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Abstract 
Mean-field (MF) models can be used to summarize in a few statistical parameters the salient 
properties of an inter-wired neuronal network incorporating different types of neurons and synapses 
along with their topological organization. MF are crucial to efficiently implement the modules of 
large-scale brain models maintaining the specificity of local microcircuits. While MFs have been 
generated for the isocortex, they are still missing for other parts of the brain. Here we have designed 
and simulated a multi-layer MF of the cerebellar network (including Granule Cells, Golgi Cells, 
Molecular Layer Interneurons, and Purkinje Cells) and validated it against experimental data and the 
corresponding spiking neural network (SNN) microcircuit model. The cerebellar MF was built using 
a system of equations, where properties of neuronal populations and topological parameters are 
embedded in inter-dependent transfer functions. The model time constant was optimised using local 
field potentials recorded experimentally from acute mouse cerebellar slices as a template. The MF 
satisfactorily reproduced the average dynamics of the different neuronal populations in response to 
various input patterns and predicted the modulation of Purkinje Cells firing depending on cortical 
plasticity, which drives learning in associative tasks, and the level of feedforward inhibition. The 
cerebellar MF provides a computationally efficient tool that will allow to investigate the causal 
relationship between microscopic neuronal properties and ensemble brain activity in virtual brain 
models addressing both physiological and pathological conditions.   

1. Introduction 
Brain modelling is opening new frontiers for experimental and clinical research toward personalised 
and precision medicine (Amunts et al., 2013; Schirner et al., 2015). Brain models can be developed 
at different scale, ranging from microscopic properties of neurons and microcircuits to the ensemble 
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behaviour of the whole brain. Arguably, a model spanning across scales would increase the fidelity 
in modelling single brain regions, improving the accuracy of whole-brain dynamics simulations 
(D’Angelo and Jirsa, 2022), but this clearly bears conceptual and practical drawbacks. At the 
microscale, Spiking Neural Networks (SNNs) reproduce neural circuits as a set of interconnected 
neurons (Plesser et al., 2015; Yavuz et al., 2016; Knight et al., 2021): the state of each neuron and 
synapse in the network is updated at each simulation step, allowing to investigate neural circuits 
functioning at a high level of granularity and biological plausibility. However, this degree of detail is 
hard to manage when simulating brain signals, like those derived from electroencephalography (EEG) 
or functional magnetic resonance imaging (fMRI). To manage the high complexity of brain signals, 
the dynamics of a neuronal population have been condensed into ensemble density models called 
neural masses. These provide a description of the expected values of neuronal activity states, under 
the assumption that the equilibrium density has a point mass (Wilson and Cowan, 1972; Jansen and 
Rit, 1995). Neural fields are obtained from neural mass models when considering spatial information: 
these can be used to model spatial propagation of activity throughout brain volumes (Deco et al., 
2008). Despite being computationally efficient and easy to fit on brain signals data, neural mass and 
neural field models lack a direct link to the microscopic scale, a fact that limits their applicability in 
investigating the neuronal bases of brain dynamics and the causal relationships between neural 
mechanisms at different scales. 

A different approach is based on the mean-field (MF) approximation. The MF theory provides a 
general formalism to approximate high-dimensional random models by averaging the original system 
properties over degrees of freedom, i.e., maintaining the first two statistical moments (mean and 
variance) of the system. In neuroscience, MFs have been used to provide a representation of neuronal 
population dynamics, by replacing multiple single-neuron input-output (I/O) relationship with one 
based on the MF of the interconnected populations. MFs thus summarize the neuronal and 
connectivity properties of an entire spiking microcircuit through ad-hoc transfer functions (TFs) 
(Amit and Brunel, 1997; Brunel and Sergi, 1998; Kumar et al., 2008) and capture the statistical 
properties of network activity by computing the probabilistic evolution of neuronal states at 
subsequent time intervals (Kuhn et al., 2004; El Boustani and Destexhe, 2009; Zerlaut et al., 2016). 

MFs can be used to investigate macroscale phenomena, such as brain rhythms and coherent 
oscillations (Cakan and Obermayer, 2020), and are computationally advantageous, with increased 
computational speed and low memory requirements compared to SNNs. Among current limitations, 
MFs do not capture in full the complex properties of specific neuronal populations and are valid only 
in certain firing regimes, e.g., at low frequency (Carlu et al., 2020). 

Moreover, while a diversification of MFs for specific cortical regions has been proposed (Marreiros 
et al., 2008; Bastos et al., 2012; Deco et al., 2014; Auksztulewicz and Friston, 2015; Glomb et al., 
2017; El Houssaini et al., 2020; Naskar et al., 2021), few attempts to develop MFs for subcortical 
regions have been performed (Moran et al., 2011; Saggar et al., 2015; van Wijk et al., 2018; 
Levenstein et al., 2019), despite their fundamental role in controlling brain dynamics and behavior 
(Schutter and van Honk, 2006; Castellazzi et al., 2014, 2018; Casiraghi et al., 2019; Andersen et al., 
2020). In particular, the cerebellum has a dense connectivity with the cerebral cortex and remarkably 
impacts on whole-brain dynamics in resting-state and task-dependent fMRI (Casiraghi et al., 2019; 
Palesi et al., 2020; Monteverdi et al., 2022) prompting for the development of specific MFs to be 
included  into whole-brain simulators.  
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The cerebellar cortex receives inputs from mossy fibers and climbing fibers and sends outputs to the 
deep cerebellar nuclei. Granule Cells (GrC), Golgi Cells (GoC), Molecular Layer Interneuron (MLI) 
and Purkinje Cells (PC) constitute the backbone of the cerebellar cortex, which shows a peculiar 
anisotropic geometry implementing a forward architecture with limited lateral connectivity and 
recurrent excitation. These properties, along with the neuronal types, differ remarkably from those of 
the cerebral cortex prompting for the definition of a specific MF. This operation represents both a 
challenge and an opportunity. All the neuron types of the cerebellar cortex, following a careful 
characterization in electrophysiology experiments in rodents in vitro and in vivo (D’Angelo et al., 
2001; McKay and Turner, 2005; Molineux et al., 2006; Solinas et al., 2007; Lachamp et al., 2009), 
have been represented by detailed multicompartmental models (Masoli et al., 2015, 2020b, 2020a; 
Masoli and D’Angelo, 2017; Rizza et al., 2021), simplified into point-neuron models (Lennon et al., 
2014; Geminiani et al., 2018, 2019a), and embedded in network models of the cerebellar microcircuit 
(Solinas et al., 2007; Geminiani et al., 2019b, 2019a; Casali et al., 2020; De Schepper et al., 2022). 
Thus, the cerebellum provides an ideal substrate for generating a MF, in which the internal dynamics 
can be remapped onto a precise physiological counterpart and validated against a rich and informative 
dataset.  

In this work we have developed and validated a multi-layer MF of the cerebellar cortex, which 
maintains the salient properties of the inter-wired cerebellar neuronal populations. Indeed, the MF 
was derived from a biology-grounded model of the cerebellar microcircuit, which was used to define 
the topology and tune the parameters of the MF, and it was then validated against a rich set of SNN 
outputs. The perspective is to integrate the present mesoscopic cerebellar MF as a module of 
macroscale models, e.g. Dynamic Causal Modeling (DCM) (Friston et al., 2003, 2019; Parr et al., 
2020) or The Virtual Brain (TVB)(Sanz Leon et al., 2013), to simulate the cerebellar contribution to 
brain activity in physiological and pathological conditions. 

2. Methods 
In this section we describe the development, tuning, validation, and application of a multi-layer MF 
of the cerebellar circuit (Figure 1). The MF formalism provides a statistical summary of a SNN 
activity through the first two statistical moments (i.e. average and variance) of the population firing 
rates (El Boustani and Destexhe, 2009) . Here the SNN bottom-up modelling approach is merged 
with the standard MF mathematical formalism to obtain a multi-layer MF of the cerebellar cortex. In 
order, we present the cerebellar SNN model used as the structural and functional reference of the MF 
(section 2.1), the design of the MF architecture based on cerebellar topology (section 2.2.1), the 
implementation of the MF equations derived with an heuristic approach (section 2.2.2) (Zerlaut et 
al., 2016, 2018; Carlu et al., 2020), the protocols used to optimise the MF time constant (section 
2.2.3) and to validate the MF (section 2.3), the applications of the MF to predict the activity 
modulation induced by different levels of synaptic plasticity and of inhibitory control (section 2.2.4). 
 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.24.517708doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.24.517708


 

Figure 1) Pipeline of the multi-layer cerebellar MF model. The workflow of the study is represented. MF 
was designed based on structural and functional parameters extracted from Spiking Neural Network (SNN) 
simulations. The time constant of the resulting MF was optimized against Local Field Potential (LFP) 
experimental data. The model was first validated against neural activity of SNN with different stimulation 
protocols and then used to reproduce the effect of synaptic plasticity in molecular layer interneurons. 

2.1 SNN model 
This cerebellar cortex model was built using the Brain Scaffold Builder (BSB) 
(https://bsb.readthedocs.io/en/latest/), a neuroinformatic framework allowing a detailed microcircuit 
reconstruction based on neuron morphologies and orientations and the incorporation of active 
neuronal and synaptic properties (De Schepper et al., 2022). The SNN was made of ~3x104 extended-
Generalised Leaky Integrate and Fire (E-GLIF) neurons (Geminiani et al., 2018, 2019a) and ~1.5x106 
alpha-shaped conductance-based synapses (Roth and van Rossum, 2013). The SNN simulations were 
performed using NEST (Plesser et al., 2015; Jordan et al., 2019) 
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Table 1)Neuron parameters 

Parameter Name unit GrC GoC MLI PC 

gL Leak conductance nS 0.29 3.30 1.60 7.10 

Cm Membrane capacitance pF 7.00 145.00 14.60 334.00 

𝜏ref	 Refractory time ns 1.50 2.00 1.59 0.50 

𝜏m Membrane time constant ns 24.15 44.00 9.12 47.00 

EL Resting potential mV -62.00 -62.00 -68.00 -59.00 

Vth Threshold potential mV -41.00 -55.00 -53.00 -43.00 

Vr Reset potential mV -70.00 -75.00 -78.00 -69.00 

kadap Adaptation constant MH-1 0.02 0.22 2.03 1.50 

k2 Adaptation constant ms-1 0.04 0.02 1.10 0.04 

k1 Decay rate ms-1 0.31 0.03 1.89 0.19 

A2 Update constant pA -0.94 170.01 5.86 172.62 

A1 Update constant pA 0.01 259.99 5.95 157.62 

Ie Endogenous current pA -0.89 16.21 4.45 891.04 

Parameters specific of the type of neurons included in the multi-layer MF populations. The parameters in the top part are chosen 
according to literature (Table 2 of Geminiani et al., 2019a), while the parameters at the bottom were extracted from spiking neural 
network simulating the cerebellar cortex spiking activity (Geminiani et al., 2018, 2019a). mf = mossy fibers, GrC = Granule Cells, 
GoC = Golgi Cells, MLI = Molecular Layer Interneurons (Basket cells and Stellate cells) 

 

2.1.1 Neuron model 
The E-GLIF formalism describes the time evolution of membrane potential (Vm) depending on two 
intrinsic currents to generate slow adaptation (Iadap) and fast depolarisation (Idep), using a the system 
of three ODEs (Geminiani et al., 2018) 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑑𝑉!(𝑡)
𝑑𝑡 = 	

1
𝐶!

(
𝐶!
𝜏!

(𝑉!(𝑡) − 𝐸"#$) − 𝐼%&%'(𝑡) + 𝐼&#'(𝑡) + 𝐼# + 𝐼()*

𝑑𝐼%&%'(𝑡)
𝑑𝑡 = 	𝑘%&%'(𝑉!(𝑡) − 𝐸"#$) − 𝑘+𝐼&#'(𝑡)

𝑑𝐼&#'(𝑡)
𝑑𝑡 = 	𝑘,𝐼&#'(𝑡)

 

( 1 ) 
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where Isyn = synaptic current (it models the synaptic stimulus, see section 2.1.2); Cm = membrane 
capacitance; τm = membrane time constant; Erev = reversal potential; Ie = endogenous current; kadap 
and k2 = adaptation constants; k1 = decay rate of Idep. When a spike occurs, state variables are updated 
as follows: 

𝑉!4𝑡('-. 5 = 𝑉" 

𝐼%&%'4𝑡('-. 5 = 	 𝐼%&%'𝑡('- + 𝐴+ 

𝐼&#'4𝑡('-. 5 = 𝐴, 

( 2 ) 

where 𝑡('-.  = time instant immediately following the spike time tspk ; Vr = reset potential; A2, A1 = 
model currents update constants. E-GLIF models were implemented using parameter sets specific for 
each neuronal population (Geminiani et al., 2019a) as shown in Table 1. 

2.1.2 Synaptic model 
Connections between neural populations were modelled as conductance-based synapses: 

𝐼()*(𝑡) = 𝑔()*(𝑡)(𝑉!(𝑡) − 𝐸"#$) 

( 3 ) 

When a spike occurs, the conductance gsyn changes according to an alpha function: 

𝑔()*(𝑡) = 𝐺()*
𝑡 − 𝑡('-
𝜏()*

𝑒
,/

0/0!"#
1!$%  

( 4) 

where Gsyn is the maximum conductance change and τsyn the synaptic time constant. E-GLIF neuron 
models and conductance-based synaptic models used in SNN simulations provided the functional 
reference of cerebellar spiking activity for MF development. 

2.2 MF design 
The design of the cerebellar multi-layer MF was based on the extensive knowledge of cerebellar 
anatomy and physiology summarized in previous cerebellar cortex network models (Geminiani et al., 
2018, 2019c; De Schepper et al., 2021).  

2.2.1 Architecture 
The cerebellar MF included the main neuronal populations of the cerebellar cortex - GrC, GoC, MLI 
and PC (Figure 2) and the corresponding excitatory and inhibitory synapses. The MF network 
topology reproduced the multi-layer organisation of the cerebellar cortex. Granular layer at the 
cerebellar input stage includes GrC and GoC receiving external input (𝜈drive) from mossy fibers. GrC 
excite GoC, which, in turn, inhibit themselves and GrC forming recurrent loops. GrC represent the 
excitatory input for the molecular layer constituted by MLI and PC. MLI inhibit PC, which are the 
sole output of the cerebellar cortex and shape the deep cerebellar nuclei activity through inhibition. 
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Although other neurons have been reported to play a role in the cerebellar microcircuit (e.g. Lugaro 
cells (Melik-Musyan and Fanardzhyan, 2004), and unipolar brush cells (Mugnaini et al., 2011) for 
the sake of simplicity we have limited the present model to the canonical architecture that is thought 
to generate core network computations. 

To connect the nodes of the MF network, synaptic parameters were set according to those of the 
reference SNN (Table 2). The connection probability for each connection type (K) was derived from 
the convergence ratio in a cerebellar cortical volume (De Schepper et al., 2022). The quantal synaptic 
conductance and synaptic time decay (Q, 𝜏) was derived from the weights and time constants of the 
corresponding synapse models (Geminiani et al., 2019a). 
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Figure 2) Multi-layer MF architecture and parameters. A: Spiking Neural Network model (SNN). The 
cerebellar cortical volume (length = 300, width = 200, height = 295 μm3) contained a total of 29230 neurons 
including 28615 GrC, 70 GoC, 446 MLI and 99 PC. B: Multi-layer MF architecture with neuronal populations 
connected according to anatomical knowledge. The main cerebellar neuron types are included: GrC and GoC, 
receiving input from mossy fibers, MLI and PC, which are the sole output of the cerebellar cortex. Each 
population receive excitatory and/or inhibitory input activity 𝜈 from presynaptic populations, depending on 
their specific conductance µ and on the synaptic properties of each connection (convergence, synaptic 
conductance, and time constant). 
 

Table 2) Presynaptic parameters 

Presynaptic connection K Q [nS] 𝜏 [ms] Erev [V] 

mf-GrC 4.00 0.230 1.9 0 

GoC-GrC 3.50 0.240 4.5 -80 

mf-GoC 57.10 0.240 5.0 0 

GrC-GoC 501.98 0.437 1.25 0 

GoC-GoC 2592.00 0.007 5.0 -80 

GrC-MLI 243.96 0.154 0.64 0 

MLI-MLI 1418.69 0.005 2.0 -80 

GrC-PC 489.16 0.510 1.1 0 

MLI-PC 10.28 1.244 2.8 -80 

Parameters used to set up the inter-population connectivity of the multi-layer MF cerebellar network. The parameters were extracted 
from the spiking neural network simulating the cerebellar cortex spiking activity (Geminiani et al., 2019b). Mf = mossy fibers, GrC = 
Granule Cells, GoC = Golgi Cells, MLI = Molecular Layer Interneurons (Basket cells and Stellate cells).  K = pre-synaptic connectivity 
resulting by weighting the mean synaptic convergence with the number of synapses; Q = quantal synaptic conductance in nS; 𝜏 = 
synaptic decay time constant;	Erev = reversal potential that is 0 V for excitatory synaptic connections and -80 V for inhibitory synaptic 
connections.  
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2.2.2 TF Computation 
The TF is defined for each population as a mathematical construct that takes the activity of the 
presynaptic population (𝜈s) as input and provides an average population activity signal as output 
(𝜈230) (Kuhn et al., 2004).  

A purely analytic derivation of the TF (using approximations and stochastic calculus, e.g. Brunel & 
Amit, 1997) was not possible given the relative complexity of the neuronal (E-GLIF) and synaptic 
(alpha-waveform) models considered here. Therefore, the TFs presented here relied on a semi-
analytical approach that couples an approximate analytical estimate with an optimization step to 
capture the firing response of analytically intractable models (Zerlaut et al., 2016, see also Brunel & 
Sergi, 1998 for a similar approach). More details can be found in Zerlaut et al. (2016) but we 
summarize the approach below. 

The analytical template for the TF (indicated with F in the equations for sake of simplicity) of all 
neuron types is derived from the probability to be above threshold in the fluctuation-driven regime 
(Kuhn et al., 2004): 

𝜈230 = 𝐹'(𝜈() = 𝛼	
1
2𝜏4

𝑒𝑟𝑓𝑐(
𝑉05"#
#66 − 𝜇4
√2𝜎4

) 

( 5 )  

where erfc is the error function while µV, sV2 and tV are the average, variance and autocorrelation 
time respectively of the membrane potential fluctuations. Two phenomenological terms were 
introduced: 𝑉05"#

#66, an effective firing threshold to capture the impact of single cell non-linearities on 
firing response (Zerlaut et al., 2016) and a, a multiplicative factor to adapt the equations also to high 
input frequency regimes (Carlu et al., 2020). Those two terms were optimized for each neuron type 
(steps d and e respectively) from single neuron simulations of input-output transformation in terms 
of firing rate (i.e., the numerical TF, see step b). The TF depends on the statistical properties of the 
subthreshold membrane voltage dynamics (mean = µV, standard deviation = sV2 and autocorrelation 
time tV, calculated in step c). These in turns depend on the average population conductances that are 
computed with the biologically-grounded functional parameters derived from SNN models at single 
neuron resolution (step a), bringing the physiological properties into the MF mathematical 
construct.Errore. Il segnalibro non è definito. 

a) Equations of Population-specific conductance. For each neuronal population, the average 
conductance was defined as a function of the presynaptic inputs, according to the topology described 
in section 2.1 (Figure 3.2.):  

𝜇' =.E𝐾(/'𝜏(/'𝑄(/'𝜈(
(

 

( 6 ) 

where, for each population p (p = GrC, GoC, MLI, PC), Ks-p, 𝜏s-p, Qs-p are the connection probabilities, 
synaptic decay times and quantal conductances of the connection for each presynaptic population s 
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(e.g., for p = GrC, s-p is mossy fiber-GrC and GoC-GrC), ns is the presynaptic population activity in 
Hz computed as explained in (b). 

b) Numerical TF.  The reference functional target was the neuronal spiking activity obtained in SNN 
simulations (in vivo conditions) as described in section 2.1. The activity of GrC, GoC, MLI and PC 
embedded in the SNN was simulated for different input amplitudes (𝜈&"7$#) in the range 0-80 Hz, 
with input spikes generated from a Poisson distribution. For each 𝜈&"7$#, the simulation lasted 5 
seconds with a time resolution of 0.1 ms. The working frequencies of each population were extracted 
by averaging the spiking neuron firing rates. For each population, the outcome of numerical TF 
computation was a template of dimension equal to the number of presynaptic populations, resulting 
in 2D numerical TFs for GrC, MLI and PC and 3D numerical TF for GoC (Figure 3A). 

The 2D numerical TF of each population was computed as the population firing rate when receiving 
the firing rates of the presynaptic populations, given a certain 𝜈&"7$#: for example, for the numerical 
TF numerical template of PC, the average firing rates of MLI and GrC were computed for each 𝜈&"7$#  

in the range 0-80 Hz. Then, these quantities were used as presynaptic signals to stimulate PC and a 
numerical template was obtained from the resulting PC firing rate, for each combination of 
presynaptic activities). The 3D TF numerical template of GoC was computed following the same 
strategy but considering 3 presynaptic signals (GrC, GoC, mossy fibers). GrC excitation and GoC 
self-inhibition were extracted from SNN simulations and the mossy fibers excitation corresponded to 
𝜈&"7$#.  

c) Statistical moments of the MF. The statistical moments included in the MF are µV, sV and tV. 
Starting from the conductances of the presynaptic populations, the average conductance 𝜇8  of the 
target population reads:  

𝜇8(𝜈() =E𝜇8(
(

+ 𝑔9 

( 7 ) 

Where 𝜇8( is the presynaptic population conductance (equation (4)) and 𝑔9 is the leak conductance 
of the target population (Table 1). Then, the effective membrane time constant of the target population 
is computed from 𝜇8  as: 

𝜏!
#66(𝜈() =

𝐶!
𝜇8

 

( 8 ) 

Where 𝐶! is the membrane capacitance (Table 1). The first statistical moment, i.e., the average of 
membrane potential fluctuation 𝜇4 reads:   

 

𝜇4(𝜈() = 𝑒	
∑ 𝜇8(( 𝐸( + 𝑔9𝐸9

𝜇8
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( 9 ) 

With Es = reversal potential of the presynaptic connection (0 mV for the presynaptic excitatory 
populations and -80 mV for the presynaptic inhibitory populations), EL = rest potential of the target 
population (Table 1). 

This expression is adapted from Zerlaut et al. 2018 to model the alpha synapses consistently with the 
models used in the SNN (equations (1), (2), and (3)). Consequently, the variance and the 
autocorrelation time of membrane fluctuations result in:  

𝜎4(𝜈() = IE (2𝜏!
#66 + 𝜏(/') J

𝑒𝑈(/'𝜏(/'
2(𝜏!

#66 + 𝜏(/'
L
+

𝐾(/'𝜈(/'
(

 

( 10 ) 

𝜏4(𝜈() =
1
2

∑ 𝐾'/(𝜈((𝑒𝑈'/(𝜏'/()+(

∑ (2𝜏!
#66 + 𝜏'/() M

𝑒𝑈'/(𝜏'/(
24𝜏'/( + 𝜏!

#665
N
+

𝐾'/(𝜈((

 

( 11 ) 

With 𝑈( =	
:!&"
;'

	(𝐸( − 𝜇4). 

d) Phenomenological threshold. The ability of the analytical template (5) to capture different firing 
behavior is given by the introduction of 5 parameters in the phenomelogical threshold term. The 
phenomenological threshold is expressed as a linear combination of the Vm fluctuations properties 
whose coefficients are linearly fitted to the numerical TF data (Zerlaut et al., 2016): 

𝑉05"#
#664𝜇4,𝜎4,𝜏45 = 𝑃= + 𝑃;4

𝜇4 − 𝜇4=

𝜕𝜇4=
+ 𝑃>4

𝜎4 − 𝜎4=

𝜕𝜎4=
+ 𝑃14

𝜏4? − 𝜏4?=

𝜕𝜏4?=
+ 𝑃;8ln	(

𝜇8
𝑔9
) 

( 12 ) 

Where 𝜏4? is 𝜏4 	adjusted with the ratio between membrane capacitance and leak conductance (@(
A)

), 

and 𝜇4= , 𝜎4	= ,𝜏4?=, 𝜕𝜇4= , 𝜕𝜎4	= ,𝜕𝜏4?=	are rescaling constants to normalize the contribution of each term 
(Zerlaut et al., 2018). P are the polynomial coefficients which are the target of the fitting procedure 
to compute the analytical TF as explained in e) (see Table 3). 

e) Analytical TF. The statistical moments in equations (9), (10), (11) and the phenomenological 
threshold in equation (12) were plugged into equation (13) and the phenomenological threshold is 
computed through a fitting procedure described in Zerlaut et al. 2016. The TFs specific for the 
cerebellar populations are reported in Figure 3B. 
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The parameter alpha (equation (5)) was set to an optimal value for each population to fit both low 
and high frequencies (Carlu et al., 2020). The analytical TF, together with the statistical moments 
𝜇4 , 𝜎4, and 𝜏4 defined the cerebellar MF equations. 

2.2.3 Multi-layer equations 
The multi-layer MF was developed as a set of equations capturing the interdependence of the 
population-specific TFs, tailoring the isocortical MF described in (El Boustani and Destexhe, 2009) 
for excitatory-inhibitory networks to the cerebellar network. This formalism describes the network 
activity at a time resolution T which is set to ensure a Markovian dynamic of the network: T should 
be large enough to ensure memoryless activity (e.g., it cannot be much lower than the refractory 
period, which would introduce memory effects) and small enough so that each neuron fires 
statistically less than once per time-bin T. The choice of T is quite crucial and here it was tailored to 
account for cerebellar dynamics as explained in. 

The model describes the dynamics of the first and the second moments of the population activity for 
each population. The cerebellar network was build up with four interconnected populations (GrC, 
GoC, MLI, PC) receiving external input from mossy fibers (mf) (Figure 2), thus resulting in twenty 
differential equations: the four population activities (𝜈GrC(t), 𝜈GoC(t), 𝜈MLI(t), 𝜈PC(t)) and the driving 
input (𝜈mf (t) = 𝜈drive(t)), the four variances of the population activities (cGrC-GrC(t), cGoC-GoC(t), cMLI-

MLI(t), cPC-PC(t)) and the one of the driving input from mossy fibers (cmf-mf(t)), the six covariances 
among population activities (cGrC-GoC(t), cGrC-PC(t), cGrC-MLI(t), cGoC-MLI(t), cGoC-PC(t), cMLI-PC(t)) and 
the four covariances between population activities and the driving input (cGrC-mf(t), cGoC-mf(t), cMLI-

mf(t), cPC-mf(t)). Einstein’s notation was used to report the differential system in a concise form: 

⎩
⎪
⎨

⎪
⎧ T

𝑑𝜈; 	
𝑑𝑡 = 	 4𝐹; − 𝜈;5 +	

1
2 𝑐CD

𝜕𝐹;
𝜕𝜈C𝜕𝜈D

𝑇
𝑑𝑐CD
𝑑𝑡

= 𝛿CD
𝐹C41 𝑇W − 𝐹D5

𝑁C
+ (𝐹C −	𝜈C)(𝐹D −	𝜈D) +

𝜕𝐹C
𝜕𝜈;

𝑐D; +
𝜕𝐹D
𝜕𝜈;

𝑐C; − 2𝑐CD

 

( 13 ) 

Where 𝜈µ  is the activity of population µ; cλ𝜂	is the (co)variance between population λ and 𝜂; N is the 
number of cell included in population λ. According to Einstein’s notation, a repeated index in a 
product implies a summation over the whole range of values. TF dependencies on the firing rate of 
presynaptic populations are omitted yielding Fμ instead of Fμ(𝜈s) with μ = {GrC, GoC, MLI, PC} and 
s is the presynaptic population (e.g. 𝐹82@ =	𝐹82@	(𝜈&"7$# , 𝜈8"@ , 𝜈82@)). The model equations (13) 
were numerically solved using forward Euler method with an integration step of 0.1 ms. 

2.2.4 Timing Optimisation 
The MF time-constant T was optimised by comparing the model prediction with experimental data 
of the cerebellar Granular layer (Figure 4). The simulated average activity was interpolated with the 
experimental Local Field Potential (LFP) measured with high-density microelectrode arrays (HD-
MEA) in the granular layer of acute mouse cerebellar slices (Mapelli and D’Angelo, 2007)  

LFP data were recorded at 37 °C. The external stimulus consisted in a pulse train of 5 stimuli of 50 
Hz amplitude. This stimulation protocol was repeated nine times changing the HD-MEA recording 
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channels across each experiment (Figure 4A). The LFP signals recorded were averaged across the 
nine experiments resulting in five values that represented the average of each pulse of the input trains. 
These average records were normalised on the amplitude of the signal recorded after the first stimulus. 

The cerebellar MF simulation protocol was configured with a 𝜈drive = 50 Hz for 100 ms, reproducing 
the experimental protocol (Figure 4B). A range of plausible T values was evaluated according to 
literature (El Boustani and Destexhe, 2009; Zerlaut et al., 2016, 2018; Carlu et al., 2020). MF 
simulations were performed with a systematic change of T value and the granular layer average 
activity was calculated by a weighted-mean of GrC and GoC activity. The weight of GrC and of GoC 
was computed as the ratio of the spiking surfaces (GoC/GrC) resulting in 0.13 (Mapelli and 
D’Angelo, 2007). The granular layer average activity was normalised on the maximum peak, and it 
was interpolated with LFP recordings (Figure 4C). For each simulation the mean absolute error was 
computed to select the T value that minimised the discrepancy with the LFP signals. Since the 
granular layer is the driving layer of the network, the optimal T value was extended to the molecular 
and Purkinje layers. 

2.3 Constructive and Functional validity 
For constructive and functional validity, the cerebellar MF was tested using stimulation protocols 
designed to assess its ability in reproducing proper cerebellar dynamics and stimulus-response 
patterns.  

Four different stimulation protocols were defined, each lasting 500 ms: 

i) 𝜈&"7$# = Step function. A square wave with steps of amplitude 50 Hz, and lasting 250 ms to 
reproduce a conditioned stimulus (e.g. a sound) 

ii) 𝜈&"7$# = Theta-band sinusoid. A sinusoidal input with rate amplitude set at 20 Hz and frequency 
at 6Hz (theta band) to simulate the whisker movements experimental conditions. 

iii) 𝜈&"7$# = Combination of alpha, theta, and gamma band sinusoid. A combination of 3 sinusoidal 
inputs, with fixed rate amplitude at 40 Hz and frequency at 1Hz, 15Hz and 30Hz respectively 
reproducing a EEG-like pattern.  

iv) 𝜈&"7$# = Step function plus multi-band sinusoid. Summation of the step function described in (i) 
with amplitude of 20 Hz and sinusoidal function including alpha, theta and gamma band with the 
same frequency of (iii) and amplitude of 7.5 Hz to simulate a more complex input like a conditioned 
stimulus overlapped to a realistic basal activity 

Population activities predicted by the MF were overlayed to the Peristimulus Time Histogram (PSTH) 
with bin = 15 ms, computed from spiking activities of the SNN in NEST simulations of the same 
stimulation protocols. Then, the PC activity, i.e., the output of the cerebellar cortex, was quantified 
as mean ± standard deviation of the firing rate for both MF and SNN simulation. Boxplots were 
shown to quantitively compare MF and SNN outcomes, and the computational efficiency of each 
model was measured as computational time in seconds required for each simulation performed with 
MF and with NEST. 
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2.4 Predictive Validity 
For predictive validity, MF parameters were tuned to explore the MF sensitivity to modifications of 
local mechanisms. These modifications were derived from experimental studies on neural correlates 
of behavior in functional or dysfunctional conditions, focusing on inhibitory control and long term 
plasticity on PCs (Wulff et al., 2009; ten Brinke et al., 2015) 

 2.4.1 MLI feed forward inhibition modulation 
Feedforward inhibition from molecular layer interneurons regulates adaptation of PCs. Impact of 
MLI-PC conductance on PC activity was explored by defining different values of MLI-PC synaptic 
strength wMLI-PC = [5, 30, 100, 150, 200, 250] %, where wMLI-PC = 100% represents the standard 
condition, rates lower than 100% model disinhibited activity, while rates higher than 100% extra- 
inhibition. 

wMLI-PC was added to the Analytical TFPC as a modulatory parameter of the presynaptic input 𝜈MLI, 
resulting in a modulation of MLI contribution in PC population conductance (35) defined as follows 

𝜇E@ = 𝐾F9G/E@𝑄F9G/E@𝜏F9G/E@𝜈F9G𝑤F9G/E@ + 𝐾8"@/E@𝑄8"@/E@𝜏8"@/E@𝜈8"@  

( 14 ) 

Each simulation lasted 500 ms with a 50Hz driving input of 250 ms after 125 ms of resting.  

The Area Under Curve (AUC) of PC activity, PC peak and the depth of the pause were computed as 
quantitative scores for each wMLI-PC value AUCs and PC peaks were normalised on the respective 
values corresponding to the standard condition defined as wMLI-PC = 100%. 

2.4.2 PC Learning 
Long term potentiation and depression (LTP and LTD) are forms of synaptic plasticity at the basis of 
brain learning processes (Bliss and Cooke, 2011). In the cerebellum, motor learning is driven by PC 
activity modulation, regulated by the plasticity of the synapses between parallel fibers (pfs – from 
GrC) and PC, resulting in a reduction of PC activity due to LTD and in an increase of PC activity due 
to LTP (Mittmann and Häusser, 2007; Prestori et al., 2013). To simulate pf-PC plasticity, the 
following synaptic strengths (wpf-PC) were explored to investigate the consequent PC modulation: [5, 
20, 35, 50, 65, 80, 100, 120, 135, 150, 165, 180, 200, 235, 250, 265] % where 65% corresponds to 
the decrease of pf-PC strength during motor learning according to animal experiments value (ten 
Brinke et al., 2015), and the others were defined to capture the trend of pf-PC plasticity mechanism. 
The values minor than 100% means LTD occurred, while the values higher than 100% represent LTP 
occurrence. The strategy applied was analogous to equation (13). 

PC AUC and PC peak were computed for each wpf-PC value as quantitative score to correlate the 
amount of LTD and LTP with the output activity of the cerebellar cortex. 

2.5 Hardware and software 
The SNN was built with the BSB release 3.0 (https://bsb.readthedocs.io/en/v3-last) and the numerical 
simulations were performed with NEST version 2.18 (https://zenodo.org/record/2605422).  
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The MF design, the timing optimisation, the MF validation, and the MF predictive simulations were 
implemented in Python 3.8. Functions packages written for the present work are available on 
https://github.com/RobertaMLo/CRBL_MF_Model. 

All optimisation procedures and simulations were run on a Desktop PC provided with AMD Ryzen 
7 2700X CPU @ 2.16GHz with 32 GB RAM in Ubuntu 16.04.7 LTS (OS). 

3 Results 
3.1 The cerebellar MF 
The workflow for reconstructing the cerebellar MF is shown in Figure 1 leading to a condensed 
representation using 4 neuronal populations for GrC, GoC, PC, MLI neurons (Figure 2). The MF was 
designed based on structural and functional parameters extracted from SNN simulations and the time 
constant was optimized LFP experimental data. The MF working frequencies were extracted from 
NEST simulations of the cerebellar SNN exploring multiple 𝜈drive from 4 to 80 Hz. Then these 
frequency ranges were used to set different plausible presynaptic signals in defining the Numerical 
TFs of each population (Figure 3.3A). The ranges were [0.42, 24.17] Hz for GrCs, [3.63, 183.15] Hz 
for GoCs, and [3.27, 41.66] Hz for MLIs. Note that PC working frequencies were not computed since 
PC activity is only projected forward to the cerebral cortex, therefore PCs never play the role of 
presynaptic population in this cortical cerebellar microcircuit. The a parameters that maximised the 
fitting performance for each population were a GrC = 2, a GoC = 1.3,  a MLI = 5 and a PC = 5. The fitted 
coefficients P are reported in Table 3 

2D Analytical TFs show a sigmoidal trend in relation with excitatory inputs (Figure 3B). GoC 
inhibition strongly affects the GrC Analytical TF; for 𝜈GoC	higher than 100 Hz, GrC Analytical TF is 
almost 0 Hz. For low inhibition, e.g., 𝜈GoC= 13 Hz, GrC Analytical TF is almost linear. MLI Analytical 
TF presents a well-defined sigmoidal trend depending on 𝜈GrC and modulated by the auto-inhibition, 
with resulting activity frequency spanning from 0 Hz up to 200 Hz. PC Analytical TF presents an 
increasing trend ranging from 0 to 100 Hz in relation to 𝜈GrC	from 0 to 25 Hz, with the modulation 
due to the inhibitory control from MLIs. 3D Analytical TF of GoC shows a linear trend both for low 
and high 𝜈drive. 

The cerebellar MF resulted in a set of 20 second order differential equations including the specific 
population TFs, where 4 equations described the time variation of population activity, and the 
remaining 16 equations modelled the covariances of the interconnected populations. Figure 4 shows 
the result of T optimisation: for T = 3.5 ms the average granular layer activity (purple line) 
interpolates the experimental LFPs (red dots) with a mean absolute error of 3%. 
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Figure 3) Numerical TFs and the corresponding Analytical fitting. The simulation used to compute the 
numerical TFs last 5 seconds, with a time step = 0.1 ms. A) A 2D numerical TF template is reported for GrC, 
MLI and PC, which receive inputs from two presynaptic populations. A 3D numerical TF template is reported 
for GoC, which receive input from 3 presynaptic sources, i.e., mossy fibers, GrC and GoC. From the 3D 
domain of frequencies combination, only the physiological working frequencies of GrC and GoC are 
considered for mossy fibers inputs from 0 Hz to 80 Hz, as obtained in corresponding spiking neural network 
simulations and 3D numerical TF for GoC which receive three presynaptic inputs. B) The numerical TFs are 
used to fit the corresponding analytical TF. For each neuronal population, the average activity obtained in 
spiking neural network simulations is represented in color code, for each combination of input activity levels. 
The 2D analytical TF presents a non-linear trend, while the GoC Analytical TF shape is almost linear both for 
lower 𝜈drive = 20 Hz and higher	𝜈drive = 80 Hz. 
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Table 3) Fitted coefficients of the Analytical TFs 

 

Phenomenological threshold 

𝑉05"#
#664𝜇4,𝜎4,𝜏45

= 𝑃= + 𝑃;4
𝜇4 − 𝜇4=

𝜕𝜇4=
+ 𝑃>4

𝜎4 − 𝜎4=

𝜕𝜎4=
+ 𝑃14

𝜏4? − 𝜏4?=

𝜕𝜏4?=

+ 𝑃;8ln	(
𝜇8
𝑔9
) 

 

 

Fitted coefficient P [V] 

 P0 PµV	 P𝜎V P𝜏V PµG 

GrC -0.426 0.007 0.023   0.482  0.216 

GoC -0.144   0.003   0.011   0.031   0.011 

MLI -0.128  -0.001   0.012  -0.093 -0.063 

PC -0.080   0.009     0.004 0.006  0.014 

 

P coefficients computed with the fitting procedure explained in Zerlaut et al., 2016 and extended to E-GLIF neurons. 
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Figure 4) The mean-field time constant. A) Experimental acquisition of LFP. LFP signals were acquired in 
the cerebellar granular layer of acute mice cerebellar para-sagittal slices using HD-MEA in response to five 
stimulation pulse trains of 50 Hz (Unpublished data, courtesy of Lisa Mapelli and Anita Monteverdi). B) MF 
simulation. The activity of the granular layer was simulated with the cerebellar MF using a stimulation protocol 
emulating experimental LFP recordings. C) Interpolation of LFP and MF. The weighted average of the 
predicted Granular Layer activity (𝜈GRL, violet line) interpolates the LFP data (mean ± SD; dots and bars). The 
relative weights of GoC and GrC are 13% and 87%, respectively. The optimal T value is 3.5 ms ± 5%, (mean 
± mean absolute error between 𝜈GRL and LFP). 
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3.2 Constructive and functional validity 
The validation of the cerebellar MF was obtained generating neuronal population dynamics with 
different stimulation protocols and comparing them with the corresponding SNN simulations (Figure. 
3.5). For all the protocols, the simulation lasted 500 ms and was performed with the hardware and 
software specified in section 2.5. 

Step function (i). The MF was tested with a 250 ms@50 Hz step function on the mossy fibers, 
simulating a conditioned stimulus (Figure 3.5A) (Jirenhed and Hesslow, 2011). GrC activity rapidly 
raised at the beginning of the step input, then strongly decreased due to inhibitory GoC activity. GoCs, 
after an initial small peak due to both the direct incoming input and the GrC excitation, maintained a 
steady-state activity for all the step duration. The dynamics of GrC-GoC interplay faithfully 
reproduced the feedback loop between GoCs and GrCs. GrC was the excitatory input for the 
molecular layer, and both MLI and PC activity arose in correspondence of the GrC initial peak. Thus, 
exploiting network di-synaptic delays, MLIs reduced PC activity soon after its maximum, generating 
the typical burst-pause pattern of these neurons. The PC pause is due to both the single neuron 
parameters and to inhibitory local connectivity in the microcircuit. After this rapid transient, the 
activity of MLIs and PCs reached a steady-state. In the MF, fast dynamics at the input step onset and 
at the steady-state matched SNN simulations for all neuronal populations. 

Theta band sinusoid (ii). Simulated dynamics of all cerebellar populations showed oscillations driven 
by the input reproducing whisker movements (Figure 3.5B) (Popa et al., 2013). GrC activity projected 
to the molecular layer a sinusoidal-shaped signal at 0.05-5Hz, contributing to an oscillatory behaviour 
in GoCs, and causing an oscillation in MLI between at 23-41 Hz, and in PC activity at 42-69 Hz. 
Oscillations had comparable amplitude in MF and SNN simulations and occurred in the same 
frequency ranges (except for MLI activity that was slightly higher in MF that SNN).  

Alpha, gamma and theta band sinusoid (iii).  Combination of alpha, gamma and theta sinusoids (with 
EEG-like frequency (Del Percio et al., 2017) of 1 Hz, 15 Hz, 30 Hz, respectively) caused an irregular 
oscillation in the input carried by mossy fibers (2-47 Hz range) (Figure 3.5C) Oscillations had 
comparable amplitude in MF and SNN simulations and occurred in the same frequency ranges. 

Step function plus multi-band sinusoid (iv). The summation of repeated step function (i) and multi-
band sinusoid (iii) resulted in an irregular input (Figure 3.5D) depicting in-vivo noisy baseline activity 
with a conditioned stimulus superimposed. GrC activity faithfully transmitted the driving input, with 
peaks at ~21 Hz. In correspondence with the GrC excitatory peak, MLIs peaked at ~130 Hz and PCs 
at ~100 Hz.  

The responses had comparable dynamics and amplitude in MF and SNN simulations. 
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Figure 5) Constructive and functional validity. Comparison of SNN and MF activity in cerebellar cortical 
populations in response to different driving input (𝜈drive) patterns, lasting 500 ms with time resolution = 0.1 
ms. A) step function (Conditioned stimulus-like); B) sinusoidal input in the theta band (whisker-like); C) multi-
frequency sinusoidal function (EEG-like); D) combined stimulus summing (A) step function and (C) multi-
frequency sinusoidal. The trace of MF activity is overlayed to the spiking activity, which is represented as a 
PSTH (time bins of 15ms). In all cases, MF activity is within physiological ranges, capturing also fast changes 
of activity due to instantaneous input changes in step-function input protocols. The boxplots of PC simulated 
activity with SNN and MF, shows that the MF is able to respond to the different stimulation patterns within 
the same frequency ranges of SNN. 
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3.3 Predictive validity 
The PC response to a 50Hz step-stimulus was described by a peak at 97 Hz followed by a pause down 
to 68 Hz; then a steady-state of 78 Hz was attained. MLI-PC and pf-PC modulation (Figure 3.6) 
perturbed this reference condition. 

3.3.1 MLI-PC feed forward inhibition 
Inhibitory interneurons control the generation of burst-pause patterns in PC, which is fundamental 
for shaping the cerebellar output during motor learning (Casali et al., 2019; Kim and Augustine, 
2021). For instance, knock-out of MLI inhibition on PC impacts on vestibulo-ocular reflex adaptation 
(Wulff et al., 2009). Here in MF simulations, when the MLI-PC conductance was reduced to 5% of 
the reference condition, the burst-pause dynamics of PC was lost, so that the PC firing settled directly 
back to baseline (which was elevated due to lack of inhibitory control). Conversely, when PCs were 
over-inhibited by the MLIs (MLI-PC conductance increased to 250% of reference condition), the 
pause was deeper. The PC overall activity (AUC), and PC Peak reveal an exponential trend that 
decays for higher MLI-PC conductances. The PC pause shows a decreasing sigmoidal trend for higher 
MLI-PC conductances (Figure 3.6A). 

3.3.2 PC plasticity 
Long Term Depression (LTD) and Long Term Potentiation (LTP) at pf-PC synapses are though to 
drive cerebellar adaptation and learning. The overall activity and the peak of PCs showed a linear and 
a sigmoidal trend, respectively, with the increase of pf-PC weight. With decreased pf-PC strength, 
the peak was reduced or disappeared, and the steady-state activity reached lower levels. With 
increased pf-PC strength, both the peak and steady-state values were increased (Figure 3.6B). During 
a typical cerebellum-driven behaviour, the eyeblink classical conditioning (EBCC), a level of 
suppression of about 15% has been reported and correlated with a stable generation of associative 
blink responses at the end of the learning process (ten Brinke et al., 2015). SNN simulation got the 
same result by setting AMPA-mediated pf-PC synapses = 35% (De Schepper et al., 2022). In MF 
simulations, for wpf-PC = 65%, which corresponded to a reduction of pf-PC conductance of 35%, PC 
activity presented a 22% reduction of the peak and a 10% reduction of the AUC, falling into the 
experimental range of PC suppression (ten Brinke et al., 2015). 
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Figure 6) Predictive validity. MF simulations using different strengths at PC connections. Simulations last 
500 ms with a time resolution of 0.1 ms and 𝜈drive is a step at 50 Hz lasting 250 ms starting at 125 ms. 
Quantitative score normalized to baseline (w = 100% in blue). A) MLI-PC feed forward inhibition. The 
change of total activity (measured as AUC) and the initial peak amplitude decrease exponentially with the 
MLI-PC strength. The amplitude of the pause after the peak response decreases with MLI-PC strength 
following an inverse sigmoidal function. B) PC Learning with different GrC-PC plasticity conditions (LTP 
and LTD). AUC linearly increases with the GrC-PC strength, matching the experimental values in 
experimental learning protocols. The initial peak caused by the step stimulus onset increases with GrC-PC 
until saturation, following a sigmoidal function. 

4. Discussion 
This work shows, for the first time, a MF of cerebellar cortex. According to its bottom-up nature, the 
MF transfers the microscopic properties of neurons (including GrC, GoC, MLI, and PC) and synapses 
of the cerebellar cortex into a condensed representation of neural activity through its two main 
statistical moments, mean and variance. The construction and validations strategies adopted here 
make the present MF an effective representation of the main physiological properties of a canonical 
cerebellar module (D‘Angelo and Casali, 2013) 

4.1 MF design and validation  
The cerebellar network and TF formalism 
The cerebellar cortex MF was based on the same general formalism previously developed for the 
isocortex MFs (Moran et al., 2013; Di Volo et al., 2019; Carlu et al., 2020; Huang and Lin, 2021). 
However, the cerebellar cortex MF benefitted of a previously validated SNN to precisely remap 
cellular and synaptic biophysical properties and network topology. Moreover, the 
electrophysiological properties of neurons were represented using non-linear EGLIF models and the 
synapses with alpha-based conductance functions. This resulted in three main advantages. 
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First, the parameters of population specific TFs were validated against biophysically detailed models 
of neurons and the connectome was derived from precise scaffold model reconstructions providing a 
direct link to the biological microcircuit (De Schepper et al., 2022). 

Secondly, the equations of μV, 𝜎V and 𝜏V included in the TF formalism were adapted to model the 
alpha-shaped synapses and to maintain rise-times in synaptic dynamics. For comparison, previous 
MFs (Zerlaut et al., 2016, 2018) used exponential synapses, which provide a less realistic 
approximation due to their instantaneous rise time (Brette and Gerstner, 2005).  

Finally, MF included 4 different species of neurons that were modelled using either 2D or 3D TFs to 
account for the multiplicity of their inputs (Figure 3). It is worth noting that the analysis of both 2D 
TFs of GrC, MLI and PC, and 3D TF of GoC were fitted considering only physiological input 
combinations computed from single-neuron computational models. In the fitting procedures, indeed, 
fine-tuned parameters were included to maintain a strong physiological correspondence. The 3D 
dimension of the GoC TF avoided to merge the excitatory input from GrC and mossy fibers (𝜈GrC	and 
𝜈drive, respectively), enabling us to investigate distinct excitatory input contributions to granular layer 
dynamics and to the whole cerebellar MF. By fixing the excitatory mossy fibers driving input, we 
assessed the power of the Analytical TF in simulating spiking network activity for inputs at both low 
and high frequency (e.g., see Figure 3.4 with 𝜈drive= 20 Hz and = 𝜈drive= 80 Hz). 

A technical issue incurred while fitting the numerical TF. The TF formalism models the difference 
between phenomenological threshold (𝑉05"#

#66) and population average responses (μV) through the 
complementary error function (erfc in equation (5)), providing an immediate interpretation of how 
single neuron activity was related with statistics of population dynamics (μV, 𝜎V, 𝜏V). Since erfc is stiff 
and limited between -1 and 1, it may not accurately follow the numerical TF distribution at the 
boundaries, losing precision at high frequencies. This problem was circumvented by tuning the 
parameter alpha (Carlu et al., 2020), making the TF analytical expression reliable over the whole 
range of input working frequencies. 

MF tuning  
The inclusion of precise structural and functional parameters in the design of cerebellar MF (see 
Figure 2 and 3) generated a biology grounded model that could be validated at a higher scale with the 
prediction of cerebellar dynamics (multi-layer equation 13). The dynamics of the cerebellar cortex 
are several times faster compared to those of the cerebral cortex (D’Angelo, 2011), so that the MF 
time constant, T, must be optimized accordingly. The MF time constant was optimized using 
experimental LFP recordings from the cerebellar granular layer acquired on the same spatial scale of 
the MF. The best fitting was obtained by accounting for the smaller contribution of GoC than GrC 
activity (13% vs. 87% (Dieudonné, 1998; D’Angelo et al., 1999)) to LFPs (Mapelli and D’Angelo, 
2007) , revealing that the MF time constant of the cerebellar cortex is T=3.5 ms with mean absolute 
error of 3% (Figure 3.4). T is definitely smaller than in cerebral cortex MFs, which range up to 20 ms 
(Zerlaut et al., 2018; Di Volo et al., 2019; Carlu et al., 2020), and captures the peculiar high speed of 
cerebellar dynamics (D’Angelo, 2011). This result further confirms the need of a MF specifically 
tailored on the cerebellum functional and topological parameters. 

The optimal T value was plugged into equation 13 resulting in a second order differential equation 
system of interdependent TFs capturing the dynamics of multiple cerebellar populations and their 
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covariances. This rich pool of equations allowed our cerebellar MF to reproduce a variety of 
cerebellar dynamics in response to different inputs (see section 2.3 and shown in Figure 5) which, by 
comparison with the equivalent SNN output, provided the benchmark for constructive and functional 
validity. A rapidly changing input like a step function reproduced a conditioned stimulus (Jirenhed 
and Hesslow, 2011) carried by the peripherical mossy fibers, causing rich dynamics in the cerebellar 
cortex including the typical PC burst-and-pause responses (Herzfeld et al., 2015). Adding a multi-
sinusoidal input to the conditioned stimulus replicated a more physiological condition accounting for 
background activity. This resulted in rich PC dynamics, which still maintained burst-and-pause 
responses. A sinusoidal input was meant to emulate more complex experimental conditions, like those 
determined by whisker movement (Popa et al., 2013; Yamazaki and Igarashi, 2013; Antonietti et al., 
2017; Masoli et al., 2020a; Gagliano et al., 2021, 2022). In particular, a multi-sinusoidal waveform 
(comprised of frequencies in the EEG spectrum) was used to emulate composite inputs from the 
cerebral cortex (Del Percio et al., 2017; Tzvi et al., 2022).  

The cerebellar MF reproduced the known aspects of circuit physiology revealed experimentally. 
Indeed, GrCs respond to impulsive inputs with bursts curtailed by GoCs and are also able to follow 
slower input fluctuations (D’Angelo and De Zeeuw, 2009). The PCs generate burst-pause responses 
that are accentuated by MLIs (Masoli and D’Angelo, 2017; Rizza et al., 2021). The cerebellar MF 
quantitatively reproduced these patterns matching the corresponding SNN simulations, with the only 
exception of the maximal GoC responses, which did not increase as expected with rapidly changing 
inputs like the step function. This is a consequence of the lack of GoC heterogeneity in MF, in which 
all GoC are collapsed in a homogeneous population despite their biological heterogeneity (Galliano 
et al., 2010). Except for this, MF predicted with good approximation the SNN cerebellar output, i.e., 
the PC activity (Boxplot in Figure 5). The inclusion of probabilistic kernels addressing parameter 
heterogeneity could also help improving the MF fitness (Di Volo and Destexhe, 2021).  

4.2 MF predictions  
A critical step in model validation is to demonstrate its ability to predict functional states not used for 
model construction. The cerebellum is well known for the ability to change its network functioning 
because of synaptic and non-synaptic plasticity. However, different from SNN, the MF did not 
include plasticity mechanisms. Thus, we directly tested the MF ability to predict the effects of 
plasticity expression by mapping a set of precomputed synaptic changes on the MF itself.  MF 
reproduced the impact of MLI-PC conductance confirming that, also in the cerebellar MF, the 
complex burst-pause behaviour of PC is tuned through the MLI-PC connectivity.  

The cerebellar MF reproduced the experimental recordings in EBCC experiments on behaving mice 
(ten Brinke et al., 2015) pointed out a PC LTD of 10% in terms of overall activity and 22% for the 
peak (Figure 6 wpf-PC = 65%). This protocol corresponds to a reduction of 35% of AMPA-mediated 
pf-PC in SNN simulation, therefore our MF capability of capturing synaptic mechanism is further 
validated against in-vivo recordings.  

In aggregate, the cerebellar MF, despite a lower level of detail than SNN, was able to reproduce 
complex physiological mechanisms and predict the activity changes caused by synaptic modulation 
(ten Brinke et al., 2015; De Schepper et al., 2022). Therefore, this MF is a flexible tool that can be 
used to investigate advanced physiological or pathological properties by tuning the input of TF on a 
target population (TFPC in these simulations), without complicating neither the TF fitting procedure 
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nor the model equations. The procedure of parameters tuning might pave the way for further 
manipulation to remap physiological and/or pathological features onto the MF. Identifying and 
extracting biophysical meaningful features from subject-specific data, like diffusion weighted 
imaging or spectroscopy, might allow the MF tailoring onto subject-specific characteristics and to 
combine functional simulations with (micro)structural information. 

4.3 Performance vs. realism  
The MF approximated a complex SNN of ~3x104 neurons and ~1x106 synapses (section 2.1) with 20 
equations reducing the computational time by 60% with lower memory requirements. Nevertheless, 
TFs fitting could be improved replacing the procedure in section 2.2.2 with a lookup table-based 
algorithm, which might yield to a gain in computational time up to an order of magnitude. This will 
represent a definite advantage when performing long-lasting simulations reflecting the acquisition 
time of in vivo recordings like EEG and fMRI or when simulating learning processes in closed-loop 
controllers. On the other hand, thanks to its bottom-up nature it was possible to maintain the biological 
realism in responses to various stimuli, including simulations of learning-induced firing rate changes 
and pathological conditions at the neuronal population level, obtaining a good balance between 
computational load and biological plausibility. This will allow to make predictions on the underlying 
neural bases of ensemble brain signals and to identify the elementary causes of signal alterations in 
pathology.  

4.4 Conclusions and perspectives 
In aggregate, the cerebellar cortex MF enforces a bottom-up approach tailored to the specific 
structural and functional interactions of the local neuronal populations and has a substantial 
constructive and functional validity. By accounting for a variety of representative patterns of 
discharge in cerebellar cortical neurons, the present MF can be considered as an effective proxy of 
the biological network. The internal model parameters inform about the average properties and 
variance of fundamental mechanisms in the circuit, namely intrinsic and synaptic excitation, and can 
therefore be used to remap biological properties onto the MF (Naskar et al., 2021). In future 
applications, this will allow to tune the MF toward specific functional or dysfunctional states that 
affect the cerebellum. Among these it is worth mentioning ataxias (Pedroso et al., 2019; Rosenthal, 
2022), paroxysmal dyskinesia (Mendonça and Alves da Silva, 2021; Ekmen et al., 2022), dystonia 
(Mahajan et al., 2021; Morigaki et al., 2021), autistic spectrum disorders (Bruchhage et al., 2018; 
Kelly et al., 2020) as well as other pathologies like and multiple sclerosis (Tornes et al., 2014; Schreck 
et al., 2018), dementia (Monteverdi et al., 2022) and Parkinson disease (Wu and Hallett, 2013; Shen 
et al., 2020), in which a cerebellum involvement has been reported. The cerebellar MF could be 
applied to whole-brain simulators using TVB and DCM, as much as it has been done before for the 
isocortical MF in TVB (Pinotsis et al., 2012; Goldman et al., 2019; Sadeghi et al., 2020; Ruffini and 
Deco, 2021). Considering the specificity of signal processing in different brain regions, this approach 
represents a definite step ahead compared to the classical one adopting generic neural masses for all 
brain regions. This is a promising active field in theoretical neuroscience and clinics, indeed 
applications of specific MF to Parkinson disease have been already implemented by reconstructing a 
model specifically tailored on basal-ganglia and connected with thalamocortical circuit (BGTCS 
MF), accurately reproducing parkinsonian state (van Albada and Robinson, 2009; van Wijk et al., 
2018). Integrating BGTCS and cerebellar MF, and in general MF specifics of brain regions embedded 
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into the motor circuit, would remarkably improve the simulation of brain dynamics, allowing to 
compare dysfunctional oscillations with physiological activity.   

On the theoretical side, TVB simulations using classical neural masses (Wong and Wang, 2006) for 
all brain nodes (Palesi et al., 2020; Monteverdi et al., 2022) can now be compared to those using the 
cerebellum MF. At the other extreme of the spectrum, TVB with embedded cerebellar MF can be 
compared to TVB-NEST co-simulations (Meier et al., 2022), in which spiking  neurons are 
represented explicitly (Geminiani et al., 2018, 2019b, 2019a; De Schepper et al., 2022). These 
comparisons will inform us about the impact of populations, neurons, and spikes on ensemble brain 
dynamics and whole brain computations (D’Angelo and Jirsa, 2022). 

In conclusion, the cerebellar MF represents the first step toward a new generation of models capable 
of bearing biological properties into virtual brains that will allow to simulate the healthy and 
pathological brain towards the overarching aim of a personalized brain representation and ultimately 
personalized medicine and the technology of brain digital twins (Amunts et al., 2022).  
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