GCGs 

Csn2, Csn3, Wap, and Glycam1 are well-known lactation-specific genes regulated by 

the same transcriptional machinery [31], but they were not identified in any network 

module before scCDC’s correction. In contrast, these four lactation-specific genes were 

identified as a network module of AlveoDiff cells after scCDC’s correction (Figure 6D, 

Supplementary Figure 8B, and Table 1). The results indicated that scCDC’s 

decontamination helped scWGCNA identify gene co-expression modules masked by 

the contamination. 
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Figure 6. scCDC improves marker gene profiling and gene network analysis in mouse pancreas 

and mammary gland datasets. (A) Expression of selected top markers in each cell cluster is 

shown in the heatmaps after correction in mammary gland L5 (left) and mammary gland virgin 

(right) data. GCGs are highlighted on the right. (B) Comparison of marker gene expression 

before (left) and after (right) correction in pancreas dataset shown in heatmap. (C-D) The 

significant gene network modules associated with GCGs before and after correction were 

identified in pancreas (C) and mammary gland (D) data, respectively. The Ttr- and Pyy- 

centered module is derived from the uncorrected data, and the rest of the modules are derived 

from the corrected data.GCGs are highlighted. 

 

Discussion 

Here, we developed a computational method, scCDC, to identify GCGs and correct the 

counts of GCGs independent of the availability of experimental spike-in controls or 

empty droplets. Our results indicate that global contamination warrants attention, 

especially for snRNA-seq assays, and scCDC effectively identified GCGs and corrected 

their contamination in scRNA-seq and snRNA-seq data. Compared to the existing 

computational methods, scCDC avoids the under-correction issue of DecontX, 

CellBender, and SoupX-automated and the over-correction issue of SoupX-manual and 

scAR, via the detection of GCGs (Table 1). 

Among the existing computational methods, SoupX, CellBender, and scAR estimated 

the contaminative count distribution from empty droplets. However, these three methods 

have two limitations. First, it is too simplistic to assume that ambient RNA levels have 

the same distribution in empty droplets and in cell- or nucleus-containing droplets. The 

two reasons are (1) ambient RNAs are randomly distributed in empty droplets, but they 

may be attached to or absorbed by cells or nucleus in cell- or nucleus-containing 

droplets; (2) unlike cell- or nucleus-containing droplets, in empty droplets, the lack of 

endogenous RNAs may lead to more amplification of ambient RNAs and thus over-

estimation of the contamination, e.g., the over-correction by SoupX and scAR on the 

pancreas scRNA-seq data (Figure 5E). Second, these methods are inapplicable to the 
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processed gene-by-cell count matrices, which are common in public datasets and do 

not contain empty-droplet data.  

In contrast, scCDC avoids these limitations by estimating the distribution of 

contaminated counts from real cells or nuclei, so scCDC can be applied to processed 

count matrices. Although DecontX can also be applied to processed count matrices, the 

performance of DecontX was worse than the other methods’ in our benchmark. We 

speculate that the DecontX algorithm’s convergence and iteration setting requires 

further optimization.  

Note that scCDC and DecountX require the pre-clustering of cells, an issue we 

discussed in the Method Appendix. In contrast, SoupX, CellBender, and scAR do not 

require cell pre-clustering and should thus be more suitable for correcting the data 

composed of obscure cell populations (Table 1). 

What distinguishes scCDC from the existing methods is that scCDC detects GCGs and 

only corrects the expression counts of GCGs. This strategy, which was also used in 

scImpute for the imputation problem, minimizes data alteration to avoid the over-

correction issue of SoupX and scAR [32]. This strategy makes scCDC conservative so 

that cell clusters only change slightly after scCDC’s correction. Note that the GCG 

detection algorithm in scCDC may be further optimized by using alternative strategies 

for estimating the expected entropy-expression curve in each cell cluster. We will 

consider relevant strategies in our maintenance of the scCDC software package. 

Similar to scRNA-seq and snRNA-seq, single-cell proteomics was also found to have 

contamination [11]. According, decontamination methods such as dbs was developed 

[33]. Although we focused on correcting the contamination in scRNA-seq and snRNA-

seq datasets in this study, scCDC is also applicable to single-cell proteomics data 

theoretically. The performance of scCDC on single-cell proteomics data can be 

benchmarked in a future study. 

 

Conclusions 
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Global contamination by ambient RNAs is ubiquitous in single-cell and single-nuclei 

RNA-seq assays. We proposed scCDC as a computational method to detect global 

contamination-causing genes and corrects these genes’ expression data. The gene-

specific correction strategy makes scCDC more sensitive to global contamination and 

less likely to over-correct housekeeping genes, compared to the existing computational 

methods. Data correction by scCDC improves marker gene identification and gene 

network construction.  

 

Methods 

Calculation of cell-cluster-specific gene entropy divergences in scCDC 

For gene � in cell cluster �, the entropy is defined as 

��,� �  � ∑ ��,�,�log2 
��,�,����� , 

where � is the set of unique values in ��,�, a vector of gene �’s counts in the cells in 

cluster �; ��,�,� is the frequency of the count value � in ��,�, defined as 

                            ��,�,� � # of occurrences of value � in ��,�

length of ��,�
. 

For cell cluster �, the following procedure is used to calculate the cell-cluster-specific 

expected entropy-expression curve, inspired by the ROGUE score in [34]. 

1. Calculate each gene �’s mean expression in cell cluster � as  

��,� � log�
average of ��,�� � 1�, 

and calculate ��,� defined above. 

2. For � � 1, … ,10, in the �-th subsampling run, do the following. 

 i. Randomly sample 80% of genes. 

 ii. Use the R function smooth.spline() to fit a curve between the sampled genes’ 

entropy values (y; response variable) and mean expression values (x; explanatory 

variable), using the following R code: 
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smooth.spline(��
�, ��

�, spar = 1), 

where ��
� is a vector containing the randomly sampled genes’ ��,� values, and ��

� is 

a vector containing the randomly sampled genes’ ��,� values. Denote the fitted curve 

by function  !� that maps a gene’s mean expression to entropy. 

 iii. For each sampled gene �, calculate the residual "�,�
� � ��,� �  !�
��,��, i.e., 

the difference between the gene’s entropy and the fitted entropy from step ii. Pool all 

residuals into a vector "�
�. Assuming all residuals follow a normal distribution, define 

gene � as an outlier if its residual falls into the top 1% tail of the fitted normal 

distribution, i.e., using R code, if 

1 � pnorm("�,�
� , mean = mean("�

�), sd = sd("�
�)) # 0.01. 

 iv. Remove the outlier genes detected in step iii and refit the curve as in step ii. 

 v. Detect outlier genes as in step iii based on the refitted curve in step iv. 

 vi. Remove the outlier genes detected in step v and refit the curve as in step ii. 

 vii. Output the curve from step vi. 

3. Calculate the expected entropy-expression curve by averaging the 10 curves from 

the subsampling runs. Specifically, for each gene �, its expected entropy is the average 

of the 10 fitted entropy values. 

Finally, the entropy divergence of � in cell cluster � is defined as 

∆��,� � ��,�
� � ��,�, 

where ��,�
�  is the expected entropy of gene � in cell cluster �, calculated based on 

gene �’s average expression and the expected entropy-expression curve in cell cluster 

�. Since we expect that gene �’s ambient RNAs would deflate its entropy ��,�, a large 

and positive ∆��,� would indicate severe contamination of gene � in cell cluster �. 

GCG Identification in scCDC 
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Small cell clusters (with fewer than 100 cells) are not considered in this GCG 

identification step. Figure 2B illustrate the GCG identification procedures described 

below.  

1. Among the considered cell clusters, in every cluster �, the genes with “significantly” 

large entropy divergences (and have non-zero counts in at least 80% of cells in the 

cluster) would be identified as the candidate GCGs of cluster �. Specifically, we fit a 

normal distribution of all genes’ entropy divergences, denoted by the vector ∆��. Then 

we calculate a pseudo-p-value of gene �, denoted by ���, as 

��� � 1 � pnorm(∆��,�, mean = mean(∆��), sd = sd(∆��)), 

and set a 0.05 threshold on the adjusted pseudo-p-values based on the Benjamini-

Hochberg procedure. That is, any gene � whose post-adjustment ��� # 0.05 would 

be called a candidate GCG in cluster �, if gene � is expressed in at least 80% of the 

cells in cluster �. 

2. Across the considered cell clusters, the genes found as candidate GCGs in at least 

80% (referred to as the restriction factor, which can be user-specified; the selection of 

an appropriate restriction factor is discussed in the Method Appendix) of the clusters 

would be found as the GCGs. In other words, the GCGs are the genes that are stably 

found as candidate GCGs in many clusters. 

Estimation of a GCG’s contaminative count distribution in scCDC 

Each GCG’s contaminative count distribution is estimated by the GCG’s counts in the 

cells that are not expected to express the GCG endogenously (i.e., eGCG- cells; 

illustrated in Figure 2B). A GCG’s eGCG- cells are defined by pooling the cell cluster 

with the lowest median expression of the GCG (i.e., the most eGCG- cluster) and the 

other cell clusters whose 1-D Wasserstein distances to the most eGCG- cluster are less 

than 1. Specifically, given the GCG, the 1-D Wasserstein distance between two cell 

clusters is calculated as 

'�
(�, (�� �  ) *+��

,� � +��


,�*
�

-,, 
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where (� and (� are random variables denoting the GCG’s normalized and log-

transformed counts (adopted from Seurat) in the two clusters, +��

.� and +��


.� are the 

cumulative distribution functions, and the calculation of '�
(�, (�� is done using the 

‘transport’ (v0.12-2) package developed by Schuhmacher et al., 2019 (https://cran.r-

project.org/package=transport). The 1-D Wasserstein distance threshold of 1 is chosen 

as the medium of the maximum 1-D Wasserstein distances of expressed (detected in 

more than 50% cells) housekeeping genes (from a list of 70 housekeeping genes) 

between all cluster pairs in six datasets (i.e., each included housekeeping gene has a 

maximum distance in each dataset; see Supplementary Figure 10). A GCG’s eGCG+ 

cells are expected to have the GCG endogenously expressed, and they are defined by 

excluding the eGCG- cells. 

Correction of a GCG’s contaminative counts by scCDC 

Given a GCG, the following two approaches are used to correct the GCG’s counts, 

depending on the number of clusters containing the GCG’s eGCG+ cells. 

(1) Otsu’s method-based correction is applied when only one cell cluster contains 

eGCG+ cells. First, we balance the numbers of eGCG+ cells and eGCG- cells by 

oversampling. Specifically, denoting by � the maximum of the number of eGCG+ cells 

and the number of eGCG- cells, we oversample (i.e., sample with replacement) the 

smaller group of cells (e.g., eGCG- cells) so that both the eGCG+ and eGCG- groups 

have � cells. Pooling the GCG’s counts in the 2� cells, we apply the Otsu’s method to 

a threshold / such that the weighted sum of intra-class variance 

0�
� 
/� �  1 
/�0 

�
/� �  1�
/�0�
�
/� 

is minimized, where 1 
/� is the proportion of the counts smaller than / (among the 

2� counts), 1�
/� � 1 � 1 
/�, 0 
�
/� is the variance of the counts smaller than /, and 

0�
�
/� is the variance of the counts greater than or equal to /. Given the threshold /, we 

correct the GCG’s count in every cell by subtracting /, with a truncation at zero so that 

the GCG’s minimum count is zero. 
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(2) Cumulative distribution function (CDF)-based correction is applied when more 

than one cell cluster contains the GCG’s eGCG+ cells. 

For any GCG 2 in cell 3 of cluster �, denoting by ,!"  the observed count, we define the 

corrected count ,!"
�  as 

,!"
� � max 
,!" � 6!

#�
+!�
,!"��, 0� 
where +!� is the CDF of GCG 2’s counts in cell cluster �, and 6!

#� is the inverse CDF 

of GCG 2’s counts in the eGCG- cells.  

Together, scCDC’s tuning parameters are summarized in Table 3 . 

Table 3. Tuning parameters in the functions of scCDC. 

Function Parameter Description Default 

Contamination Detection 

restrict_factor 

The minimum proportion of cell clusters in 

which a GCG is found as a candidate 

GCG 

0.8 

min.cells 
The minimum cell number of the cell 

clusters used for finding candidate GCGs 
100 

Contamination Correction was.thres 
The threshold of the 1-D Wasserstein 

distance used to define eGCG- clusters 
1 

 

Evaluation of Otsu’s method versus CDF-based method 

We first simulated an array of uncontaminated counts with a mixture of two negative 

binomial distributions, one of which represents the eGCG+ cluster (size = 1, µ = 1000) 

while the other one represents the eGCG- cluster (size = 1, µ = 1). Then, we built 

negative binomial distributions as contamination distributions with various means that 

represent various contamination levels (size = 10, µ = 0 – 500). For each contamination 

level, we sampled values from the contamination distribution, which were randomly 

added to the uncontaminated counts to obtain the array of contaminative counts. 

To compare Otsu’s method with CDF-based method, these two correction methods 

were applied to the array of contaminative counts after a pre-clustering process using 
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the k-means algorithm (k = 2). Spearman’s correlations were calculated between 

corrected counts and uncontaminated counts for each method under all of the 

contamination levels mentioned. 

Count correction by SoupX, DecontX, CellBender, and scAR 

SoupX (v1.5.2), DecontX in Celda (v1.10.0), CellBender (v0.3.0), and scAR (v0.4.3) 

were employed for count correction.  

For SoupX, both raw feature matrix and filtered feature matrix generated by Cellranger 

(v6.0.1) were used to create the Soup Channel object, followed by standard correction 

workflow in the guidance [5]. The “automated” and “manual” approaches were applied, 

respectively. The identified GCGs were provided as the ‘non expressed genes’, whose 

RNAs in specified cells were treated as solely ambient ones, in the “manual” mode.  

For DecontX, the correction was applied to the filtered feature matrix in the datasets. 

The default procedure, referred to as the “default” mode, was first performed. 

Alternatively, the pre-clustering information obtained from Seurat [35] was provided 

manually in the “pre-clustered” mode. 

For CellBender, the correction used the raw feature matrix with the remove-background 

function following the tutorial 

(https://cellbender.readthedocs.io/en/latest/getting_started/remove_background/index.ht

ml). 

For scAR, both raw feature matrix and filtered feature matrix were used to perform the 

pipeline based on the tutorial (https://scar-

tutorials.readthedocs.io/en/latest/tutorials/scAR_tutorial_mRNA_denoising.html). The 

filtering scale was applied to the filtered feature matrix of datasets as listed in 

Supplementary Table 2. 

Generation of simulated PBMC single-cell dataset 

To generate the simulated PBMC single-cell dataset, we first obtained a real PBMC 

dataset’ pbmcsca.SeuratData’ from the SeuratData R package 

(https://github.com/satijalab/seurat-data). We then sub-selected the dataset generated 
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by the 10x Chromium (v2) technology under the experiment’ pbmc2’, using the ‘meta. 

data’ information from ‘pbmcsca.SeuratData’. Next, we filtered out the ERCC spike-in’s, 

the mitochondrial genes, and the gene MALAT1, and we selected five cell types (B cells, 

CD14+ monocytes, natural killer cells, CD4+ T cells, and cytotoxic T cells). Using the 

filtered and sub-selected real dataset from above, we applied the simulator scDesign2 

[19, 36] to fit one multivariate probabilistic model to each of the five cell types.  

The resulting gene expression matrix was stored as the file 

sce_10x_pbmc2_hca_corrected.rds. 

The sce_10x_pbmc2_hca_corrected.rds file and the code for reproducing it are 

available at https://zenodo.org/record/6395574#.YrXp5JPMKEt. In particular, the rds file 

is under Code summary.zip/Figure 7 and supplementary S3 to 

S10/imputation_comparison_0614/Data_gen/data/; the code is under Code 

summary.zip/Data simulation/. The rds file can be generated by sequentially executing 

the seven steps in the code directory. 

Artificial contamination of simulated PBMC single-cell dataset 

To further simulate global contamination, an additional PBMC dataset was generated by 

randomly blending the original raw count matrix with an artificial contaminative count 

matrix composed of three marker genes of CD14+ monocytes, S100A9, S100A8, and 

LYZ. If not indicated, the contaminative count matrix was generated following negative 

binomial distributions using the mean of the average count of the original raw count 

matrix and a size of 10. Then a contaminative count was randomly selected from the 

matrix and added to each original raw count. Alternatively, contaminative counts were 

generated using a fixed mean and size of 1, 10, 50, 100.  

Single-nuclei RNA-seq in mammary glands 

Eight-week-old female C57BL/6N mice were timed mated. Abdominal and thoracic 

mammary tissues from nulliparous mice (virgin) and mice at lactation day 5 (L5) were 

harvested and lymph nodes in abdominal mammary tissues were removed. Mammary 

tissues were snap-frozen in liquid nitrogen followed by nuclei extraction and single-
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nuclei RNA sequencing (snRNA-seq) on a 10X Genomics platform in Lianchuan Biology 

Technology Co.  

General single-cell and single-nuclei data processing  

Cellranger (v6.0.1) was used to map raw reads to mouse or human reference genomes 

and obtain raw and filtered count matrixes of genes. Seurat (v4.0.3) was used for data 

filtration, principal component analysis (PCA), dimension reduction, clustering, marker 

gene identification and data visualization. Specifically, for each dataset, cells with 

insufficient genes, molecules and high mitochondria gene percentage were first filtered. 

The data were then normalized and top variable genes were identified. Scaling, 

dimension reduction, and clustering were then performed. The specific parameters for 

filtering, dimension reduction, and clustering used in each dataset are provided in 

Supplementary Table 2.  

When benchmarking for pre-clustering, the top 1000 variable genes identified by 

SeuratVST [35], scPNMF (v1.0) [37], and Scater (v1.20.1) [38] were used for dimension 

reduction, respectively. Rand index (ARI) values were calculated as described 

previously [37].  

Visualization of clusters and gene expression and marker gene identification was done 

in Seurat. Weighted gene co-expression network analysis (WGCNA) was done using 

the scWGCNA (v1.0.0) package [30].  
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The scCDC R package is available at https://github.com/ChaochenWang/scCDC. The 

processed datasets and the code scripts used to generate the figures are available on 

Zenodo (DOI:10.5281/zenodo.6905189). 

The published single-cell and single-nuclei datasets were downloaded from the GEO 

database and Human Cell Atlas with the accession numbers listed in Table 2. The 

single-nuclei RNA-seq data of mouse mammary glands are deposited in the Genome 

Sequence Archive in National Genomics Data Center, China National Center for 

Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences (GSA: 

CRA007450).  

The total RNA-seq data in mouse lactating and virgin mammary glands are from the 

GEO database with accession numbers: GSE115370 [39] and GSE52016 [40], 

respectively. The total RNA-seq data from mouse pancreatic islets were downloaded 

from GEO: GSE148809 [41]. The genes encoding secrecting proteins were predicted in 

SignalP 4.0 [42], and the list of protein-coding genes were obtained from the Refseq 

database [43]. 
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